DESIGNING SIMULATION EXPERIMENTS TO COMPLETELY RANK ALTERNATIVES

ABSTRAGT

Many of the problems of selecting the t-best
of k populations with respect to a given parameter
have been successfuylly solved for some time.
Important applications, including applications to
the design and analysis of simulation experiments,
have been demonstrated and the tables required for
implementation of solutions are easily available
(e.g. in Gibbons, Olkin and Sobel (5)).

Solutions to the companion problem of com-
pletely ranking k populations have been scarce due
to their mathematical complexity. This paper
discusses examples of complete ranking problems,
some recent advances made towards their solution,
and cites sources of tables needed for their
implementation.

I. TINTRODUCTION TO THE COMPLETE RANKTNG PROBLEM

The statistieal methodology known as ranking
and selection procedures is now recognized as an
important tool for solving many problems involwing
k populations (see Gibbons, Olkin and Sobel (5)).
A description of a procedure for selecting from
among k populations the one with the largest mean,
and applications of that procedure to analysis of
simulation experiments can be found in Dudewicz
(3). The related problem of completely ordering
k populations with respect to some parameter, for
example the mean or the variance, has similar
applications. Solutions to completé ranking prob-
lems have progressed much more slowly than
solutions to selection problems. Basically this is
due to the mathematical complexity of the complete
ranking problem. This paper gives some examples
of complete ranking problems, discusses some
recent solutions to these problems, and reviews
the relavent literature. Sources of tables needed
to implement these procedures are given through-
out the remaining sections..

II. THE COMPLETE RANKING PROBLEM

An example will best serve to introduce the
reader to the complete ranking problem, Suppose
we have 5 alternative air routes with similar lay-
over patterns for flights from New York to Los
Angeles. We want to order these routes with
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respect to the average time (measured in hours) it
takes to complete the flight. If wg use Route 1
for a given flight, we will observe a completion =

time Xll' For a second flight using the same route

we will observe a completion time X12

If we observe Route 1 for n flights, then ve will
have observed n completion times Xll’ X12’ ""Xlﬂ

These times will not all be equal, and to account
for this variahility we assume that these are n
observations (a random sample) from a probability
distribution which has a mean completion time ul.
The sample mean . :

- =xll+xlz+...+x

1 n

and so on.

1n

will estimate ul. Similar statements can be made

concerning the ather four routes,so if we observe
n flights for each route, we obtain a sample mean

for each, namely, X, XZ’ X3, xA* X5.

Next we order the five sample means: let

X[l] ;NX[Z] f_X[3]_§ X[A] f-X[S] denote the ordered

Yﬁ. We know which route genergted'f[l],'f[z], and

so on, and the population ordering rule is to order
the routes in the same manner as their sample means
For example, if ﬁi = 4.5, Xé = 4.3, Yé = 6.1,

Xz = 5,2 and Yg = 4.0, then the ordered values are

4.0, 4.3, 4.5, 5.2, 6.1, and we order the routes

in the same wgy. The order of the routes in terms

of preference (in this case best to worst) is

Route 5 , Route 2 , Route 1 , Route 4 , Raute 3 .

The questipn then is: What is the probability
that we have aordered these routes correctly in, ’
terms of their corresponding My values? Before the

experiment is performed an even more important
question is: What value of p (how many flights for
each route) shapld we use so that the probability
of correct ranking (PCR) is at least a specified
amount? It is clear that the probability of
correct ranking, for any fixed'value of n,
decreases as the ui's becomg closer to each other.

Therefore we will control the PCR when they are
separated by some specified amount (determined by
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' the experimenter). This is accomplished in the
following way. Let u[l] AT j_u[k] denote the

ordered . Then we will only centrol the PCR when

S I R

*

Mie1] T Mpez) 20

Hrag T My 2% -

The probability of correct ranking is a minimum
subject to the above restrictions when each of the
differences actually equals 6%, 1In that case we
say that the means are in a least—-favorable con-
figuration (LFC). The question then becomes: What
is the smallest value of n such that the probabil-
ity of correct ranking is at least P* when all the
differences u[i] - u[irl] =§*% i =2, ..., k, where

8* and P* are chosen by the experimenter? ¥or the .

previous example we might want to choose n so that
the probability of correct ranking is .90 when
§*% = .25 hours.

The problem of course arises in trying to
determine the appropriate value of n given P* and
§%, or in finding P* given n and 6%, Different
methods. of evaluating n are discussed in the next
section.

III. METHODS OF SOLVING FOR n
ITI. A. Ranking Normal Means

If we assume that the observations from popu-
lation i are normally distributed with mean PP

2 .
with known variance ¢  and that all observatioms
are independent, then the solution for n given P*

and 6% is .
_ 2] 2
n =g

where A is obtained from table P.1 of Gibbonms,
Olkin and Sobel (5) for the given values of P* and
k, the number of populations. The entries in this
table (which were computed by numerical integra-
tion) were adapted from the work of Carroll and
Gupta (2). For the previous example suppose

¢ = .50, 8% = .25, and P* = .90. Then from table
P.1 A # 2.80 and

2
_f(2.80)(.50)}" _
n = (—*-TEE————J = 31.36

so 32 flights should be observed for each route.
If the true configuration of the ui is such that

Mgy = Mpg-pp 2 -25 for each 1 = 2, 3, 4, 3, then

the probability that we correctly order the routes
is at least .90.

In this case we have assumed a common known
variance 62, The results of Dudewicz and Dalal &),
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which use a two-stage sampling procedure, extend
to the complete ranking problem and allow the .
assumption of a common known variance to be dropped.’

This solution for n depends upon the
assumption of normal populations. The following
solution of Bishop and Dudewicz (1) is more general
but n must usually be solved for by Monte Carlo
techniques. We will demonstrate this solution by
considering an example of the scale parameter prob-
lem. The general details of the solution can be
found in Bishop and Dudewicz (1), and a similar
solution can also bé obtained for the general
location problem.

III. B. Ranking Scale Parameters

We now assume that observations from the i
population depend upon a parameter 61, that the

th

statistic Ti estimates Bl? and the probability dis-
tribution function for Ti is F(x[ei), where F is

(€))

known. Then if T

is the estimate of 0,.,,, we
have [1]

PCR = P(T < ... < T(k)) .

< T
€8] (2)
Now in this case we control the PCR whenever

e[i]/e[i_l] >c foralli=2, ..., k
where 6[1] 5_6{2] < e 5,e[k] are the ordered ei.
Here the LFC is the configuration of the Gi such

that e[i]/e[i_ll =e¢ for all i = 2, ..., k. Now
Z

=T . /6 .. 1
i (L]
probability distribution function F(x), and

=1, ..., k all have the same

T T
(2) k-1 (k)
PCR > P[T, /8, < ¢ S 20 T =]
(1 7[11] ®12] ® ]
= P[Zl < ez, < aaa < el Zk]‘

Since the distribution of the Zi is known in many

cases, we can generate the Zi's on the computer and

use a Monte Carlo experiment to estimate the lower
bound for the PCR. We discuss the Monte Carlo
experiment in Section IV.~

Returning to the example in Section II, our
interest may be in ranking the routes in terms of
their variabilit& of times, rather than on the
mean times. This is important because precise
prediction of arrival time depends upon the vari-
ability. If we assume that the observations from

th . .
the i B route are normally distributed with mean

n
u, and variance cg, then we use T, = L (X..—X.)z.
i i tg= HF

Note that the usual unbiased estimate of Ui is



st = T,/(-1).
estimate of c[i],then

If we let T(i)/(n—l) be the

R\FUPgl(l)/(n—l) < T(z)/(n—l) < el < T(k)/(n—l)]
=P[T,y < T,0q < vvn

w T
z_?[Zl < cZ

T
g S eer < k 1 Z ]

where Z, = T, ./6% . has a chi~-squared distribution
i (1) "[1]

with n~1 degrees of freedom. Hence F(x) is the
distribution function for a chi-squared distribu—
tion with n-1 degrees of freedom.

Chi-squared random variables can be easily
generated on a computer, and this lower bound can he
evaluated by a Monte Carlo experiment. For various
values of n, k, P* and ¢ these lower bounds have
been generated for the above case by Schafer and
Rutemiller (6). These tables appear as table P.3
in Gibbons, Olkin and Sobel (5).

For the problem discussed above auppose we
want the PCR to be at least .90 when 0[ ] [1_1]

> 1.6 for all i = 2, 3, 4, 5. Then from table P.3
the required value of v = n-1 (the degrees of
freedom for the chi-squared distribution) is 70 so
the required value of n is 71.

Note that although we applied the results of
III. B. to normal populations,we could also apply
them to non~normal populations. Only the distri-
bution function F(x) for the Zi’ yhich was the chi-

squared distribution function in this case, would
change.

1V. DESCRIPTION OF THE MONTE CARL.Q EXPERTMENTS

The lower hound for the PCR subject to the

restriction that the Sti]/B >cdi=2

. > s eees k
is [i-1]

P[Z1 < cZz < L .. < ck—l Z

»
where the Z, have the same known probability dis-
tributdion F%x) To estimate this probability we

generate Zl’ ZZ’ cees Zk and check to see if Zl’
k-1 .

ceey C Zk are in ascending order. This

process is repeated N times, and we estimate the

probability by
PCR = 'pnumber of correct oxderings'/N ,

If the Monte Larlo experiment is hased op N=20,000
replications, the maximum standard deyiation of , /
these probablllty estimates is ((.5)(.5)/20, 000)
.0035.,
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