SUPERIMPOSING DIRECT SEARCH METHODS FOR PARAMETER OPTIMIZATION

ONTO DYNAMIC SIMULATION MODELS

" ABSTRACT

An integrated modular software package has
been developed by the Programme Group of
‘Systems Analysis and Technological Develop-
ment (STE) of the Nuclear Research Centre
at Jiilich (KFA) to provide automatic opti-
mization of a set of user defined decision
variables. This optimization module con-
taining different procedures for direct
search algorithms can be added to our
FORTRAN based Data-Model-Interface (DMI)
for dynamic simulation (1).

The latter is formulated independently from
an actual simulation model as well as from
the actual parameters, the objective, and
the constraints which are chosen. Once ini-
tiated it controls all user specified input
values and the linkage between the optimi-
zation algorithm and the simulation model.
Taking the KFA-energy model (2) as an exam—
ple one application for finding a specific
energy policy is demonstrated.

I. INTRODUCTION

As a decision aid in energy systems analy-
sis dynamic simulation models have shown to
be a useful tool.. In a consistent way they
" enable to investigate possible consequences
of alternative strategies. For determinis-
tic simulation models it is not only pos-
sible to compute the results for a given
parameter setting but also to ask for the
values of parameters producing a desired
result.

- Rainer Heckler

Hans-Paul Schwefel

Thus it is pbssiblé to invert the questioh
"What will happen, if..." to "What should
be done, in order to achieve a desirable '
result". Techniques for solving this task
are generally known as optimization methods.
For instance a lot of linear optimization
models are in use, but their application is

generally restricted by two characteristics:

- Linear or at least linearized relations
between decision variables and criteria
of goodness (objectives) are required.

- The results are very sensitive to small
changes in the assumptions either con-~
cerning strategic parameters or numeri-
cal values for the constraints.

To at least partially overcome such diffi-
culties it is necessary to choose optimi-
zation methods which do not require linear
model stfuctures but permit a formulation
close to reality of the system to be simu-
lated. There are, indeed, optimization rou-
tines that are applicable to such a broad
extent. Although direct search techniques
cannot guarantee the exact solution, as is
the case in linear and non-linear program-
ming, is it not better to apply a rather
good method to a realistic model than to
apply an exact method to a simplified one?

We want to show, how such optimization
methods may be used in connection with a
large dynamic simulation model for the
energy system of the Federal Republic of
Germany. This software package for super-
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Parameter Optiﬁization... Continued

posing optimization procedures to our ener-
gy model we called GOLEM which stands for
goal-oriented long-term energy model.

II. THE OPTIMIZATION MODULE

Combining simulation and optimization may
be done in two principally different ways.
~ optimization within simulation
- simulation within optimization

Both features are possible with our optimi-
zation module.

For preassigned time steps within a simu~
lation run the optimization algorithm may
be called. In this case the optimization
algorithm can be incorporated as a sub-
routine of the simulation model.

But for a dynamic model it is not always
sufficient to optimize the system for one
single moment and even a segquence of opti~
mizations for consecutive time points will
usually not lead to an overall optimal so-
lution. The path of a dynamic process with-
in a definite system will be determined by
system paraméters, i.e. initial wvalues and
coefficients of differential equations. To
achieve overall optimization it is neces-
sary to run the model over the whole period
for each parameter setting. ‘

In principle the optimum-seeking technique
handles the simulation program as a "black
box". It generates consecutive parameter
settings'p={§i; i=1(1)n} as input and re-
ceives output values F(p) depending on the
objectiVe chosen., Instead of a seriés of
optimizations within one model run, a se-
ries of model runs within one optimization

task is performed (illustration 1).

The optimization module is constructed in
such a way that there is a minimum of link~-
age between the simulation model and the
optimum seeking program.

All variables corresponding to the differ-
ent modules of the model, i.e. input and
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output variables, as well as the naﬁés'df
the objective and the constraints are de-
fined as global variables. Their sequence
is determined by position in a blank common
which is used throughout all modules of the
simulation model as well as the DMI subrou-
tines, which represeﬂt the Daéa—MOdel—Inter—
face (1), presented at this conference, togo.
From the point of view of the modules there
is access by name whereas the optimization
module accesses the variables by their po-
sition index in the common block.

The optimization module takes it's starting
values for the parameters from the data
base of the simulation model by means of



the blank common block just mentioned and
replaces them by those values calculated
during the iterations (illustration 2).
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ILLUSTRATION 2

Input and output data handling for com-

bined simulation and optimization
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A short dataset contains the essential
specifications for using optimization
techniques for an optimization run with
the user's simulation model, that may con-
sist of several modules (subroutines).

These specifications concern:

- The optimization strategy chosen
denoted by a four letter abbreviation.

- A time limit for execution as termina-
tion criterion in addition to the nor-
mal convergence criterion.

~ Accuracy parameters for the direct
search method chosen.

- List of names (and in the case of ar-
rays the indexes) of the parameters to
be varied.Optional are starting values
for the search stép sizes and for the
parameters.The latter overwrite the
equivalent values given in the data
base of the simulation model. ‘

- The name of the objective function in-
cluding information whether a minimum
or a maximum is searched for.

- Name of items to be used for evaluating

constraints .

There are three types of constraints which
are treated in different ways:

-" Constraints on parameters, for which it
can be tested before starting simula-
tion, whether or not they are réspected.

- Constraints on any global variable de-
fined in the simulation model, which
can only be tested by running the simu~
lation model. As soon as such a con-
straint is violated the simulation will
be terminated. The difference between

and the final

time Tf serves as restriction value, so

this termination time Tg

that this type of constraint may be
written as:
CSTR=T ~T - £&:AT£0; O0<E <1

where AT is the time step size of the
model., '

If upper and/or lower bounds for the
parameters to be varied exist there is
a more effective method, i.e. always
transforming the parametefs mathemati-
cally when they are transferred between
optimization algorithm and simulation
model.

Whereas the parameters to be optimized -are
exogeneous to the simulation model the ob-
jective function and constraints of the
second type have to be defined and evalu-
ated in one of the modules of the simula-
tion model. If more objective functions
and constraints are formulated in advance,
the user is able to switch between diffe-
rent objectives and/or constraints only by.
changing the correspondent name(s) in the
input file.

As soon as the termination or convergence
criterion is satisfied, the computed para-
meter values, the respective actual search
steé sizes, the objective function value
and some other useful information can be
stored as an intermediate solution. Now it
may be used as input for another optimi-
zation task, e.g. with an other optimiza-
tion strategy or an other set of objec-
tive function and constraints.
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" Up until now, 15 different direct search
routines are incorporated within our opti-
mization module for finding best or at
least improved solutions of a problem, and
it is very easy to incorporate further op-
timization algorithms, The list of strate-
gies incorporated up until now is shown in
illustration 3.

Mutations are not pure rardom settings of
the parameters but changes of the variables
from one iteration (generation) to the
other which belong to a Gaussian distribu-~
tion. The parameters of that distribution,
variances and co-variances, are attributes
of each individual, just like the object
parameters of the function to be extrema-

ILLUSTRATION 3

List of strategies incorporated

COOE DESCRIPTION DF STRRTEGY DR VARIANT

UNIVARIATE STRATEGY .
F180 -WITH FIBONRCC1 SEARCH
GOLD ~WITH GOLDEN- SECTION SERRCH
LAGR -WITH LAGRANGE INTERPOLATION

HOJE PATTERN SERRCH (HODKE AND JEEVES]

) ROTATING COORDINRTES SERARCH )
ROSE -WITHOUT LINERR SEARCH (ROSENBROCK)
WITH LINEAR SERRCH

DsCo ~WITH GRAM- SCHIMDT ORTHONORMALIZATION
osce + -WITH ‘PRLHER ORTHONORMALIZATION
POUE CONJUGATE DIRECTIONS SEARCH (POUELL)

VARIABLE METRIC METHOD {DAVIDON, FLETCHER. AND POMELL)
DFPS MODIFIED BY STEWART

v

SlnP SIMPLEX SERRCH (NELDER AND MERD)

conp COMPLEX SERRCH BOX)
EVOLUTION STRRTEGY

EVOL -TWg- MEMBERED [RECHENBERG )
GRUP —HULTI- MEMBERED |SCHUEFEL)

Here we onlf want to describe a rather new
one, which has proved to be the most reli-
able one in a very large test series (3),
the, so-called evolution strategy.

It is based upon a simple imitation of the
basic rules of biological evolution: muta-
tion and selection, population, recombina-
tion, and some others. It is not a Monte-
‘Carlo method, though it contains some sto-
chastic elements. The evolution strategy is
a family of algorithms,ﬁhe simplest one
being similar to the adaptive step size
random search of Rastrigin (4) and Schumer
and Steiglitz (5), the most sophisticated
one going far beyond Bremermarin's 'search
hy evolution' (6).
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lized. And they are changed from one gene-
ration to the other, too.

By selection of the fittest, the population
not only creeps towards the optimum, but
also adapts the parameters of the random
mutability and thu$ accelérates the conver-
gence, for example on ridges or ifi narrow
valleys. Moreover, if the population is
large énough, this method gives a rather
good chance of finding a global out of se-
veral local optima, and there are nearly no
restrictions to the type of objective func-
tions. This method has proveén to be thé
most reliable one out of all known direct
search methods, especially wheh the number
of variables is large. The computing times
~ they depend on thé type of objective
functions of course - often increase less
rapidly with the number of free paraieters,
than is the case with othet search algo-
rithms.

III. THE KFA ENERGY MODEL

As a decision aid for planning the energy
system of the Federal Republic of Germany

a dynamic simulation model has been devel-
oped at the KFA Jiilich. It was presented at
the 1977 WSC (2). Only a summarizing over-
view shall be given here to understand the
following example of an optimization run
with it. To enable the model to be as
flexible as possible, a modular structire
was chosen. The complete model consists of

four modules:



a. the macroeconomic module;
‘b. the energy demand module;
¢. the energy supply module;
- d. the environmental module.

Illustration 4 gives an overall view of
the links between these modules, which
form an interaction structure of closed-

loop type.

" ILLUSTRATION 4
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The aim of the macroeconomic module is to
provide the necessary inputs for the enérgy
demand module, i.e. the population size,
the average disposable income per capita
and th§ gross value added by branches. It
may be influenced by a wanted or expected
economic gerth rate. Thus, different
scenarios may be produced with respect to
the development of the economic system.

The energy demand module calculates the
energy demand by fuel and sector via cor-
relation functions, which are gained from
past data e.g. between the average dispos-
able income per capita and the individual
persons transport volume, together with
specific energy consumption values and
market allocations of different fuels.

In order to meet the energy demand, which
is taken as the actual consumption in the
supply module, a flow model was constructed.
This is described mathematically by a set
of simultaneous equations, which is solved
for every year. For each of 14 energy car-
riers there must be a balance between the
primary energy consumption and the indi-
genous production, the import, the export,
the bunkering and the net stock changes on
the one hand side and the final energy
consumption, the non-energetic fuel con=~
sumption, the distribution losses and the
resultant of the conversion balance (in-
puts minus outputs plus own consumption)’
on the other hand side.

The total emissions due to energy produc-
tion, conversion and consumption are cal-
culated in the environmental module, sepa-
rately for the sectors and energy carriers
which cause them and for thg_destinations

air and water.

Within the energy demand module as well as
the supply module new technologies for con-
servation and conversion may be activated
by setting appropriate decision variable
values.

IV. AN EXAMPLE

One example shall demonstrate the capabili-
ty of GOLEM, our system of simulation and
optimization tools. This example should
not be taken as a forecasting result - ‘
this usually is wrong in connection with a
simulation model -, nor even as a state-
ment about an optimal development for the
real energy system of the Federal Republic
of Germany.

Finding optimal states or developments of
a real system cannot be done with a single
optimization run. One has to experiment
with different criteria, alternative para-
meter sets and sometimes even with diffe-
rent models giving emphasis to different

aspects of the same system.
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" What will be shown here is, that direct
search techniques enable the user to find
those parameters or time series within a
dynamic simulation model which maximize or
minimize an integral criterion under res-
trictions given to other resulting vari-
~ables or derivatives of them. In pringiple
a solution by hand is possible, too, but
would cost even more simulation runs and
give no certainty of having arrived at the
desired solution.

Using the dynamic simulation model for the
long-term energy model of the F.R.G. the
following 6bjective function was choseén,

t
t_T (MPO (t) +MPM(t) ) » (£~t;)dt - min
i

t; = 1985; t; = 2000

This is the integral over the mineral oil
(crude MPO and refined MPM) imports weigh-
ted with the time. As free parameters two

times geries were chosen:

FCTX(t) the quota of methanol added to

motor spirit,

CATNL(t) the capacity of high temperature
reactors used for production of

process heat to gasify lignite,

each of which was given by base points at
the years 1990, 1995 and 2000. The values
for 1985 were set to zero.

Constraints were given to

MPN (£)S RMPN (t) the imports of natural gas
MPC (t) =< RMPC(t)

MGB (t)=< MCB (t)

the imports of hard coal
the indigenous mining of
lignite

according to exogeneous'time series.

Methanol production as a new conversion
technology uses gas which could be ;mported
as natural gas or produced as synthetic
natural gas by nuclear lignite gasif;cation.
Other possible bptions were not used in
this case. Lignite now mainly is used for
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producing electricity. The indigenous
mining being limited (imports are negli-
gible) lignite gasification reduces lignite
electrification which has to be compensated
by other fuels. In this case hard coal had
to fill the gap, but mining and imports of
hard coal were restricted, too. On the
other hand lignite gasification by means

of nuclear process heat produces electrici-
ty and coke (to be used in blast furnaces
e.g.) as byproduets, thus changing the ba-
lances for other energy carriers. An addi-
tional constraint had to be added in order
to ensure that the remaining amounts of
lignite for production of electrigity would
always be positive. There is not enough
space here to explain all other relgtiong
within the energy supply module bging af-
fected by a combineéd methanol production
and lignite gasification strategy.

Illustration 5 shows the printout of an op-
timization session at the timesharing com-
puter (IBM 370/168 under TSS) of the KFA.

At first there are some DMI messages con-
cerning the number of modules being ingcor-
porated, their time steps, the start and
the end year of the simuylation and the
number of variables.

Then GOLEM, the optimization module, begins
working and informs the user about the re~
levant control items and, at the endiof the
task, about the final state reached. In
this case the capacity of high fgmperatuyg
reactors CATNL (in MW) and the methanol
fraction of motor spirit at the distinct
base years 1990, 1995 and 2000 are display-~
ed. During the following output dialogue
four illustrations were produced.



ILLUSTRATION 5

Printout of an interactive optimization session

—s

DMIDL: EG.0

——

RUNG EGs2y0

KKK AR KRR KK KK nMI kkkokokkkk  VERSION 1.0  skkkkkkkk 16/08/78 kkkx

kkkkk MOSQ = 1 2 3 4
okM2Xxk  MOOT = 1 8 B8 ©
kkkkkk TINI = 1960.00 TEND = 2000.00 nT =

*kM3Ikk NR. OF GLOERAL VAR.S = 1731 NR. OF EXOGEN.

0.1250

VAR.S = &80

Aok KOk KOk dok Kok %ok kK GOLEM kKkkkk TSE VERSION 1.1  ®kkkkkkkk 18/08/78 kkkxk

*XkM3%k%x MAX. EXECUTION TIME SEC,
KXMIRK TWO -~ MEMBERED EVOLUTION STRATEGY

*xkM3Ikk NO. OF FARAMETERS
KkMIKkk  NO. OF CONSTRAINTS

.. oo

i

XkM2%kk  ACCURACY EA = 0,1E-02 EFR 0+1E-02 EC = 0.1E~10

?00.00

g
1

Enl = 0,3E-05

11685

*xM3kk INITIAL OBJECTIVE VALUE H 0+.0000000000E 00
XkM2%x  STARTING RANDOM NUMEER GENERATOR ¢
X
X G X
X

*kMIkk CONVERGENCE CRITERION SATISFIED
XkM3kk FINAL ORJECTIVE VALUE
*¥kM3%%x NO. OF SUCCESSES/MUTATIONS

e 2o 2o +e se

~0.1055559719E 10
21

120

XXM3kx EXECUTION TIME SEC. 651470
*kM3xk CALLS OF ORJECTIVE FUNCTION 81
*¥kM3%x  CALLS OF CONSTRAINTS 121
TARLE OF FINAL VaLUES

NAME IEL - IF TYF 5L FINVAL INIVAL
CATNL 2 25246 10 0.1842959E-01 0.74984469D0 01 0.0000000
CATNL 3 25247 10 0.2624106E-01 0.14946130 02 0+0000000
CATNL 4 25248 10 0.3558256E-01 0,27442440 02 . 0.0000000
FCTX 2 25242 20 0.1176469E-02 0.82597890-01 0.0000000
FCTX 3 25243 20 0.1176469E-02 0.22425350 00 0.0000000
FCTX 4 25244 20 0.,1176469E-02 0.30282940 00 0.0000000
GOAL 1 1730 1 ~0.10555460E 10 0.0000000E 00

CS8TR 2 0.6250000E~01

STORE? (0/Y/8)
Y

-
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‘ Illustration 6 shows the development of the
gas input for methanol production and of
the amount of gas produced by lignite gasi-
fication.

ILLUSTRATION 6
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The latter being higher, especially to-
wards the end of the time period is due to
the restriction to natural gas imports.

ILLUSTRATION 7

" Imports of natural gas
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From illustration 7 you can see that this
constraint is violated in the case A  (no~~+
methanol and no gasification, which is the
initial state).. That means that the opti-
mization had to start from a non-feasible

point.

Illustration 8 demonstrates how the missing
lignite for electricity production has

to be replaced by a cortespdnding &amount of
hard coal.

ILLUSTRATION 8
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Finally the imports of crude oil and pétro=
leum products which were miinimized are
shown in illustration 9 for the initial
(case A) and the final state (¢ase B) of
the optimization task.

One important concludiilg remark Has &6 be
added here. Using GOLEM to find extremal
solutions we have learned a lot more abdut
the behavior of the energy model. Thu$ we
are able to locate and diminish deficien~-
cies which otherwise we would not have
seen so clearly. The use of optimizatioch
algorithms does not only lead to bettexr
solutions for decision variables but also



to a better model.

ILLUSTRATION 9

Import of crude oil and petroleum products
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V. SUMMARY

The FORTRAN based optimization module des-
cribed here presents the possibility to
search for optimal parameters (even time
series) within a dynamic simulation model.
It is easy to handle even for the unexperi-
enced user in a timesharing environment.
The main features arise from its large
flexibility with respect to

-~ the optimization procedure
- the objective and the constraints
- the parameters to be varied

which may be activated by merely filling in
their names in a special input data set.

Together with the KFA simulation model of
the national energy system this optimiza-
tion module supports the search for desired
developments of the energy system. That's
why we call this tool GOLEM or goal orien-
ted long-term energy model.
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