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SIMULATION OPTIMIZATION USING RESPONSE SURFACES BASED ON SPLINE APPROXIMATIONS

ABSTRACT

This paper presents an approach designed to in-
crease the effiCiency and utility of search for op-
tima of simulation models. Specifically, spline
functions ‘(add~order polynomials fitted between si-
mulation run outputs that match curvature at the end
p01nts) are used to approximate the 31mulation along
suitably chosen directions of search, The splines
are used to generate "pseudo-experiments which en=
rich the data base formed from actual simulation
runs. An overall (grand) function is then fit’ to
this data base, yielding new direction(s) of search
for the next iteration.” Several characteristics of
this technique are examined, including its sensiti-
vity to experimental budget, number of iterations
allowed, and size of feasible region.

This approach results in not only an estimate
of the optimal response from the simulation, but al-
S0 & response surface estimated over a larger domaip
useful both for sensitivity analySis and in some
cases ag an approximate representation aof the simy-
lation for use in other modeling effonts The paper
describes an application of the technique to a model
of a railroad classification yard. The objective is
to fipd the numbers apd sizes of inbound and outboupd
trainsg, and the dispatching policy Within the yard
which minimize total car delay.

L. INTRODUCTION

The use of simulation models for purposes of
system optimization is atopicnofconsiderable inter-
est to many analysts Most approaches to this prob-
lem have been based on the uge of direct search pro-
cedures originally developed primarily for non-linear
programming applications Examples ofsuch procedures
are the gradient proJection method describedby'Rasen
(14,15), the Slmplex ~based progcedure of Spendley, et
al (16), and the "complex" (constrained Simplex) apsy
proach described by Box (3 ). More recent develop-
ments in non-linear programming have lead to other
typesofprocedures. These newer algorithmg however,
often are constructed so as to exploit various ele—‘
ments ofstructure in non-lineax programming problems,
and have not been generally applied to a simulation
environment. A conCise summary of the state-of the=
art in simulation optimizationis providedby Farrell

(6)-
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Becauge these procedures were originally de~
signed to be used in an environment where evaluation
of the obJective function to be optiwized is not
costly, they tend to require a large number of such
evaluations Eor example, Box (3) describes appli—
cation of his procedure to a problem with five con-
trollahle inputs, or decision variables. Locating
the point()fnear- ptimum response required 881 eval-
uations of the objective function. While the number
of such evaluations required in any particular appli-
cation depends on a number of facters, including how
good a starting solution is avagilable, it 1s clear
that procedures of this type generally require asub-
stantial number of function evaluations.

This becomes a problem when applying these pro=z
cedures to simulation models. In this environment,
each evaluation<>fthe objective function corresponds
to a "yun' of the simulation model tq generate an.
experimental outcome. In many cases, this is expen-
sive in terms of both computer time and analyst time,
Thus, procedures which in concept are directly appli-
cable to a simulation environment are often too com-
putationally demanding to be really usable.

A premise on which this paper is based is that
the problanofoptimum-seeking with simulation models
needs to be redefined tobe more inkeeping with ‘the
objectives of the user of the simulation results.
This redefinition leads to use ofzimodified set of
analytic tools for solution of the problem. fection
II of the paper discusses problem definition and
proposes a new procedureforsolution ThesensitiVity
of this procedure to its parameters is described in
Section III. Application of the procedure to a real-
istic simylation problem is described in Section IV'
this application involves a model of a railroad clas-
Sification yard. Finally, conclusions and recommep-
dations for further work are given in Section V.

II. DEFINITION OF THE OPTIMIZATION PROBLEM

The problem addressed by most direct-search
procedures is to find the point (or at least a very
small region containing the point) of optimum re-
sponse, possibly constrained py bounds on the input
variables and/or more complicgted constraints invol-
ving several of the input variables. Notably missing
from this prohlem definition are notions of available
budget for attainment of the solution, and senSiti-
vity of the objective function to changes in the input
variables over sope region about the optimum solutiodn.
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OPTIMIZATION WITH SPLINES....continued

Several applications of direct-search procedures
to simulation have attempted to deal with the problem
of response sensitivity by fitting response surfaces
(usually quadratic forms) to the experimental obser-
vations in the neighborhood of the estimated optimum
point. Examples of such procedures, are discussed by
Biles (1), Eldredge (5), and Mihram (11), among
others. A general discussion of response=surface
methodology is given by Myers (12 ).

It should also be noted that such an estimated
response surface can be useful for purposes other
than local sensitivity analysis. If the response
surface 1s estimated over a sufficiently large domain,
it can often be used as areplacement for the simula-
tion model itself, for some purposes. For example,
a simulation of some component of a larger system
gives detailed information on its behavior; but if
questions pertaining to the larger system as a whole
are of interest, it may be sufficient to use an ana-
lytic approximation to the simulation model as part
of the overall analysis.  Such an application, in
fact, has served as motivation for the work presented
here. In this case, we wish to approximate the re-
sponse of asimulation of railroad-yard performance
for use ina larger model of the rail firm as awhole.

Concern with the available budget for experi-
mentation is quite rare in the literature. This be-
comes a serious problem when the model in question
has a large number of input variables. In view of
this, we have sought to solve a problem which might
be expressed roughly as follows:

Given a budget of N experiments and an
initial feasible region, determine a sub-
region of minimum volume containing the
optimal solution, and estimate a response
surface over a sub-region at least as large
as that predicted to contain the optimum.

As one attempts to refine this problem state-
ment into more precise terms, a number of important
questions are raised. Must the initial feasible re-
gion be convex? Must the response function be uni-
modal? Will the identified sub-region contain the
optimal solution with certainty? Over how large a
sub-region should a response surface be estimated?

The work presented here does not provide ans-
wers to all of these questions, but it does attempt
some initial steps toward development of a procedure
which cah be used to solve problems of this type.
The particular formulation developed for this work
is stated more precisely in the next section.

GENERAL PROCEDURE AND ASSOCIATED OPTIMIZATION
PROBLEMS

In the analysis that follows, we shall assume
that the response surface ¢ is continuous. Then in
any particular direction we know that ¢ can be ap-
proximated, on an interval, arbitrarily closely by
a polynomial. While it is no doubt more realistic
to assume that the response surface is discontinuous;
little can be done to approximate such a surface at
reasonable expense. We will attempt to build up a
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‘map of the region around the optimum based on the
continuity assumption. .

For the rest of the paper we will employ the
following notation:

n ~ number of input variables
x €1 - vector of input variables
@:RM4R - unknown relation between in-
' puts, x and output, @(x)
£:R% RY-R -- specified function, to be es-

timated, to approximate @(x).
This will be typically writ-
ten as a quadratic in x:

f(x'ozk) =ak + r)li o:k x
> 00 i=1 o™

+ a,.
i=T j=1 13%1%3

with £ = ﬁEil%}EiZl. Thus,
f(x;&k) would be the estima-

k tgg approximation at stage k.
Sim:R*R - m=—= spline function for input
i at stage k
" .“p - norm. For functions g,

” guP B [Ilg‘P]UP, whi]:e for
vectors x, llx“p= [?‘xj‘PJI/E

t t h

X, %y - ¢E2 vector and 18 slement of-
t— vector, respectively.

fcI - subset of the index set of the

input vectors that provides
the index set of integer vari-
ables, Thus, 1€$ means that
x4 is an integer variable.
X, X - lower and upper bounds on x.
We assume x20.
- optimizer of £(x;0)

The general procedure employed is shown in Figure 1.
We will use this diagram and the notation above to
-explain the procedure. Given a maximum number of
experiments, N, to be performed, and a simulation
model that produces an output ©(x”*) for a given in-
put xz, we wish to find the solution to the follow-
ing problem:
N
min ;% (£(c"50) - w(xf»"'

,In summary, the steps at stage k are to (1) allocate

some of the experiments (i.e., find suitable x7) to
a feasible region; (2) run the simulation on these
experiments; (3) create "pseudoexpe;iments" (from

the splines S%&) as interpolations agong the true
ones run in (2) above; (4) find an o for the grand
function £(x;@); (5) find x =, which either indicates
termination (lfx*k—x*(k‘1)||<qx) or provides a new
starting point for tEe k+1 s%age Other stopping
criteria are | f(x;& )-f(x;& k'15)H<t~:f or the total
number of allowable experiments (N) has been exhaus-
ted. We examine each of these problems in turn, be-
low.



FIGURE 1

General Procedure

. Allocate Experiments
1 to a Selected Region

IPerform Simulati;nl

lCreate Pseudoexperimentsl

' Fit Grand Function l

Check Stopping Criteria l

v

Exit

Alloéation of Experiments

Given, at stage k, some number of experiments
we can run (say, N;<N), we would liké to allocate
them to the stage k experimental region F*: ’

= {x:x€r7, gksx < ¥k}

in a way so as to observe as much of the response
surface ¢ as possible. The obvious solution is to
arrange the Ny points so as to maximize the minimum
distance between any two points; this will spread
them out as far from each other as possible. Thus
we might wish to solve the following problem (given
a specific norm, say I or Lp —i.e., p=1 or 2):

max min |‘x1-xJ|L
x 1,3 P
S.T. _:gksxisﬁk i=1,...,N,
This foimulation is incomplete iIn two ways. First,
we may require some of the x7 to be integer. This is
because some of the inputs to the simulation model
may be intéger in nature (e.g. number of teleplione
lines in an airline-ticketing simulation, or number
of trains in a railroad-yard simulation). Second,
because of the costliness of simulation runs, we
will genérate interpolative experiments —pseudoex~
periments via a polynomial approximation technique
to, be discussed in the next subsection. 1In order to
take advantdge of this technique thé eéxperiments
must be arranged on axes so that the approximation
can be solved fotr dne variable at a time. The axes
simply amourt £6 a Cartesian coordindte systém with
an origin in ¥k, Thus, let # ge some point in Fj
for exaniple, £ might be x(k=1): Then we pose our
allocation problem (Pl)(again, for a specific p, X
and Nk) as follows:

(P1) max min ]|xi-le

%,y 1,] e

S.T.

i oA
(1) yi}?zsyix;gxz #~1,00.,0
a n i
(2) == n-1 Fl,e..,n ]
. di=l,...,N
(3) yi: 0orl #Fl,...,0 ’ Tk
) o fexle®
() xi: integer icg o

This is a non-linear integer programming problem.
The first three constraints use¢ a zero-ore variable
y to force the x-variables onto a coordinate system
through the point ®. One can picture the ﬁroblem as
a rectangular solid described by xK and % with the
point # inside it: One then would create axes
through £ untii they intersected the walls of the
solid. Problem (Pl) locates N points on this axis
system so as to maximize the minimum distance between
any two points.

Needless to say, at first glahce (Pl) is a very
difficult problem to solve., 1In fact, adirect attack
would undoubtedly be very- expensive. There is, how-
ever, a very simple but elegant way to find the op-
timal solution to the above problem, using an algori-
thm by R.Chandrasekaran (4 ). For convenience we will
refer to £ as a hub and to each piece of axis sticks
ing out of X as a sgokeﬁ Thus, there are 2n spokes
of length ¥ -%, or X,-X, =—i.e., always non-negative
in length. *Let A be'thé distance between points and
N(A) be the number of points that can be placed on
the spokes wher A is the separation distance. Now
consider‘tre following algorithm (for the case p=1,
ice., T0*]):

Jeves

1. Pick A

2. Find the largest spoke. If it is greater in
length than A, place a point on thé end of
the spoke and cut off A, Continue with the
spokes until all are <A in léngth.

3. Now arrange the leftover spokes from largest

) o smallést. Find spoke j such that fy+8y49™>A

and z-+1+2j+2<15 where £ is the reduced
length of spoke j. Place j+1 points on the
outside of the j+l1 spokes. Thus, the total.
number of points is:

2d '
Ny = ) (2] +5m
1=

A :
where ai=§$-§i or xi-gg as appropriate, and
[[,u:u is'tﬁe greatest integer less than or
equal €8 u.

If N(\)>N, then A is too small and should be in-
credsed; while if N(A)<Nk, then A is too large and
should be decreased. There are two possible results:

1. 303 no¥) =

2. 3% n*7) > SN
' where A [K*-,X*+]

ke

and TN ‘<e for some small €.
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OPTIMIZATION WITH SPLINES....continued

The first case is obvious. In the second case
there are multiple optima, so that by selecting the
A yielding the larger N (i.e., N(X “)) and then drop--
ping any N(A"7)-Ni points, we have the optimal solu-
tion. LNote that for integer variables, cuts of size

AD41 must be used.] In the case of norms other
_than p=l, step 3 must be modified in terms of comput-

ing %+%+F

It should be remembered that the allocation of
points was based on spending Ni experiments (of the
total N experiments) on stage k exploration. Thus,
we have to allocate the N experiments across the sta-
ges. Consider the sequence bl} such thatlzbi>0.
Let v be the total sum of the éequence, i.e.:

v 1§1b1
by -
If we let Ny= N, then ZNj=N, Now the selection of
by should be made optimally. Unfortunately, opti-
mality would require perfect  foresight of all the

possible simulation results, an impossibility.

One possible sequence is suggested by observing
that at each stage x > will,, in general, be in one
of the 20 orthants around # , the starting point.
Thus, one possible sequence is

1
b, = ——
i 2m(i-l)

If T is the total number of stages, we get a decreas-
ing number of experiments allocated to each succeed-
ing region FX, If V is the volume associated with
the original starting region, then after k stages we
have a region of uncertainty of size v/ 2Rk,

Unfortunately, while this seems to have a natu-
ral appeal, for a reasonable budget (50-100 experi-
ments) and a few variables (say, 5), such a sequence
loads almost all the experiments on the first stage,
providing limited information ( no cross effects
xix.,j#i).This provides a rationale for using a se~-
que&ce which decreases less rapidly, such as by=1/1.
This sequence has been used in the tests reported
here. While this does not affect the size of the re-
gion of uncertainty, it has the effect of using the
experiments more slowly, preserving a larger number
for later stages.

Thus, given a total number of stages (which is
equivalent to a’ErOJected region of uncertainty), a
starting point X and initial upper and lower bounds,
¥ and 3}, and a total number of experiments, N, the
allocation stage computes N, (experiments to be run
at each stage) and (as each stage occurs) where they
should be 1ocated*relat1ve to an updated starting
point X (e.g., X , k>1), and an updated region
FE (found by using the quadrant in which x*(k-1) oc-
curred) The collection of experiments from a stage,

{(xk) h =1 are then sent to the simulation model which

i
produces an output sSequence {(¢(X )) g_
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Generating Pseudoexperiments

by ' .
The purpose of generating pseudoexperiments is
to get a little something for almost nothing. Rela-
tive to the cost of simulation rums, it costs very
little to use any o§ various polynomial approxima-
tions techniques to generate extra points and their
approximated outputs. What such points buy is that
they allow the actual runs to provide a little more
information which might not be captured otherwise.
As we have assumed @ to be continuocus, it is there-
fore continuous in the direction of the axes dis-
cussed in the last section. Our approach will be to
approximate ¢ along each axis. We will then use the
approximation to comstruct the pseudoexperiments on
each axis. It is this extra information, captured
by the polynomial approximation, that we will add to
our optimum-seeking activity, to be described below.

The specific type of approximation to be used
is known as a spline function, ( 9). Given a strictly
increasing sequence of real numbers, u,....,u_, a
spline function S(u) of degree m with knots u,. cenly
is a function defined on the entire real line such”
that

(1) in each interval (ui,u449) 1=0,....,n (with

o= == and u =), S(¢u) is given by some
polynomial o? degree m or less;

(2) S(u) and its derivatives of orders1,.,..m-1
are continuous everywhere.

Natural splines (splines of odd degree 2qg~1)
are splines wherein the polynomials on (~®,u) and
(u,,*) are of degree q-1. In particular, cubic
natural splines require 8"(u )= S"(u )=0.

The reason‘for using spline functions, instead
of some other approximation, is their smoothness.
Simply fitting a polynomial to a number of-data points
can often (for high enough degree) result in severe-
ly undulating curves, Let p(u) be any polynomial
which (1) agrees with the function to be approxima-
ted at the knots and (2) has continuous second deri-
vatives on [ ,u Then it can be shown that there
exists a spline S(u) such that

" s"wlls = “P"(U)lla

i.e., S(u) is the sméothest interpolation.

(on [ul sunj)

At stage k we find M; splines Silfn(xi), m=l, ..., Mg,

for axis i, where M;+1 is the number of distinct
points on axis i. These splines are then interpola-
ted at each interval midpoint, yielding M; pseudoex-
periments per axis. Integer axes are interpolated
only if their length exceeds one and then only at
1nteger midpoints. The true experiments and outcomes

{(xt) (@(xt))i}1 =1 and the pseudoexperiments and

outcomes {(Xt)1, (ﬁ(it))i}l_l, all for't=1,...,k, are
transmitted to the next phase, where a speclfied
multivariate function is fit to them (£f(x;®)). This
is a "grand function" which will be used to redirect
the search for the tegion containing the optimum.
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Generating a Grand Function

At this point we have for stage k true experi-
ments and outcomes'{(xk)l, Gp(xk))I}FEl and pseudo-
experiments and outcomes{@k)'l, @'(; ))i'}?f___'l. For

convenience of notation, we will drop the ~ and let
the total number of points be g, = Nk + Nk' Let
£(X; ) be the grand function, €.g.:

-f(x;a)=a°°+2a .
& io i

+ 3N q.,.X. X,
ij iji;

where o = ono’a'lb’ cees 3 0gs seer @ogs eees

. > eees 0. ) is of length (n¥l)(n#2)/2, Obvious-
1y, other more complicated functions are equally
admissible. The quadratic function simply provides
a convenient example, To calibrate the grand func=
tion, we solve the following problem,

t.

k
. ’ 2
min £ (£ 5 0) - &)
a £=1
where £ =s +t _, i.e. we are using all points

(true and pseudo) éenerated up to inéluding
stage k (t, = 0). The solution isd . 1In stage
one, since we have no points to estimate<xiji¢j;

i,j>1, we only estimate the main €¢ffects and the
own-second order effects (q,.).

0f course, since the observations are not in-
dependent (due to thelPresence of the pseudoéxperi-
ments) the estimator?y has none of the usual desir-
able properties. To improve this situation we
elected to, upon meeting a stopping criterion (see
next section), reestimate o aftér deleting all
pseudo experiments, While this ddes not eliminate
all statistical problems, it would seem that the
remaining ones are second-order in nature.

Checking Stopping Criteria: Considerations for
Further Optimum Seeking Activity

Fiﬁally, given f(x;‘&k) we can find the solu=
tion x** to the following problem:

min f(x;'&k)
x
xlg xg =l
The eexperimental region for stage k + 1, de~
noted Fk+1, is determined once XX hHas been found.
The upper dnd lower bounds for the elements X,

may be éxpressed as follows:

oL %k, k
E e
k) ok k %k Lk
= qE s xS % < By
ok gk K
X5 » ¥y < Ey

2k % *k ﬁk
i i < i
i1 %k ak *k
X, = X, X< X, < X
i i i= "1 =71
=1 ] *]
% < itk
i . i i

This allows the experimental region to be reduced
if the optimal value at stage k is within the stage
k region, and ré-expanded if thé optimum value at
stage k is outside the region of experimentation at
that stage. o

There are a number of potential criteria for
stopping:

1. Running out of experiments; i.e.

> N o=
g=1 T

2, A rnorm test; i.e. givénex or¢gge:
¥ %k *(k-1
i) n,x -x ( . )l < &,

~

11) || £6s3 85 - £(xs & < C

In general, one would expect condition (1) to occur
before either 2 (i) or 2 (ii). Furthermore 2(ii)
would undoubtedly be expensive to compute., Thus,
an appropriate strategy would be to check 2(i) if
k

= Ni'< N. If stopping criteria are not met, then
i=l

Akl k .

X =x and we return to the allocation phase

with ¥ as thé new starting point, or hub,

Extending the Approach

In general one would expect that the region
for optimization should be convex, Thus; nonlinear
constraints can be added to the extent that convex-
ity is not violdted, The problem with nonconvexity
can be viewed in three cases.

1, If the nonconvexity amounts to convex,
disconnected sets, then if these are well
known beforehand one could run each region
separately, and use the separate functions:
to deseribe a piecewise approximation to
the simulation.

2, 1If the constraints are nonconvex, then
local optima may result causing confusioni
for the user unless they are enumerated,
This ¢an be a costly process.

3. If tHe nonconvexity stems from holes in
the feasible région, an entirély new prob=-
lem arrises in that allocating experiments
without accounting for the holes may pro-
duce pointless and wasted results,

Often, nonconvexities in practical applications are.
a mixture of the above. The best that can be said
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OPTIMIZATION WITH SPLINES,.,.continued

is that one could still use the technique proposed
above, screening for infeasible true or pseudo ex-
periments, and settle for a local optimum and asso~-
ciated grand function,

Thus if the feasible region reflects nonlinear
constraints, these may be incorporated into the
simulation allocation problem (P1l) by solving for
the appropriate (x, x) values that reflect the con~
straints, The nonlinear constraints then also be-
come part of the problem of finding =k,

IIT, TESTING THE FECHNIQUE

PROGRAM DESCRIPTION

The program follows the pattern illustrated in
Figure 1. The spline functions are determined by

accessing a standard spline routine in the Interna-.

tional Mathematical and Statistical Library (IMSL).
The grand~function fitting and optimization is per=-
formed using the Generalized Reduced Gradient 2
(GRG2) package.

The entire program is written in FORTRAN, Ra-~
ther than strip out parts of the GRG2 package that
were irrelevant to our problem, we accessed the en~
tire package as a subroutine., The result is that
our run times are longer than one would expect for
a production routine. The GRG2 package used ap-
proxﬁ?ately 90% of the run time (excluding simula=~
tiom,

)

TESTING ON A KNOWN FUNCIION

In order to test the technique, a "simulation
model" was developed as the following function:

(x,>%.) = 10(l-exp(-1.12 + .0462x, + .0588x -
M A . 1 2

2 2
.0014x] = 0014z, - .00L4x x,

This function has a minimum at x; = 8 and x,-= 17.
The function is not convex, but It is pseudoconvex
(10). A function is pseudoconvex on R if the
following holds:

(y-x)Y v£(x) 2 0= £(y) > £(x)

This is the weakest condition on an objective func~
tion minimized over a convex set that still ensures
. that the Kuhn-Tucker conditions are sufficient(10).
On the other hand, clearly ¢ is not convex; it is
an upside~down normal density function. Thus we
are testing the technique with a reasonably diffi-
cult function; it is globally minimizable, but not
without some serious effort,

Vx,yeRn

The technique was applied to 9. Table 1 shows
the results of the application with x = (0,0),
x = (20,20) and & = (10,10). Finally, we consider
ed %, to be integer:
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TABLE 1 - TEST RESULTS
{ Number of Total Bxperi- Lime(Second) Distance
Stages (T) ments (N) From
True
Optimum
1 10 .84 '3.507
1 20 1.02 3.532
2 20 1.99 401
3 20 2.84 J449
3 50 4,39 .568
4 50 5.7 .572

The distance from the true optimum is computed

using an L, norm: ) 2
distanc% =‘[lx*T- xﬁ] = ((xl*T_3)2+ (= F-17) j?

where X'~ is the optimal solution given by the pro-
gram at the end of T stages, after dropping the
splines (as discussed in section 2) and estimating
the grand function only on the actual simulation
runs. It should be noted that the optimal solutions
were found by relaxing the integrality condition on
the integer x1,.ie. we solved the continuous NLP
problem to pr%vide «*K and then rounded-off any
variables that were sipposed to be integer for the
.next stage. The distances computed above are on
the real solution values so that rounding-off would
not affect the comparisons.

Table 1 implies some interesting strategies
.First, it appears that (at least initially) increas-
4ing the number of stages is more effective than
increasing the number of experiments. Eventually,
however, this strategy appears to be ineffective.
Clearly, two stages seems to be called for, so that
‘the technique can correct for a poor gtarting
.point. We allocated the experiments to stages
based on the sequence k =V} , as discussed in sec-
tion two above, Thus, most of the experiments were
allocated to the first stage (for example if T = 3
and N,= 27, N,= 15 and N,= 8). This decision was
made S0 as to“allocate ekperiments roughly in pro-
portion to the decreasing volume of the expected
search area, An alternative strategy appears to be
to relect a sequence that results in more of the
experiments allocated to the second or middle stage
This would then trade-off the issue of a poor
starting point with the problem of over-concentra-
ing search in the declining volume search areas.

Another run was made with T =2,N =20 and a
changed search area, Here the initial area was
x = (5,0), ¥ = (15,20). In this case the resulting
solution's distance from the true optimum was .237,
which was obtained in 1.8 seconds., Thus, as could
expected, reducing the initial region can be very

helpful.

Figures 2, 3 and 4 show the progress of the
technique for T =3, N = 20. Figure 2 shows the
first stage allocation of true experiments (x's),
the resulting spline interpolations (o's), the true
optimum (A), the first-stage starting point ),
and the first-stage optimal solution (*). ‘The
region is the entire square, and the 'starting point
is at (10,10). The program found x '=(11.49,16.43);
note that we did not solve a nonlinear integer pro-
gram for the optimal solution. .The starting point
for the second stage thus was x2 = (11.49,16),
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which is indicated by a box in Pigure 3, Notice
also that the region for allocating. experiments is

" now defined by ¥ = (10,10), ¥ = (20,20) as discuss-.

ed in séction two. It turns out, however, that x"2
is outside of this region, as shown in Figure 3.
Thus, as seen in Figure 4, this generates a new
region due to the relaxatlon of the violated bound
as well as the shift of the upper bound. Noetice
that even at stage two we are almost at the true
optimum ( A). The stage three optimum is not shown
in Figure 4, but it is approximatély where the
starting point is. The final optimum (found after.
dropplng all spline generated points and reestimat-
ing the grand function), is labelled 'F' and lies
slightly to the left of the stage three startlhg
point. :

3.3 Tmplications

Clearly one does not like to draw sweeping
conclusions from a limited set of tests. In geheral,,
however, the following conclusions seem intuitively-
justifiable and warranted:

1. Stages help —i.e, we found that spreading
expe¥iments over stages is valuable,
Clearly, however, there is a limit in terms of
density of experiments per stage,

2, Rud times should be short. This is true
since the most difficult part of the
efforg (besides the simulation) is find- -
ing x Since. this is a nonlinear
optunlzation over very simple constraints
(bounds),: the expected costs are reason-
ably low. Obviously, in comparison to a
typical simulation #un, the run time for
the methodology is low. Thus while more
stages cost more, their marginal cost
appears to be small.
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OPTIMIZATION WITH SPLINES....continued

3. As always, starting closer to the
optimm with a smaller region helps,
This can be seen in the special case
tried wherein the starting region was

. reduced.

IV. APPLICATION OF THE TECHNIQUE

In order to demonstrate that the procedure de~
" veloped in the previous section can be useful when
applied to a realistic model, a case study has been
undertaken involving a simulation model of a rail-
classification yard. This section briefly-describes
the model and presents the results of the case study..

Operations in a rail-classification yard canbe
broken down into four major sets of activities:

(1) inspection of inbound trains;

(2) classification of cars in inbound trains
into various blocks for departure;

(3) assembly of outbound trains from these
various blocks of cars; and

(4) inspection and dispatching of outbound
trains.

Each car entering the yatd must be processed through
these activities, and quite obviously there are de-
lays associated with waiting and processing at each
stage. Conceptually, one can think of the yard as
being a sequence of queues through which a given car
must pass.

There have been limited attempts to analyze
rail-yard operations using analytic queuing models
(see Petersen (13)), but most efforts have involved
simulation. A number of these models are reviewed
by Folk (8 ). Many of the yard models are extremeély
complicated and expensive to run. The model used in
this study is avery simplified formulation which has
been designed primarily for work in estimating.ccCsts
of network operations. It is thus less detailed
—and hence less realistic ~than some other models,
but is st'ill a non-trivial simulation.

A number of possible outputs could be of inter-
est in such a model. We have chosen to concentrate
on one —mean total time in the yard for all cars
—as an example. This output will be influenced by
several controllable inputs, as well as by a number
of exogenous factors. For purposes of example, we
have chosen five controllable inputs to be the inde-
pendent variables of interest for this problem:

(1) average train length for inbound trains;
(2) arrival rate'of inbound trains;
(3) number of outbound trains scheduled
per day;
(4) minimum allowable length of outbound
trains; and
(5) maximum allowable delay for dispatch
of outbound train before cancellation.

The product of the first two factors determines
the arrival rate of cars to be classified. As this
rate increases, we expect more congestion in the
classification facility, and hence longer waiting
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fimes; however, as more cars are processed ina given
yard, more frequent trains to various destina@iphs :”
can be operated, and hence delays waiting for out-
bound connections are likely tobe shorter. The last
three factors determine the policy on outbound train
dispatches. At the scheduled departure time of each
train, a check is made of the number of cars pre-
sently available to depart on that train. If suffi-

cient traffic is present, the train is assembled; if
the available traffic is insufficient, however, the
train is delayed in expectation that more cars will
soon arrive. As the delay time increases, the requi-
red number of cars for dispatch decreases, until it
reaches some minimum value (factor 4) at a certain
time (factor 5). If sufficient traffic is still not
available, the train is cancelled. The interested
reader is referred to Beckmann, et al. (2 ) or Folk
(7 ) for more detailed discussion of such dispatch-
ing policies.

Note that of the five input factors, two are
real variables and three are integers. Thus, this
example will test both capabilities in the search
algorithm, Table 1 summarizes. the variables and
bound values used for the experiments.

TABLE 1
Variables and Ranges for Expefiments

Variable Lower  Upper
| Name __ Definition Bound _ Bound
AVGTL average inbound train  40. 80.
(real) length (cars)
LAM inbound arrival rate .25 .50
{(real) (trains/hour)
NOUTT scheduled outbound 5 12
(integer) trains/day
MAXDEL maximum delay on out- 1 12
(integer) bound trains (hours)
MINL minimum allowable 15 40
(integer) train length (cars) ;

. i

i

As the ranges on the input variables are quite
different, and because the output of the model can
be expected to be more sensitive to a unit change in
one variable: than to a comparable change in another,
the inputs were scaled to achieve some degree .of
comparability in range. This scaling involved divi-
sion of AVGTL by 4, multiplication of LAM by 40, and
division of MINL by 5.

Experimental Results

Based on the results of the earlier sensitivity
tests, the number of stages of experimentation was
set at three. An experimental budget of 55 simula-
tion runs was assumed, leading to an allocation of



30 runs to the first stage, 16 to the second and 9
to the third.

In the first stage, the allocation algorithm
placed 10, experlments along the AVGIL axis, 9 on
the LAM ax1s, 3 on the NOUIT axis, 1 on the MINL
axis, and 7 on the MAXDEL axis. This allocation re-

flects the prior scaling done on the input variables

The experiment allocation algorithm attempts todis-
tribute the experiments over the entire experimental
region, and thus places more experiments on longer
axes.. After these 30 experiments, 17 pseudo-experi-
ments are generated from the four fitted spline
functions (omitting the MINL axis) at points midway
between the simulation experiments on each axis.

The first-stage quadratic respounsé surface is
then estimated, based on the data from these real
and pseudo-experiments. This function is minimized
over the feasible réegion, resulting in an estimated
minimum average time in yard of 14.2 hours, at the
point:

AVGTL = 59.
LAM = .25
NOUIT =9
MINL = 15
MAXDEL = 6

The first experimental region is then updated to:

40, < AVGTL < 60.
.25 < LAM < .35
8 < NOUTT < 12

15 S MINL = 25
1 < MAXDEL < 12

This defines the region for second-stage experiments,
with the first<stage optimal solution as the start-
ing point. The allocation algotrithm places 16 ex-
periments in this region, 4 on the AVGTL axis, &4 on
the LAM axis, 1 on the NOUIT axis, none on the MINL
axis, and 7 on the MAXDEL axis, Eight more pseudo=-
experiments from splines are added, and then a second-
stage quadratic function is estimated over the éntire
feasible region, including all 46 experimental ob-
servations and the 25 pseudo-observations.

The minimum of the second-stage quadratic is
13.2 hours, at the point:

AVGTL = 80,
LAM = ,25
NOUIT = 12
MINL =15
MAXDEL = 12

Note that this point has all variables at either
their lower or upper bounds. It is an extreme-point
solution, Also, note that the second-stagé optimum
for AVGTL is outside the experimental region for the
second stage. This causes the region to be re-expanded
along this dimension, as it indicates a possible er-
ror at the first stage. Thus; the ekperimental region
for the third stage is:

59. < AVGTL < 80.
.25 < LAM < .35
9 < NOUIT < 12
15 S MINL. S 25
6 = MAXDEL = 12

In the third stage, the 9 remaining simulation
experiments are allocated, with 3 on the AVGIL axis,
3 on the LAM axis, and 3 on the MINL axis. TFour
pseudo-experiments are added, and the third-stage
quadratic is estimated from the 55 simulation experi-
ments and the 29 pseudo-experiments. The minimum of
this quadratic is 16.8 hours, and occurs at:

AVGTL = 80.
LAM = .25
NOUTT = 12
MINL =15
MAXDEL = 12

This is the same point as identified in the second stage
Thus, the algorithm .would terminate at this point, even
if nore stages had been planned originally.

As a final output, the pseudo-experiment$ are
eliminated and the Yesponse surface is re-estimated,
based only on the real experiments. The minimum of
this re-estimated function is located at the same
point as with the pseudo-experiments included, and
also has the value 16.8 hours. While this would not
be expected to happen regularlyj, it does inthis cade,.
it part because the optimal solution occurs at the
boundary of the feasible region.

Qualitatively, this optimal point corresponds
to a situation in which inbound trains are long but
telatively infrequent, and outbound trains are sched-
uled frequently but with maximum flexibility ondelay
beforé departure and with the minimum limit on allow-
able train length. This ensyres that few outbound
trains will be cancelled —a situation which leads to
long delays for waiting cars, as they must then wait
for the next scheduled train. In the terms of the
problem defined for this example, this solution is a
reasonable one. Thus, wvhile the trué optimal solution
is unknown, the optimization procedure has defined a
solution which is at least plausible.’

This solution point does not correspond to any
of the actual experiments run during the search pro-
¢edure; it is simply determined from the estimated
response sutface. In order to check the soldtion,
the simulation model was run with inputs set at the
indicated values. The result was amean time in-yaxrd
of 21.3 hours. While this differs substantially from
the estimated value given by the response surface, it
does compare favorably with actual experimental re-
sults obtained for other parameter settings. Tke re-.
sponse of the simulation model is relatively insersi-
tive in the neighborhood of this point, yielding re-
sulté between 20:5 and 21,5 hours for several differ--
ent experlments. These results are, however, quité
distinguishable from results in other parts of the
feasible regior, where the mean time is gencrally be-
tween 30.0 &nd 35.0 hours. Thus, it appears' that the
optimization algorithm hds successfully identified
the region containing the optimal parametser values.

In evaluating the implicdtions of this solution
for a réal yard, we must keep inmind the rather limi-
ted formulation of the.problem adopted for purposes
-of example. The solution indicated is one in which
there are a small number of lohg inbound trains, and
a large number of short outbound trains, While this
may optimize the performance of a single.yard, wemist
remember that these outbound trains will be the i~
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"bound trains at other yards in the netwotk., Thus,
when we consider a larger network as a system, the
parametérs for operation of each individual yard are
likely to change.

In terms.of .computational .effort, .this 3~stage,
' 5-variable problem required.approximately 17 seconds
- (exclusive of simulation) on a CDC 6600. Most of
" this time is required for estimation and optimization
of the response functions, which must be done four
times. The software is still very much in a develop-
mental phase, and as further work is done on it the
efficiency can be expected to improve even further.

V. GONCLUSIONS

A technique has been presented for optimization
with simulation models which differs in several re-
spects from other techniques inthe literaturé. First,

it places emphasis on obtaining the best approxima~
tion to the optimal response within a given budget
limitation, rather than relying upon algérithms that
converge asymptotically to the optimal point. Second,
in order to obtain estimates of the response surface
with less simulation experimentation, the simulation
observations are supplemented by "pseudo-experiments"
generated from spline approximations along the rele-
vant axes. These splines are very inexpensive to
compute, and allow the experimental budget for simu-
lation to be stretched further. Finally, a response
surface is estimated over the entire feasible region
of the problem, rather than just locally around the
estimated optimum. While such a surface is likely
to be a less exact approximation of the simulation
output, it is more useful for gaining an understand-
ing of the model's performance over a larger region
of interest. Such an understanding can be useful to
the analyst, both for optimization and also for re-
placement of the simulation in higher-order models
of systems in which the simulation reflects behavior
of only one cémponent.

Results from using the technique on a simple
two-variable problem in which the exact optimal solu-
tion is known indicate that it is quite capable of
producing accurate estimates of optimal points with
relatively small expenditure on experiments. These
tests also indicate that in general it is advisable
to increase the number of stages of experimentation
rather than the size of the experiment pool, subject

to a need to keep the number of experiments available

in each stage above some minimal number. Finally,
the tests indicate that careful specification of the
feasible region is important. If the region of inter-
est can be reduced, a given number of experiments can
be used much more effectively.

Application of the technique to a simulation of
a rail classification yard indicates that it can be
useful in practical situations. This model involves
five input variables and, with a budget of 55 experi-
.ments, the technique produces a solution which is a
very plausible optimum. Furthermore, the computa-
tional requirements of the algorithm appear to be
quite modest.
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The technique presented in this paper must be

. considered a heuristic at this point althoﬁgg;gffq;bx

is underway to establish the mathematical properties—
of the algorithm more precisely. This work is not
yet complete; but because initial experiments with
the procedurée produced very.-promising results, it was
felt that an initial presentation of the technique

as a heuristic would be appropriate. Perhaps this
exposition will stimulate other researchers to exam-
ine similar approaches.

A number of aspects of the algorithm are import-
ant areas for continuing research; work on the theo-
retical underpinnings of the algorithm is certainly
one of these. Such work should include explicit con-
sideration of the effects of stochastic error terms
in the simulation output. These error terms are
dealt with implicitly in the existing procedure, be-
cause we are doing a regression estimate of the re-
sponse function to the experimental output. However,
the presence of error terms often has serious effects
on convergence properties of search algorithms, and
these need to be addressed explicitly.

Further experience with constraints (other than
bounds) on the input variables would also be useful.
While addition of such constraints presents no con-
ceptual problems as long as the feasible region re-
mains convex, the additional computational require-~
ments imposed by their presence may be significant.

At a more detailed level, an issue of signifi-
cant interest is the allocation of experiments across
stages. The results presented here are based on a
reasonable but arbitrary sequence, using terms of
the form 1/i, where i is the stage number. The allo-’
cation of experiments involves a trade-off between
the larger region of interest in early stages (requir-
ing more experiments to examine) and the desire to
place most experiments in the sub-region of greatest
promise, which is identified only in later stages.
Further work on this problem is likely to be very
productive. R

In summary, the work to date has resulted in an
idea which appears to hold considerable promise for
optimization with simulation models. Additional
work now underway should help to determine the degree
to which that promise can be realized.
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