SIMULATION METHODS FOR POISSON PROCESSES IN NONSTATIONARY SYSTEMS

ABSTRACT

The nonhomogeneous Poisson process is
a widely used model for a series of events
(stochastic point process) in which the
"rate" or “intensity" of occurrence of
points varies, usually with time. The
process has the characteristic properties
that the number of points in any finite set
of nonovérlapping intervals are mutually
independent random variables, and that the
number of points in any of these intervals
has a Poisson distribution. In this paper
we first discuss several general methods
for simulation of the one-dimensional non-
homogeneous Poisson process; these include
time-scale transformation of a homogeneous
(rate one) Poisson process via the inverse
of the integrated rate function, generation
of the individual intervals between points,
and generation of a Poisson number of order
statistics from a fixed density function.

We then state a particular and very
efficient method for simulation of nonhomo=
geneous Poisson processes with log-linear
rate function. The method is based on an
identity relating the nonhomogeneous Poisson
proéess to the gap statistics from a random
number of exponential random variables with
This method

can also be used, at the cost of program-

suitably chosen parameters.

ming compléxity and some memory, as the
basis for a very efficient technique for
simulation of nonhomogeneous Poisson pro-
cesses with more complicated rate functions
such as a log-quadratic rate function.

Peter AW. Lewis
Gerald S. Shedler

Finally, we describe a simple and rela-
tively efficient new method for simulation
of one-dimensional and two-dimensional non-
The method
is applicable for any given rate function

homogeneous Poisson processes.

and is based on controlled deletion of
points in a Poisson process with a rate
function that dominates the given rate func-
tion. In its simplest implementation, the
method obviates the need for:numerical in-
tegration of the rate function, for order-
ing of points, and for generation of Poisson
variates. The thinningAmethod is also
applicable to the generation of individual
intervals between points, as is required in

many programs for discrete-event simulations.

1. INTRODUCTION

The one-dimensional nonhomogeneous
(nonstationary) Poisson process (see e.g.,
[5, pp. 28~29; 3, pp. 94-101]) has the
characteristic properties that the numbers
of points in any finite set of nonoverlap-
ping intervals are mutually independent
random variables, and that the number of
points in any interval has a Poisson distri-
bution. The most general nonhomogeneous
Poisson process can be defined in terms of
a mdnotone,nondecreasing,right—continuous-
function A(x) which is bounded in any

Then the number of points

in any finite interval, for example

finite interval.
(O,XOL
has a Poisson distribution with parameter

Mg = Alxg) - A(0).
that A(x) is-continuous, but not necessarily

In this paper we assume
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POISSON PROCESSES IN_NONSTATIONARY SYSTEMS...Continued

absolutely continuous.
tive A(x) of A(x)
for the process; A(x)

The right deriva-
is the rate function
is called the in-
tegrated rate function and has the inter-

pretation that for x >0, A(x) - A(0) =

E[N(x}], where N(x) is the total number
(0,x]. Note that A(x) may
jump at points at which A(x)

of points in
is not abso-
lutely continuous. In contrast to the
homogeneous Poisson process, i.e., A(X) a
constant (usually denoted by 1)), the in-
tervalg between the points in a one-dimen-
sional nonhomogeneous Poisson process are
neither independent nor identically dis-

tributed.

Appligations of the one~dimensional
noenhomogeneous Poisson process include
modelling of the incidence of coal-mining
disasters LS}, the arrivals at an inten-
sive care unit [12], tramsaction processing
in a data base management system [15], oc~
currences of major freezes in Lake Constance
[23], and geomagnetic reversal data [22].
The statistical ahalysis of trends in a
one-dimensional nonhomogeneouslPoisson pro-
cess, based on the assumption of an expo-
nential polynomial réte function, is dis-
cusged by [4,.5, 12 and 157.

One-dimensional nonhomogeneous Poisson
processes are often used as models for
event streéams when there is gross inhomo-
geneity in a system, e.g., time of day
effect or long-term growth in use of a
facility. It is important to be able to
simulate these processes since analytic
results are difficult to obtain. This is
particularly true in the context of queue-
The methods

given here for simulation of the ocne-dimen-

ing systems; see e.g., [19].

sional nonhomogeneous Poisson process have
application, for example, to study of the
length of a queue at a toll booth at a

time corresponding to the peak traffic
time, or to study of the arrivals at an in-
tensive care unit where the probabilityof a
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bed being free at a time correspending to the

peak of arrivals from afterrioon operatibng .
is of interest. Note that in simulations
of nonhomogeneous systems of this kind,

estimates of measures of system behavior

will be based -on multiple replications.

The two-dimensional homogeneous PoisSson
A > 0) 1is defined by the
properties that the numbers of points in

pracess (of rate

any finite set of nonoverlapping regiens
having areas in the usual geometric sense
are mutually independent, and ‘that ithe num-
ber of points in any region of area A ‘has
a Poisson distribution with mean M\A; see
e.g., [1l0, pp. 31-32]. Note ‘that the num-
ber of points in a region - R depends on its
area, but not on its shape. The hemogeneous
Poisson process arises as a limiting two-=
dimensional point process with respect to

a number of limiting operations; cf., {7,8}1.
Properties of the preocess are giwven in [18].
Applications of the two~dimensional homo-~
geneous Poisson process to problems in
ecology and forestry have been discussed in
[24] and [91].
connecﬁion with naval search and detection

The model also arises in

problems.

The two-dimensional nenhomogéneous
Poisson process is characterized by a {con-
Azx,y).
Applications of the two-dimensional nOnhomQr

tinuous) positive rate function

geneous Poisson process include problems in
forestry as well as naval search and detec-
tion. The detection and statistical analy-

sis of trends in the two-dimensional non-

homogenéous Poisson process is discussed in

[21].

2., SIMULATION OF THE ONE-~DIMENSIONAL
NONHOMOGENEQUS POISSON PROCESS

There are a number of methods for sim-
ulating one-dimensional nonhomogeneous
Poisson process which we review briefly.
Time-scale transformation of a homogeneous
(rate one) Poisson process via the inverse



of the integrated rate function A(x) con-
stitutes a first general method; cf. [3,
pp. 96-97]. This method is based on the
result that Xl' X2, e
in a nonhomogeneous Poisson process with

are the points

continuous integrated rate functions A(x)
if and only if Xi = A(Xl), Xé = A(Xz),...,
are the points in a homogeneous Poisson
process of rate one. The time-scale trans-
formation method is a direct analogue of
the inverse probability integral transfor-
nmation method for generating (continuous)
nonuniform random numbers. For many rate
functions, inversion of A(x) is not
simple and must be done numerically} cf.,
[6] and [20]. The resulting algorithm for
simulation of the nonhomogeneoﬁs Poisson
process may be far less efficient than

simulation based on other methods.

A second general method for simulating
a one-dimensional nonhomogeneous Poisson
process with integrated rate function A(x)
is to generate the intervals between points
individually, an approach ﬁhich may seem
more natural in the event scheduling ap-
proach to simulation. Thus, given the
points Xl = Xy X2 = Xppeees Xi =X, with
X, <X, £ »°* K Xi' the interval to the

1 2

next point, Xi - Xi' is independent of

+1
Rireeor X5 4 and has distribution function
F(x) = 1 - exp[—{A(xi + %)y - A(xi)}l. It

is possible to find the inverse distribu-

tion function F_l(-), usually numerically,
and generate Xi+l - Xi
X

X, = F'l(Ui), where Ui
form random number on the interval

according to

is a uni-
(0,1).
Note, however that this not only involves

i+l © i

computing the inverse distribution function-

for each interval Xi+l - Xi’ but that each
distribution has different parameters and
An additional

- X. is not
1

possibly a different form.

complication is that Xi+l

necessarily a proper random variable, i.e.
there may be positive probability that
X

- Xi is infinite. It is necessary

i+l
to take this into account for each interval
Xir1 _‘Xi before the inverse probability

integral transformation is applied. The

method is therefore very inefficient with
raéspect to speed, more so than the time~

scale transformation method.

In a third method, simulation of a
non-homogeneous Poisson process in a fixed
interval (0, XO] can be reduced to the
generation of a Poisson number of order
statistics from a fixed density function '
by the following result; cf£., [5, p. 45].

If X are the points of the

1 X2, cae g Xn
nonhomogeneous Poisson process in (0, xO],
and if N(ko) = n, then conditional on

having observed n ( > 0) points in
the Xi
tistics from a sample of size n fromthe dis-
tribution function {A(x)-A(0)}/{A(x,)-A(0)1},
defined for 0 < x < Xq-

nonhomogeneous Poisson process based on

(O,XO],
are distributed as the order sta-

Simulation of the

order statistics is in general more effi-
cient (with respect to speed) than either
of the previous two methods. Of course, a
price is paid for this greater efficiency.
First, it is necessary to be able to gen-
erate Poisson variates, and second, more’

memory is needed than in the interval-by-
interval method to store the sequence of

points. Enough memory must be provided so

- that with very high probability the random

number of points generated in the interval
Recall that the number of
points in the interval (0,x0] has a Poisson

can be stored.

distribution with mean 5 = A(xg) - A(0).-
Memory of size, e.qg., u0-+4u%'2 will en~-

sure that overflow will cccur on the aver-
age in only 1 out of approximately 40,000

realizations. This probability is small
enough so that in case of overflow, the
realization of the process generally can

be discarded.

- We now summarize several recently
developed methods for simulating one- and
two-dimensional nonhomogeneous Poisson pro- .
cesses. These methods are discussed in
greater detail in {14, 16, 17].
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3. SIMULATION USING GAP STATISTICS

In a previous paper [14], we have con-
sidered the simulation of nonhomgeneous
Poisson processes with degree-one exponen-
tial polynomial rate function, i.e.,

X(x) of the form

'k(x)==exp{Yo+- ylxl= A exp{ylx}, yl¢o. (1)

The rate fuhction (1)- is £he simplest of
a general family of log-linear rate func-
tions, i.e., rate functions whose loga-
rithms.are linear in the coefficients [4;
12] which are useful in analyzing nonhomo-
The rate
function (1) represents a situation in

generous Poisson processes.

which the rate is monotonically increéasing
or decreasing depending on whether Y1 is
greater than or less than zero, with Yy

equal to zero giving a homogeneous Poisson
is less than

process. The case where Yy

zero and the case where Y1 is greater
than zero are quite distinct; in the first
X » o, and in the

situation A(x) - 0 as

sécond, A(x) + « as x »+ «. Moreover,

when Y1 is less than 0, the intervals
between events are not proper random vari-
ables since there is a nonzero probability
that there is no event after any fixed
point x.

In [14] a method for simulating the
nonhomogeneous Poisson process is given
based on an identity relating the nonhomo-
geneous Poisson process with rate function
(1) to the gap statistics from a random
number of exponential random variables with
This method

avoids costly ordering and taking of loga-

suitably chosen parameters.

rithms required by direct simulatioh methods
and is more efficient than time-scale trans-
formation of a homogeneous Poisson process
via the inverse oOf the integrated rate
function A(x).

Simulation of the one-dimensional
nonhomogeneous Poisson process in a
fixed interval (0,x0] is more

natural than simulation for a fixed

number of events since time, not sérial
number, is the basic parameter of the in-
homogeneity discussed here. Thus the gap
statistics algorithm for simulation of the
nonhomogeneous Poisson process generates
the sequence of times~-to-events in a fixed
interval. Although such a method requires
more memory than successive generation of
individual times until the next event, it

is far more efficient.

We now state the method of Lewis énd
Shedler [14] for simulation via gap statis-—
tics 6f the one-dimensional nonhomogeneous
Poisson process with rate function (1).
This scheme, which is particulaf to the v
degree—-one exponeéential polynonial rate
function, can use standard packages for ex-
[131) and
obviates the need for ordering of the random
numbers.
[25]) that the gap process associated with
-A/yy > 0)
number of exponential (parameter B = —Yl>0)

ponential random numbers (e.g.,
It is based on the result (see
a Poisson distributed (parameter

gap statistics is a nonhomogeneous Poisson
process with rate function A(x)=lwexp(ylx)
on (0,»). Efficient methods for genera-
tion of Poisson random numbers for which
the generation tine does not increase pro-
portionally with the mean are given by [1,2]

and [11].

Assuming the availability of a source
of unit exponential random numbers El'EZ’
..., 6btained by logarithms or by other
methods, the resulting algorithm for gener-
ating the events in the nonhomogeneous

Poisson process is as follows.

Gap Statistics Technique
(v < 0).

Algorithm 1.

as a Poisson random number

—A/Yl.
there are no events in

2. For m> 0, if El/(Bm)
than
(0,xo]. Otherwise, set El/(Bm) equal
to Xl.

l. Generate m
If m= 0, exit;
(0,x,1.

is greater

with parameter

X1 exit; there are no éevents in



3. If E,/{B(m-1)} + X > Xy, then return

X and exit. Otherwise, set it equal

1
. to X2.
4, Continue, possibly for m times. If
Em/B + Xm—l > Xy return Xl,Xz-,...,Xm_l

and exit. Otherwise, set this equal

.to X, return and exit.

Xl'XZ""'Xm

The case Yy > 0 is handled in the

same way as Y < 0 by using a time-rever-

Simulate ac-
#

sal technique, as follows.
cording to Algorithm 1 with A(x) = A
X exp{fo}, where Af = exp{yo + ylxo}

and Yf ==Yy The output of Algorithm 1
is a sequence xf,xg,...,xi. Then set

= TS - _ o - _ o
xl--xO Xn’ X2—- x0 Xn—l""’xn xO Xl.

are the required events in the

Y1 > 0.

These X,
i

nonhomogeneous Poisson process for
Lewis and Shedler [16] consider the
simulation in a fixed interval of the non-
homogeneous Poisson process with degree-~
two exponential polynomial rate function

2
Ax) = exp{aoi-alxi-azx }, a27£0 (2)

oy = 0

exponential polynomial rate function.

the case giving the degree-one
'Again, the case where o, is less than
zero and the case where o, is greater
than zero are distinct. The simulation
method given is based on representation of
the process as a superposition of two inde-
pendent nonhomogeneous Poisson processes,
one of which has a fitted rate function of
the form (1); simulation of the latter
process is accomplished via the gap statis-
tics algorithm [14]. A rejection-accep-
tance technique is used to generate the
other, more complex, nonhomogeneous Poisson
process. The resulting algorithm is more
efficient than time-scale transformation of
a homogeneous Poisson process; see [20].
This method can be improved by using the
thinning algorithm given in the next sec-
tion to simulate the second nonhomogeneous

Poisson process. The method can also be

extended to more complex rate functions
than the degree-two exponential polynomial.

4. SIMULATION OF NONHOMOGENEOUS
POISSON PROCESSES BY THINNING

In this section we describe a new
method [17] for simulating a nonhomogeneous
Poisson process. The method is not only -
conceptually simple, but is also computa-
tionally simple and relatively efficient.
In fact, at the cost of some efficiency,
the method:can be'applied to simulate the
given nonhomogeneous Poisson process EiEEf

out the need for numerical integration gé

routines for generating Poisson variates.

Used in conjunction with the special methods
given by Lewis and Shedler [14,16], the
method can be used to simulate quite ef-
ficiently nonhomogeneous Poisson processes
with rather complex rate function, in
particular, combinations of long-term trends
The method is

also easily extended to the problem of simu-

and fixed-cycle effects.

lating the two-dimensional nonhomogeneous
Poisson process (see Section 5), and of
simulating conditional and doubly stochastic
Poisson processes.

Simulation df a nonhomogeneous Poisson
process with general rate function A(x)
(0,%41
on thinning of a nonhomogeneous Poisson

in a fixed interval can be based

*
process with rate function ) (x) 2 A(x),
The main result [17, Theorem 1] is that if
* * * .
xl'x2""’XN*(xo) are the points of the
*
A(x)
%
interval (O,XO] and if the point Xi is

process with rate function in the
deleted with (independent) probability

1 - A(Xi)/f(XZ), then the remaining points
form a nonhomogeneous Poisson process with
(O,xo].

rate function A{x) 1in the interval

This result is the basis for the method
of simulating one-dimensional nonhomogeneous
Poisson processes on an interval (O,Xo]
given by Algorithm 2.
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One-Dimensional Nonhomogen-=

.VAlgorithm 2.

eous Poisson Process (Thinning)

“l. Generate points in the nonhomogeneous
*
{N (x)}

in the fixed interval

Poisson process with rate
*
A (x)

If the number of points gen-

function
(0,x,1.
: erated n , is such that n* = 0, exit;
there are no points in the process

{N(x)}.

. 2. Denote the (ordered) points by X X

Set i =1 and k = 0.

ll
cees xn*.

.

3. Generate U , uniformly dlstrlbuted
*
between 0 and 1. If U < A(X )/A (Xl),

set k equal to. k+l and Xk f.

: *
4. set i equal to it+l. If i <n , go

to 3.

5. Return Xl’XZ""'Xn’ Where n =k, and

also n.

The method of thinning of Algorithm 2
is essentially the obverse of the condi-
tional method of Section 2 using condition-
ing and acceptance~rejection techniqqes'to
generate the random variables with density
A(x)/{A(x) - A(0)} [16, Algorithm
31. The diﬁferences are subtle, but compu-

function
tationally important. In the acceptance-
rejection method, it is first necessary to
generate a Poisson variate with mean

Uy = A(xg)
integration of the rate function
Then the Poisson(ig)
ates generated by acceptance-rejection must

-~ A(0), and this involves an

Ax).
number, n, of vari-

be ordered to give Xl;xz,...,Xh.

In the simplest form of the method of
. *
thinning, A (x) is taken equal to
*

A = max, st_xok(x), , so that, for instance

the points XI,X;,.,.,X;* can be generated
by cumulating expohéntial (A*) variates until
the sum is greater than X, (cf. [14, Al-

gorithm 1].
thinned. No orxdering, no integration of

A(x)

The generated points are then

and no generator of Poisson variates
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is rgguired. Of course for both algorithms
to be éfficient, computation of A(x)
A" (20
of the inverse of A(x),

and:-
must be easy relative to computatien

For the thinning algorithm (as well as
the algorithm based on conditioning and
acceptance~rejection) efficiency as measured
by the number of points deleted is propor-
tional to

wo/ug = {A(xy) = A(®) WY xg) = 47 (@) )5

this is the ratio of the areas between 0

*
and x, under A(x) and A (x), Thus,
*
A (%) should be as close as pessible to
A(x) consistent with ease of sipmulating

the nonhomogeneous Poisson process
{N (x):x > 0}.

It is important to note that the method
of thinning ¢an be used to generate indiwvid-
ual intervals between events occurring in
(0,x0] if A(x) is bounded on {a, xol,
The resulting algorithm is not only useful
in the event scheduling approach to sipula-
tion, but also in the generatipgn of eon-
ditional Poisson processes. Informally,
the "one at a time" thlnnlng algorithm is

as follows, If A (x)-'x >maxQ< x< %, Alx),

then the ith interval X - Xl_:L is gb=
tained by generating and cumulat;ng expo-
nential(A¥*) ¥ E
until, for the flnst time,

random numbers

E%zi' 1,27+

U, . < A(X,

E* E* *
i,J i=-1 + i1 teeet i,j)/A ’

i=1,2,...; i=1,2;.,.,

where the U are 1ndependent uniform
(0,1) random numbers.

5. SIMULATION OF TWO- DIMENSIONAL
HOMOGENEQUS POISSON PROCESSES

Recall that the two-dimensional homo-
A > 0) has
the characteristic properties that the num-

geneous Poisson process (of rate

bers of points in any finite set of



nonoverlapping regions having areas in the
usual geometric sense are mutually inde-
pendent, ané that the number of points in
any. region of area A has a Poisson dis-
tribution with mean AA.

In considering the two-dimensional
homogeneous Poisson process, projection
p;opérties of the process depend guite
critically on the geometry of the regions
considered. These projection properties
are simple for rectangular and circular
regions, and make simulation of the homo-
geneous process quite easy. We consider
here the case of a rectangular region. The
following result forms the basis for simu-
lation of the two~dimensional homogeneous
Poisson prodess of rate A in a fixed
rectangle R = {(x,y):0 $x<x,,0<yg yo}.
If  (X0Yy), (X, ¥,) ey (X, ¥)
the positions of the points of the process
in R, labelled so that Xl< X2< ***, then
Xl'XZ""’xN form a one-dimensional homo-
0 < x<x) of
Ayo; if the points are relabelled
(X3, (X5,¥5), we. s (Xg,YR) so that

! 1T Ceee v
Yl < Y2 < < YN,

a one-dimensional homogeneous Poisson pro-

denote

geneous Poisson process on
rate

then Yi,Yé,...,Yﬁ form

cess on 0 < y < Yo of rate ‘Axo.

We state next conditional properties
of the Poisson process in a rectangle. The
important thing to note is that although
the processes obtained by projection of the
points onto the x and y axes are not
independent, there is a type of conditional
independence which makes it easy to simu~
Thus,
conditional on having observed '‘n > 0 points
(xl'Yl)’ (XZ’YZ)""’(xn’Yn) in R, labelled
so that Xl < X2 e+ < Xn, the Xl,Xz,...,Xn
are uniform order statistics on 0 £ x Xg e

and the Y Y2,...,Yn

late the two-dimensional process.

1 are independent and
uniformly distributed on 0 <y < Yor in-
dependent of the Xi.

From these two results, the following
simulation procedure is obtained.

Algorithm 3. Two-Dimensional Homogeneous
‘Poisson Process in a Rectangle

l." Generate points in the one-dimensional
homogeneous Poisson process of rate
Ay, on (O,XO]. If the number of
points generated, n, is such that n=0,
. exit; there are no points in the
rectangle.

2. Denote the points generated by

X <Ky << Ky ‘

3. Generate Yl,Yz,.;.,Yn independent,
uniformly distributed random numbers
on (O,yO].

4. Return (Xl'Yl)’(XZ’YZ)""’(Xn'Yn) as
the coordinates of the two-dimensional
homogeneous Poisson process in the

rectangle, and n.

Note that generation of the poinfs Xl'XZ'
ceer X in steps 1 and 2 can be accomplished
by cumulating exponential(")\y(l),.~ random

numbers.
Poisson random number N = n
AXgYqe)s 1
random numbers on
see [l4,:p. 5021.

Alternatively, after generating a
(with parameter
independent, uniformly distributed

(O,xo] can be ordered;

The basis for another algorithm for sim-
ulation of the two-dimensional homogeneous
Poisson process in a rectangle is the follow-
ing corollary. Denote the Poisson points by '
(xl’Yl)'(XZ’YZ)""' where the index does
not necessarily denote an ordering on either
(Xy,¥),
are independent random,

axis. Conditionally, the pairs
(X2 IY2) reeey (XN;YN)
variables, and furthermore, for each pair
0 and Xg independently of Yi’
uniformly distributed between (0 and Yo+

is distributed uniformly between
which is

Direct generation of homogeneous Poisson
points in noncircular or nonrectangular
regions is difficult. The processes ob-
tained by projection of the points on the
two axes are nonhomogeneous Poisson processes
with complex rate functions determined by
the geometry of the region. However, the

conditional independence which is found in
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circular and rectangular regions for the
processes on the two axes is not present.
In particular, given that there are n

() 0 ¥7) reeny (X0 Y)
tangular negion, .the pairs

points in a nonrec-
(Xi,Yi) are
mutually independent, but Xi is inh gen-
eral hot independent of Yi, i=1,2;+..,n.
Therefore it is simpler to enclose the

region in either a circle or a rectangle,
generdte a homogeheous Poisson process in
the enlargéd area, -and subsequéntly ex-

clude points outside of the given region.

6. SIMULATION OF TWO-DIMENSIONAL
NONHOMOGENEOUS POISSON PROCESSES

The two-dimensional nonhomogeneous
{N(x,y):x>0, y>0} is
Specifieéd by a positive rate function
Ax,y)
here to be continuous.

Poisson process

which for simplicity is$ assumed
Then thé process
{N(x,y)} has the characteristic propefties
that the numbers of points in any finite
set of nonoverlapping regions having areas
in the usual geometric sense are mutually
independent, and that the number of points
in any such region R has a Poisson dis-
A(R) de-
over R,

tribution with mean "A(R); here
notes the integral of ' A(x,y)

i.e., over the entire area of R.

The basic result of Section 4 on
thinning of one-dimensional nonhomogeneous
Poisson processes generalizes to two-dimen-—
sional nonhomogeneous Poisson processes.
Thus, suppose that X(x,y) < x*(x,y) in a
fixed rectangular region. of the plane. If
a nonhomogeneous Poisson procéss with rate
~function A*(x,y) is thinned according to

A(x,y)/a*(x,y) (X;,¥,)
is deleted independently if a uniform (0,1)

(i.e., each point
random number U is greater than

A(X ,Y )/A (X Y )), the result is nonhomo-
geneous P01sson process with rate function
)\(X,y) .

The nonhomogeneous Poisson process with

rate function A{x,y) in an arbitrary but

162

is homogeneous with rate A
gle R . ’

Algorithm 4.

1. Using Algorithm 2,

*
2. From the n

3. Generate Ui

4. Set 1

5. Return

fixed region R can be generated by en-
closing the region R either in a c1rcleﬂl7]
or a rectangle and applylng Algorithm 3 'The
following procedure assumes that the riglon
R has been enclosed in a rectangle R ,

and that A* = max{A(x,y):x, v € R} has

been determlned here the boundlnc process

in the rectan-

Two~Dimensiornial Nonhombgernéous
Poisson Process (Thinning) .

gefieraté points in -
the homogeneois Poisscn process of rate
A* in the tectangle R*. If the rum-
ber of points, n*; is guch that n* = 0;
exit; there are no points in the nei-
homogeneous Poisson process.

points generated in 1,
delete the points that are hot in R;
and denote the remaining points by

* * % * kT
(Xl,Yl), (X2,Y2),..., (Xm,Ym) with

* . A

X < XL <+ve< X.. Set i =1 atd k = 0.
1 2 m
uniformly dlstrlbuted

bétween 0 and L. TIf U. <A(X.,Y )/k p

and Y, = YA.

*
set k = k+i, Xk = Xi "

5 3 * Py
equal to i+l. If i< m, go

to 3.
(X 7Y7) 0 (X50¥5) peney (xﬁ,yﬁ),

where n =k and n.

7. CONCLUSION

We have summarized previously krown

general methods for simulating nonhomogen-
eous Poisson processés in one dimefisiohs

In addition, we have described the simple
and efficient new methods of Leyis and
Shedler for simulating nonhomogeneous
Poisson processes in one and two dimensions:

Extensions of the thinning algorithm to the
simulation of homogeneous or nonhomogeneous
conditional or doubly stochastic Poisson

processes will be described elsewhere.
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