 THE BIVARIATE BETA DISTRIBUTION: COMPARISON OF MONTE CARLO
GENERATORS  AND EVALUATION OF. PARAMETER ESTIMATES

ABSTRACT ®

The bivariate and multivariate beta distri-
butions may provide appropriate stochastic models
for a number of processes, particularly those
involving random proportions. Researchers may
therefore find it necessary to estimate the para-
meters of such distributions or generate Monte
Carlo samples with known parameter values. Two
possible generating techniques for beta hivariates
are presented and compared in this paper. Estima-
ting equations for the three parameters of the
bivariate beta distribution are presented. These
use the method of moments, the only tractable
estimating technique, and an analysis of their
properties is also presented.

This paper focuses on the bivariate beta
distribution, but a user of a higher-dimensioned
beta model will be able to make use of the
discussion herein to provide assistance in
determining many of the properties of such a
mode1.

INTRODUCTION

The continued interest in simulation ana
Monte Carlo techniques as research tools implies
a need to continue to develop their capabitities.
We seek to do this in this project by extending
knowledge about onte Carlo generation of a
particular statistical model: the bivariate beta
distribution. In addition, we seek to evaluate
estimates of the distribution's parameters derived
by the method of moments. When a researcher might
apply a bivariate beta model, he would sample from:
some bivariate beta-distributed population esti-
mate the parameters. of the distribition, and .
possibly use these parameter estimates to provide
the basis for generating Monte Carlo samples. The
results of our project will help provide quidance
in such activities involving bivariate beta dis-
tributed populations, and from this work a re-
searcher may be able to infer the properties of
higher-dimensioned multivariate beta distribu-
tions.

The researcher wants to know, of course, when
the bjvariate, or multivariate, beta distribution
may provide an appropriate statistical model for
some real-world process. The beta distribution
describes the random division of a continuous
interval. The univariate beta distribution de-
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scribes one such segmentation; the bivariate beta
describes two such segmentations, and so forth. A
principal use of the general multivariate beta
distribution would therefore 1ie in modeling ran-
dom proportions, when it is reasonable to assume
that they are continuous.

The density function of the bivariate beta
distribution is given by:

fé?’) (pysp2[ms) =

T (my+motma) m-1 mo_q,. - )
T{m )Tz L (m3) P1- P2” " (1-p1-pa)Ms-1 for

P1sP2>.0, pytp2 < 1 (1)
0, elsewhere. '

The m; > 0 for j = 1, 2, 3. These are the para-
meterg of the distribution and may or-may not be
integral values. The letter gamma represents the
gamma function. For example,

od
r(a) = /@ le~Xdx = al/a .
)

In equation 1, pj and pp represent a pair of
observations; that is, a beta bivariate.

Mauldon (9) has examined some of the mathe-
matical properties of the general multivariate
beta distribution. These include uniqueness,
continuity, boundedness, and invariance under
Tinear transformation of observed values. Note
that, because of. this last property, p; and p2 can
actually take on any values in the (0,z) interval
as long as the following condition is met:

p1+p2iZ.

In this paper, we are Timiting ourselves to
studying what Mauldon refers to as the basic beta
distribution where the constraints noted in
equation 1 hold. In addition to this, Mauldon
shows that any marginal distribution of a k-
dimensional beta distribution is itself a (k-1)-
dimensional beta distribution. Mosimann (10)

has also made contributions regarding properties
of the multivariate beta distribution. He derives
expressions for its first and second moments as
well as expectations for the elements of its vari-
ance-covariance matrix. In addition, he demon-
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strates a direct relationship between the k-dimen-
sional beta distribution and a set of (k+1)
independent gamma distributions. Finally,

Fielitz and Myers (2) have derived estimating
equations for the three parameters of the bivar-
iate beta distribution by using the method of
moments. It appears; incidentally, that there is
no other feasible estimation technique for the
‘parameters of the bivariate or multivariate beta
distribution. (13) :

Several other applications of the
bivariate beta distribution as a statistical
model have also been suggested in the literature.
One of these involves interpretation of spurious
correlations, or correlations among proportions.
(10) Pearson's product-moment correlation coef-
ficient  is inappropriate as a measure of associ-
ation when observed values are coenstrained as they
are in the case of random proportions. The cor-
relation among proportions can be more appropri-
ately measured through the covariance of a parti-
cular set of beta multivariates. If there are
three classes to be considered, the bivariate béta
distribution could provide a vehicle for inter-
preting correlations among them. The multivariate
beta distribution may also be useful in modeling
variable transition probabilities in a Markov
chain whére a Bayesian scheme i5 uséd to estimate
steady-state probabilities or where a Markovian
model is based on macro data and individual tran-
sitions from one state to another are not avail-
able. (8,6) A final suggested application cones
from Quandt. (12) Stochastic models irvolving
voter preferences may make use of a bivariate beta
distribution whén, say, there are three possible
attitudes toward an issue (for, against, and un-
decided), and the proportion of voters in edch
attitude class is of interest.

Since there are a number of areas where a
bivairiate, or multivariate, beta distribution may
provide an appropriate statistical model, we have
undertaken this project in order to increase its
potential usefulness. Specifically, we seek to
develop a useful Monte Carlo generator for beta
bivariates when parameter values are known. 1In
addition, the Monte Carlo samples will be used to
estimate the parameters of the distribution from
which the samples come. This will allow compai-
ison of known, true parameter values with esti-
mated values in turn enabling us to evaluate
certain estimator properties.

GENERATION OF BETA BIVARIATES

The qualities of an acceptable bivariate beta
generator are mathematical consistency with the-
density function and aw ability to function for
any feasible set of parameter values. These are
of course in addition to the usual attributes of
speed, low cost, reproducability, ease of imple-
mentation, and reliability as evidenced by an
ability for samples to pass statistical tests.

One suggested generator, based on order statistics,
was rejected at the outset because it would work
only for integral parameter values. Two others
which could potentially possess all of the stated
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qualities were developéd and these generators will
now be discussed.

* AN INVERSION GENERATOR

The first generator is based om what is com-
monly called the inversion method (14, pp. 315-
316.} and requires derivation of equations for
both marginal and conditional mass functions,
Since the derivation is Tengthy, it is not pre-
sented here. We can make use of incomplete beta
functions for this generator because, as noted
earlier, the marginal distribution of a bivariate
beta is itself a univariate beta distribution (9),
and 7t can then be shown that the conditional
distribution is a %ransformed univariate beta.
The equations for the generator are

| 1 m- -t ,
Rj-1 = KgsPLpl1 L (1p m2em3=tapy ,  (2)

Ry = KoKz (1o )M3 x| and (3)
X* = py/(1-py) » where (4)

Ri_q and R; are random numbers uniformly dist-
ributed over the (0,1) intérval (for j= 1,2...,2n),

_r§m1+m%+m3) ‘
Ky =% m1)T{mptmg) 2 and

I{mp+ma+m3)
KZ“r(mg)r(mg)Kl—pl)'z M3

By drawing a pair of uniform random numbers we ¢an
sequentially solve equations 2, 3, and 4, obtain-
ina a beta bivariate represented by py and p2s and
having parameters mi, mg, and m3. From an input-
output standpoint, this generator is desirable
since one pair of uniform random numbers yields

one bivariate beta pair.

Unfortunately, equations 2, 3, and 4 are not
so easily solved. Equations 2 and 3 contain
inteqrals which can not make use of direct quad-
rature formulas; a numeric technique must be used.
We found that, for given p1 and x* values, Simp-
son's rule works reasonably well in evaluating the
integral terms, particularly with large parameter
values since convergerice is fairly rapid. Finding
p1 and x* which satisfy the equations represents
another problem. We settled on a binary search
technique, setting initial values at 0.5, The
equation is evaluated and a second-value, either
0.25 or 0,75, is chosen. Subsequent steps are
halved and we are able to coiiverge on pp and x*
values which provide approximate solutions to
equations 2 and 3. In outline form, our algorithm
works 1ike this:

1. Draw uniform random number, R:
2. Set py = 0.5,4pp = 0.25

3. Evaluate equation 2 (Simpson's rule
sensitivity set at 10-8).

4. If difference between left and right side



is less than 1077 go ‘to step 7,

5. IfRis greater than the right side,
Py = p+Apy» e1se_p1-=,p1—Ap1.

Ap1=Ap1/2,-go to 3.
Repeat steps 1 through 6 for x*.
p2 = x*/(1-py)

W00 N O

Repeat steps 1 through 8 n times for
sample of n beta bivariates, p; and pj.

This algorithm seems to have several of the
advantages mentioned. As we shall see, however,
it is seriously deficient in terms of speed We
could speed it up by reducing the precision noted
in steps 3 and 4, but this would obviously have
an adverse effect on sample quality.

A TRANSFORMATION GENERATOR

The second generator is based on a transfor-
mation of ‘three independent gamma univariates all
having identical scale parameters and having mj,
m2, and m3 as respective shape parameters. The
transformation equations follow directly from

Mosimann's proof (10, pp. 74-75.). They are
Y1 Yo > (5)
P1 = V{iYpHT; 2 P2 = Yavv;

where Y1\I'(my,a), Yoor(m2,a), and Y3T'(m3,a). The
p1 and p2 pa1r is a beta bivariate. This genera-
tor thus requires three gamma univariates which,
if we Jet a =1 ., is a simple task. Fishman (3,
pp. 203-211.) provides a useful set of algorithms
for generating the required gamma univariates. He
also presents an algorithm for beta univariates
using a parallel transférmation with two gamma
univariates instead of three. This generator can
thus be regarded as a multivariate extension of

a well~known univariate generator.

One minor difficulty with this generating
scheme is its large appetite for uniform random
numbers. It requires up to (9 + kg + k2 + k3)
uniform random numbers where ki is the largest
integer in mj. For examp1e, a sample of 100 bets
bivariates having m3 = 9.5, myp = 95, and m3 = 9-5
would redquire 100(97+ 9 + 9 +79) = 3600 uniform
random numbers. From the input-output standpoint,
this generator is much less efficient ‘than the
inversion generator; the latter requires only 200
uriiform random numbers for the same hypothetical
exampie. The speed of the transformation genera-
tor is so much greater though that this comparison
may be insignificant. The algorithm for the
transformation generator is outlined as follows:

1. Seti=1.
Compute k, the largest integer in mj.

Compute b = m; - k.

g s W N

Generate uniform random numbers Ry for
h=1,...,k.

If k = 0, set V=0, h=0, and go to step 9.

6. Compute V = -1n(ﬁRh) .
h=1
7. Ifb>0, go to step 9.
8, SetW=0,Z=0, andAgo to step 13,
9.  Generate Rpyy, Rptos Rpys
10, Compute Z = -In(Rpy )

11, Compute w1=(Rh+2)1/b and w2=Rh+3)1/(1’b)

12, Compute W= wy/(witw2) '

13.  Compute Yj = V + WZ

14.  Compute i = i+1,

15. If-i < 3, go.to step 2.

16.  Compute p7 = Yy1/(Y1+Y2+Y3) and
po= YgAY1+Y2+Y3), p1 and pp are a beta
bivariate pair.

17. Repeat steps 1 through 16 n times for a
sample of n beta bivariates having
parameters my, m2, and m3.

Note that the branch routine including steps 9
through 12 is used for nonintegral parameter values.
This algorithm, although perhaps less straight-
forward than that of the inversion -generator, in-

volves a much less complex set of computations and
is therefore much faster.

SIMULATION PROCEDURE AND
SAMPLE TESTING

This section describes how we have utiljzed
the generators described and how we have evaluated
the parameter estimates obtained from the Monte
Carlo samples.

CHOOSING A UNIFORM GENERATOR

One potentially serious problem with uniform
random generators used in multivariate applica-
tions is that many of them have been shown to
produce clearly nonrandom sequences in n-space.
This is due to the inability of a cyclical
sequence of K numbers to Tocate all of the kZ
points ih two-dimensional space, and so forth
for higher-dimensional space. Kennedy (4) and
Lewis (7) have done considerable work with what
is termed the generalized feedback shift register
(GFSR) generator. The GFSR generator has several
advantages over more commonly encountered congru-
ential generators. One of these is its ability to
repeat values within a full period of its cycle,
and thus it has potential n-space uniformity.
Another advantage is its transportability; it can
produce identical sequences on different com-
puters. For these reasons, the GFSR generator was
chosen for this project. FORTRAN function sub-
routines which duplicated sequences obtained by
Kennedy were in existence  for the Honeywell system
at Kent State University, the system used for this
study. Since the GFSR generator has been
thoroughly tested for both fit and randomness
(4, pp. 10-11), our ability to duplicate a tested
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sequence eliminates the problem of having to test
it again.

Several parameters are specified by the user
of the GFSR generator routines. As long as these-
are_carefully chosen in accordance with tested
results, there should be no difficulties with the
generated sequences. The generator makes use of 3
primitive polynomial, xP + xq + 1, and a specified
delay, d, which indicates the number of columns
skipped in randomly taking a set of binary digits
from a random matrix of binary digits. The
parameters p, g, and d are user-selected in a
particular fashion. Values of p = 98, q = 27, and
d > 100p were used in our sampling since they have
been shown to give satisfactory results. The
chosen q value should not be close to zero, p/2,
or p (4; p. 10). For the above p and q values, d
should be relatively prime to 2P-1 (4, p. 7). The
period of the resulting séquénce will be 2P-1, or
298-1 in our case. This-is certainly a sufficient
periad for oui'purposes since we used sequences no
Jonger than 2 8 for any set of samples. Also note
that by reinitializing the generator with a new d
value we can create a new sequence with period
298-1. Once the GFSR generator is initialized,
it is fairly rapid and, because of its other
advantages -including potential n-space randomness,
we elected to use it in this study.

TESTING SAMPLES

~ In order to empirically establish the vali-
dity of our generators in production of acceptable
Monte Carlo samples, several tests are performed
on each sample to compare the samples with the-
oretical hivariate betd distributions. Tests were
used to detect departures from both fit and
randomness. ‘

First, a Kolmogoroy test is performed on each
marginal sample distribution. That is, each set
of n p1 values and each set of n pp values are
tésted against the theoretical beta distribution
from which they should have come. Since we use a
computerized routine to perform these tests, it is
necessary to specify discrete intervals in the .
domains of p1 and p2 respectively. These inter-
vals are chosen arbitrarily to be 0.001 over each
domain's interval (0,1). By using Simpson's rule
to evaluate the incomplete beta functions, f(pq)
and f(pp), for each increment of p1 and p2, we are
able to closely approximate the theoretical values
of these functions. The routine developed then
finds the maximum vertical distance between the
theoretical steps and the ordered sample's mass
function. This distance is then compared with
internally stored Kolmogorov critical values
(o= 0..05) and, if this distance is excessive, the
sample is rejected and another is drawn. Note
that rejection of either sample set, pj or p2
values, causes a complete new sample to be drawn.

The advantage of this test is that is
exact for small sample sizes. Since we are inter-
ested in small to moderately large sample sizes,
it is appropriate for our purposes. A disadvan-
tage. is the necessity to rely on discrete inter-
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vals in the poputation distribution function., For
large parameter values, the bivariate beta distri-v
bution is extremely concentrated, as will.ba"seen"
shortly. The proportion of samples, for given
sample size, which fail the Kolmogorov test of fit
increases somewhat as parameters become large. We
feel that this is at least partly due to the con-
struction of the test itself. In this case many
sample observations may lie between two successive
discrete interval values. This probably causes
misleading measurements of the maximum vertical
distance in some cases and therefore a pumber of
otherwise acceptable samples may be rejected. It
can also be argued, however, that ‘the test becomes
more conservative with fixed discrete iptervals on
the domains as parameter values increase. Dis-
crete intervals smaller than '0.001 may be in grder
but the cost in additional computing time for the
theoretical distribution functions is rather high.

Another disadvantage is that we are indepen-
dantly testing sample elements which are in fact
paired. Clearly, it would be preferable to test
the two dimensions jointly rather than to perform
independent tests aTong each dimension. "Unfor-
tunately, two-sample variations of Kolmogorov-type
tests, such as the Cramér-von Mises two-sample
test, generally assume independence of pairs and
hypothesize that two unknown distributions are
identic¢al or not identical. Neithér of these
actions is consistent with testing ‘the fit of
beta bivariates. There is apparently no workable
method of testing the complete sample jointly
along both dimensions through the use of a ~ -
Kolmogorov-type test.

For larger sample sizes, however, we are able
to overcome this problem by using a ¢hi-square
test of fit. We use a technique simiTar tq the
algorithm described for the inversion generator to
establish an isoprobability grid of the sample
space. The main difference is that we yse known
mass function values rather than random numbers.
For each parameter combination, the computer rou-
tine calculates a set of py and pp values which
segment the sample space into 25 isoprobability
regions. This is equivalent to establishing a
5 x 5 contingency table having equal expected cell
frequencies. This design allows us to relax the
usual requirement of 5 observations per cell (7,
pp. 142-143.) and we test all samples where n > 50.
A routine classifies all observed pairs into one
of the 25 isoprobability cells, and differences
between actual and expected cell frequencies pro-
vides a means of calculating a test statistic
which is approximately chi-square distributed with
16 degrees of freedom. If our test statistic
exceeds the chi-square critical value (o = 0.05),
the Monte Carlo sample is rejected.

A test using fixed p1 and p, values to set up
a grid would be of Tittle value since all of the
parameters of the bivariate beta distribution can
be regarded as shape parameters. We would be
faced with situations where expected cell frequen-
cies would vary greatly and the assumptions under-
lying this sort of chi-square test would be
violated,



Note that for each parameter combination, a
different set of lines defining the mesh is deter-
mined. After lines defining 20 percent slices are
found along the domain of pq, conditional p2
values,are found-for each s}1c The. p2 slices
will not be straight Tines through the sample
space but rather will be stagqered as each four
percent isoprobability cell is constructed.

It might be preferable to use different mesh
sizes in the grid for different sample sizes.
That is, we could establish smaller expected
frequencies for large sample sizes with a finer
mesh having, say, 36 cells rather than 25. We
felt that the possible increase in information
about the Monte Carlo samples would probably not
be worth the cost in additional computing time
which is fairly substantial for just 25 cells.
The present design of the test permits it to be
used for all feasible parameter combinations and
sample sizes. Furthermore, it allows us to test
simultaneously an entire bivariate beta sample for
theoretical fit and thus makes use of more of the

information in a sample than the Kolmogorov tests -
performed on each marginal distribution separately.

One sample quality which is often ignored in
random variate generation is that of randomness.
Researchers generally assume that, if the uniform
random number generator which they are using
produces sequences which pass tests of randomness,
then this quality will carry over into transformed
variates. It is possible for multidimensional
transformations to cause a loss of apparent ran-
domness in a sequence (7, p. 4 Because of this,
we are also interested in testing randomness in
the sample sequences, or perhaps it is better to
say detecting departures from randomness.

In order to approach this problem, a survey
of many nonparametric tests of randomness in
paired observations was conducted (1, among
others). Several tests appeared to hold promise
but had to be rejected upon close examination.

For example, the Olmstead-Tukey test of associ-
ation was considered. The assumptions of the test
are met by the samples to be considered (1, p.
336). However, the hypotheses used in applying
this as a test of randomness are

H.: There is no serial correlation between

©  observed pairs (the p; and Py values in
this case) , and
Hy: There' is significant serial correlation

between the pairs.

Given the restrictions on py and p, noted earlier
in equation 1, we would expect tha% large p;
values would be accompanied by small p, values and
vice versa. We would expect a significCant nega-
tive correlation between p; and p, values. This
version of the Olmstead-Tu ey tes% therefore

would not be useful in examining randomness in a
set of beta bivariates.

We also considered tests based on the ranks
of differences between observed pairs. However,
rank tests generally require assumptions of sym-
metry in the distribution of differences. Since
beta distributions are not as a rule symmetric,

there is no reason to expect symmetry in differen-
ces between pairs. Thus this sort of test also had
to be discarded.

Most other classical tests of .randomness also .,
had to be rejected. The gap test, for example, is
based on the length of strings of digits between
recurring pairs of digits.” It is reasonably
straightforward where any successive digit is -
equally likely, or independent of its predecessor,
as with uniform univariates. This is not the case
with the bivariate beta distribution, and deter-
mining theoretical gaps in this case would be a
monumental, if not impossible, task.

The only test of randomness which we are able
to readily apply to bivariate beta sequences is
the Wald-Wolfowitz runs test for lengths of runs
above and below the median. -This test is applied
three times to each sample set, once each on the
set of n p, values, on the set of n p, values, and
on’ the set*of n (p,+p,) values. The ¥1rst two
tests can detect departures from randomness only

along one dimension or the other. The last test
on (py*p,) values represents an attempt to use as
much of %he information contained in the complete
sample as possible; some of course will be lost

in degrading the data from interval to nominal,
binary coding. The hypotheses of the test are

-H : The sequence is generated by a random
O process, and )

H.: The variables in the sequence are
either dependent on other variables in
the sequence or distributed differently
from one another.

This is a situation where rejection of the null in
too many cases (More than 1 in 20 samples for d =
0.05.) would lead one to suspect a lack of ran-
domness in the generated sequences. Consistent
failure to reject the null does not establish
randomness but it does increase one's confidence
in the quality of the generated sequences.

This discussion points out a need for further
development of techniques for detecting various
forms of nonrandomness in Monte Carlo generated
sequences. Since transformations may cause a
degradaticn of randomness, it seems appropriate
that users of such sequences attempt to empiri-
cally detect such a problem. Unfortunately, tests
currently available do not seem to be fully
capable of doing so, particularly in multivariate
cases such as the asymmetric bivariate beta '’
distribution. Development of new tests or
modification of existing ones would seem to be
in order.

SELECTION OF TRUE PARAMETER VALUES,
SAMPLE SIZES, AND REPLICATIONS.

Our first task was to determine which of the
two proposed generators performs better at pro-
ducing beta bivariates. We quickly found that,
based on the statistical tests of fit and random-
ness that we were able to use, each generator
produces general]y acceptable ‘bivariate beta seq-
uences. There is, however, a great difference in
the computing time required. The inversion _
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generater performs very poorly, even with large
parameter values where convergence is very rapid
in our app11cat1on of Simpson's rule to evaluate
the integrals in equations 2 and 3. In spite of
its consumption of uniform random numbers, the
transformation generator is clearly preferabTe as
will be seen in the results section.

Since we are interested in examining the
properties of method-of-moments parameter esti-
mates for the bivariate beta distribution, we

must generate a large number 6f bivariate beta
parameter values- and samp}e .sizes. The transfor-
mation generator is used for this purpose.

The ‘bivariate beta parameters My, Moy, and mg
can take on any positive, real values 61ear1y,
not all -of the infinite number of possible para-
meter combinations can be examined in terms of a
general Monte Carlo experiment involving the
bivariate beta distribution. We should, however,
involve as many parameter combinations as are
manageable and at the same time represent-a broad
spectrum of possibilities.

In order to select the experimental combina-
tions of m and m,, each parameter was syste-
matically %ar1ed from 8 5 through 10.0, in incré-

ments of 0.5. For each of the resulting 8000 com-.

binations, the mean values, the variances, and the
covariance were computed using equations giveﬁ by
Mosimann for the general multivariate beta distri-
bution and adapted for the bivariate case (10, p.
68). These formulae are:

CE(py) = __mg  and'E(pp) = __mp
_l'ﬂl+m2+m3 m1+m2+m3
E(Var py) = my (mp+m3) and

(mq+mg+m3=1) (my+motms)

m2(m2+m3)

E(Var py) = _ ]
(mg+mptmg 1) (my+mytmg)2 3

and

E(Cov py pp) = - J  mpm
Ve g gy

The experimental true parameter values are
selected from the 8000 examined combinations with
an eye toward fairly eveh representation of the
possible theoretical values of the preceding
expectéd statistics. Based on this admittedly
arbitrary criterion, we believe that our evalu-
ation of parameter estimates can be adequately
ca¥r1ed out using the fo]]ow1ng true paraméter,
values:

= {1.5, 3.0, 5.0, 7.0, 8.5, 10.0}
my = {1.0, 2.5, 5.0, 7:5, 10.0}, and
my = {1.5, 5.0, 7.5, 10.0 }.

This results jn.a sample of 120 parameter combina-
tions from a theoretically infinite number. Para-
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meter planes are reasonably evenly filled out, and
a good representation of distribution stat1s£1c s
values is brought into the experiment. At the '
same time, a manageable number of combinations is
selected.

Sample sizes are chosen with the intent of
examining small to medium-large sample properties
of both Monte Carlo samples and parameter esti-
mates. With this in mind, sample sizes of 10, 15,
20, 30, 40, 50, 100, 150, and 200 are drawn, Th1s
se1ect1on w111 enable exam1nat1on of small-sample
properties as well as provide informatioh on
asymptotic properties of parameter estimators.
Larger sampTe sizes may be regarded as advisable
in examining asymptotic properties, but ear1y
computer runs suggested that 1ittle would be
gained in terms of additional experimentat infor-
mation at the expense of s1gn1f1cant1y increased -
computing t1me

The number of replications of each sample-
size, parameter-set combination to be performed
was chosen by conisidering both theoretical and
empirical factors. A substantial number are
required so that we can obtain distributions of
parameter-estimate bias. The central limit
theorem indicates that sampTling distributions of
parameter estimates will become normal as the num-
ber of samples becomés infinite. The number
of samples recommended for the use of a nermal
approximation is generally described as "large."
Practically speaking, thé number 30 is usually
regarded as sufficient for invoking the central
Timit theorem where it is applicable, which rests
largely on the sampling distribution having .
finite variance. This 1s the case with method-of-
moments parameter estimates for the bivariate heta
distribution since all parameter estimates will be
real, positive numbers. To verify the choice of
30 replications, several sensitivity analyses were
performed. Using several sample-s1ze, parameter-
set combinations, runs randing from 20 to 40

‘replications were performed in order to assess the

samp]xng distributions of parameter estimates.

The variances of these distributions tended to -
stabilize between 25 and. 35 replications depending
on parameter values and sample size. We believe
therefore that our choice of 30 replications of
each combination is sufficient to provide

reliable information on the behavior of method-of
moments parameter estimates.

In summary, 120 parameter sets, nine sample
sizes, and 30 replications will be used to generate
the data for evaluating parameter estimates. This
means that a total of 32,400 bivariate beta distri-
buted samples must be drawn. This total does not
include the runs performed to evaluate the alterna-
tive generators. A discussion of the méethods used
to analyze this data is presented in the next
section.



EVALUATION OF -
PARAMETER ESTIMATORS

The method of moments appeaﬁs to be the only

tractable method of estimating the parameters of a

bivariate beta distribution through sample obser-
vations. The method of maximum 1ikelihcod, for
example, usually gives consistent, asymptotically
efficient, and asymptotically normally-distributed
parameter estimates. We attempted to derive maxi-
mum Tikelihood estimators but found that the
Tikelihood function, when differentiated with
respect to each parameter, does not have an ana-
lytical solution. In fact we wound up with an
infinite number of terms to be summed with each
term itself an infinite sum. Given this diffi-
culty, there is Tittle reason to expect that even
some approximation to the maximum 1ikelihood
estimators would be worth the trouble. Similar
analytic difficulties arise with other estimating
techniques such as minimum chi-square and so
forth. The basis of the difficulty 1ies in being
faced with an undifferentiable function.

Method-of-moments estimators are generally
mean-square-error consistent and asymptotically
normal. They are often useful when other tech-
niques get bogged down in mathematical manipu-
lations, certainly the case with the bivariate
beta distribution. Exact statistical properties
must, however, be established in each case indi-
vidually (5, p. 172). We will first outline the
derivation of the estimators and then discuss the
properties which are to be analyzed.

First, Tet M =m +m2+m3, and then let

1
.M
E(pl) =T "Xll ’ (6)
)
E(pp) = - Xp1 » and (7)
2
2y . Mmgmg)m P(es1)
E = y s
vhere x 12 Xo1» and Xq, 8re sample moments
obtaineé from
X,9 = 1 °0 (9)
11~ = I Py;
n j=1 -J
Xp, = 1
21 - (10)
o J= 1 P2]
o= 1 n
Xqp = 2
12 -
n jélplj (11)

where the j subscript is added to the observed
values to index sample elements. The two first-
order moment equations and the first second-order
moment equation have been selected, giving three
equations with three unknowns (m and Mg

We could select other moment com$1na%1ons but
symmetry of approach suggests this one (2, p. 8).
Note' that the third first-order moment is a 1inear
combination of the other two. Hence one second-
order nioment is necessary for three independent

equations.

. Sample data are used to solve equation 9, 10,
and 11 for x » and x,_ respectively. These
values then a% 1n%$ the eq3§t1ons below to so]ve
for mys m2, and m* , estimates of my, m,, and m
From equations 6,°7, and 8, the computational
formulas are

n* = (Xq1-X19)%

17— .
x12-(x11)° (12)
ny = a1xip)xe1 |
_X12-(X11)2 , and (13)
mk = (X110 (1-xq9-xp1) (14)
2 .
X127 (xq1)

For a more complete discussion of these equatione
and their derivations, see Fielitz and Myers (2,
pp. 9-12).

Desirable small-sample estimator properties
are unbiasedness, minimum variance, and Tinearity.
"BLU" estimators possess these properties. The
estimators we have shown here may or may not
be best in the minimum variance sense. We have no
way of evaluating this property because we have no
other estimators with which to compare, the method-
of-moments estimators and because Cramér-Rao Tower
bounds are intractable. They are also not linear
since a second-order moment must be used in calcu~
Tating them.

We can, however, empirica]ly evaluate their
bias. For each sample-size, parameter-set combi-
nation, the difference between the predetermined
parameter values and estimated parameters is
stored. A distribution of these differences is
obtained by noting differences for each of the 30
replications of that particular combination. We
assume that the mean of these differences
represents an unbiased estimate of estimator bias
for that particular combination. We also assume
that the distribution is approximately normal and
use the variance of the bias distribution as an
estimate of the variance of the estimator. This
enables testing of the following hypotheses:

. op* o= - . S
Ho' mj =my vs. Hy: mj # my, using a simple

z-score test. This is the only small-sample
property which can be objectively analyzed.

Desirable large-sample properties are
asymptotic unbiasedness, consistency; asymptotic
eff1c1ency and suff1c1ency. First, sufficiency is
assured since all available observations are used

in estimating the parameters. Asymptotic effi-
ciency depends first on having consistent esti-
mators. We may be able to show that the estima-
tors are consistent, but we can not establish the
second condition required. for asymptotic effi-
ciency: that no other consistent estimator has
smaller asymptotic variance. Again we have, as a
basis of comparison, neither other estimators nor

theoretical minimums provided by Cramer-Rac lower
bounds.
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We are left with empirically evaluating
asymptotic bias and consistency; each is
approached in a similar manner. Asymptotic
unbiasedness implies that

ljm {Bias (8)} =

of 6, the true parameter.
1mM1% that

lim var(8) + (Bias 8)%} =

évaluate these properites through the following
model:

~ - 3
0 where 9 is :some estimator

Similarly, consistency

We-are able to

Bias m? = AnP , where we hypothesize that A>0,

and B<0. Takihg natural logarithms, the following
regression model is obtained:

1n(Bias m;) = 1nA+B+1n(n}, where sample size n
is the 1ndepenéent variable and bias measurenents
provide the dependent variable. A similar model
is developed for evaluating consistency, except
that the dependent variable is the sum of esti=
mator variancé and the square of the bias. The
hypotheses aré

Hy: my is not asymptotically unbiased,

i
Hy: ‘m? is asymptotically unbiased.
Subst1tut1ng the word "consistent" for "unbiased"
in the above gives the hypotheses for consistency.
Our acceptance or rejection is based on other test
results, namely the set of tests performed on the
regress1on models to determine the effect of sam-
ple size on these attributes. Significant regres-
sion results will ‘lead us to reject the nulls
above. Grouped data are used in the ana]yses for
both properties. This is accounted for in
détermining critical values for the regression
mode]l hypotheSes In the interest of manage=~
ability, grouping of variance data has to be
simplified. Rather than attempt to compute
280,840 covariance terms for each of the 9 sample
sizes, we assume that the positive covaraince .
terms will tend to be offset by negative covari-
ance terms. This allows u$ to use mean variance
values for each sample size where this variance

is that of the bias distribution for a particular
sample 'size. In turn, this greatly s1mp11f1es the
data to be used in the consistency regression
model, but we can not be certain of the cost of
this assumption in terms of accuracy.

In summary, we are Timited to empirically
examining 'the f0110w1ng estimator propertiés:
bias, asymptotic bias, and consistency. The
latter two must be examined indirectly through the
use of regression models, the second of which may
not be conclusive because of the method chosen to
group variance data from the bias distributions.
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RESULTS

The two b1var1ate beta generators have no
s1gn1f1cant discernible differences in the quality
of the variates which they produce. There was rio
significant difference between them in the propor-
tion of tests failed, where the tests included
runs tests for randomness Kolmogorov tests for fit,
and chi-square tésts for fit for n >50. We conclude
that the principal difference is the computer pro-
cessing time required.for each. Table 1 shows the
times required for several parameteraset, samp]e
size comb1nat1ons

TABLE 1
Comparison of Géherator Spéed

Processing Tifhe in

Predetermined Combinations

Seconds

Parameters Sampie Repii-

fmsmo,ms  Size n cations Inver. Transfrm,
3 3,3 10 2 23.1 2.6
5 ,5 ,5 20 2 21.7 1.5
5 ,5 ,5 50 2 59.3 8.7
8.5,9.6,3 © 10 2 15.7- 1.4
8.5,9.5,3 50 1 49,4 13,3

Note that the times incéTude the timé required *
to perform thé tests mentiored above, so genera-.
ting time would. be, somewhat less. This also
explains some of the differences which might rot
be expected. For example, we might expect that
the tranformatiorn generator would take move time
for the second combination than the first, sincge
more uniform numbers are required as are twice as
many transformations. Instead, we firid a smallep
time of 1.5 seconds for the second combination as
opposed to 2.6 seconds for the first. This is due
to the fact that the increased spéed of the Kolmo-
gorov test, due to more rapid convergence in using
Simpson's ru1e to evaluate incomplete béta furié~.
tions, more than offsets the increased generating
time. The combinations shown in Table 1 are
typical. They reveal that the trafisformation gen-
erator is on the order of ten times faster than
the inversion generator; the advantage would be
even more pronounced if tests of fit and random-
ness were not performed on each sample.

Table 2 shows several typical parametér comi=
binations and the test results for each comb1nﬂ
ation; the transformation generator is used in
each case. Test results are shown a$ frequéncies
of test failure. This gives a potential user an
indication of the reliability of the generator.
Note that rejection of a sample on either the
Kolmogorov or chi-square tests of fit caused a new
sample to be drawn for the purpose of evaluating
parameter estimates; we wanted fo have 30 valid
repTlications and wanted to avoid using quest1ona—
ble samples to estimate parameters.



TABLE 2

Frequency of Tests Failures
(30 valid replications)

-

Failures (o=0.05)
Chi-Sq. Runs

Parameter Set Sample Test
My sMlp M3 Size n Kolm.

1.5 ,1 ,5 30 1 - 1
1.5 ,1 ,5 100 3 2 p
5 ,5 ,5 50 4 1 2
5,6 ,5 200 2 3 1
8.5 ,10 ,10 20 2 - 1
8.5 ,10 ,10 150 4 2 2

Note that the failure frequencies for the Kol-
mogorov and runs tests reflect two tests and three
tests on each sample respectively. Given this, and
with @@= 0.05, we would expect to reject some valid
samples. Also note that, as discussed earlier,
large parameter values tended to give more frequen-
tly rejected samples.

Our evaluation of parameter estimators pro-
duced some interesting results. First, our eval-
uation of estimator bias proved to be inconclusive.
For the 3240 (120 parameter combinations, 9 sample
sizes, 3 parameter estimates) distributions of
estimator bias which were generated, all but eight
had means which were within one standard deviation
from zero. A1l of the remaining eight distribu-
tions were within two standard deviations of zero.
Using a parametric test, in other words, we are
unable to reject the null hypothesis of no esti-
mator bias in every combination examined. We had
expected to find statistical evidence of some pos-
ztive b1§s, particularly for small sample sizes

2, p. 6).

If we look at the distributions of bias non-
parametrically, different results are obtained. If
estimators are unbiased, we would expect an approx-
imately equal frequency of positive and negative
bias distribution means. However, over 95 percent
of these means were positive. This would cause us
to reject the null of no bias and might lead to a
conclusion that there is some degree of positive
bias in method-of-moments estimators. We realize
that such a conclusion is weak on the grounds of
scientific objectivity; most readers would agree
that constructing a second hypothesis test Tike
this, using the same data, is not desirable or
even unacceptable. We discuss it here. simply to
show that, although bias appears to be statistically
insignificant, there may nevertheless be a small
amount of positive bias in method-of-moments
parameter estimators. This is an area where more
work is needed to make such a conclusion credible.

Conclusions regarding asymptotic bias and
consistency are less tenuous. Stated very simply,
we found that sample size explains aimost all of
the variation in both bias and consistency terms
noted in the previous section. That is, we are led
to conclude that, for method-of-moments estimators,

1im (Bias m?) =0 and
n- %

Vim (Var(n}) + (Bias m,)2)= 0
N-»co

Results for the regression of bias on sample size
are shown in Table 3.

TABLE 3

In(Bias mi) = InA+B:In{n) -

Mean Bias (Dep. Var.)

ﬁegression Results:

TnA 8.277  8.047  8.249
Standard error 0.135 0.129 0.179
. t-Statistic 761.43 62.19 46.09

B -1.199 -1.13%9 -1.150
Standard error 0.0346 0.0332 .0.0459
t-Statistic -34.64 -34.27 -25.02

- 0.9967 0.9966 0.9937

fMultiple R (adj.)
R2 (adj.) 0.9934 0.9932 0.9874
F-Statistic (ANOVA) 1200.1 1174.8 626.2

We' see from this that for each parameter, our
hypothesis of B<0 is borne eut; all three
t-statistic values show significance well beyond. -
the 99 percent level for 7 degrees of freedom.
Similarly, the F-statistic values are all signifi-
cant beyond the 99 percent level for 1, 7 degrees
of freedom.

Another observation is the significance of
the intercept value, A. The t-statistic values for
these would lend support to our earlier speculation
that samll-sample parameter estimates are 1ikely to
be positively biased.

The results for evaluation of consistency are
given in Table 4. The significance of all the re-
gression results leads us to conclude that method-
of-moments parameter estimators. are consistent. We
must temper this conclusion with the fact that we
have used somewhat simplified methods of calcula-
ting the terms in the consistency 1limit equation.
It would be better perhaps to state that the es-
timators are probably consistent, but we cannot
say so with total certainty.

TABLE 4

Regression Results
1n(Var(m§) + (Bias m:)%) = 1nA + B - In(n)

Mean Consistency Terms for

B m2 M3
nA 6.423 6.585 6.629
Standard error 0.3364 0.3759 0.3182
t-Statistic 19.10 17.52 20.83
B -1.415 -1.447 -1.141
Standard error 0.0864 ~0.0965 0.0817
t-Statistic -16.38 -14.99 -17.27

0.9854 0.9826 0.9868
0.9789 0.9655 0.9738
268.4 224.8 298.3

Mg]tip]e R (adj.)
Ré (adj.)
F-Statistic (ANOVA)
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CONCLUSIONS

First, we have found that both proposed gene-
rators produce samples which pass certain tests of
validity; however, the transformation generator is
clearly preferable for producing beta bivariates
because of its speed. We would recommend that
users of this generator test their samples for
validity since using, for example, some other
uniform generator could adversely affect sample
quality in terms of fit and randomness. 1In
addition, there is a general need for developing
new ways of detecting departures from randomness '
when generating asymmetric multivariate samples,
wh?tever the distribution of the population in-
volved.

A total of 32,400 valid bivariate beta samples
were produced using the transformation generator
which was in turn based on the GFSR uniform gener-
ator. These were used to empirically evaluate
certain properties of method-of-moments parameter
estimators for the bivariate beta distribution.
Our results show that estimator bias is not stat-
istically significant, but other consideration
suggest that there may be a small amount of bias
in the estimators for small samples. More work
on this property may be in -order. Further, our
results show that the estimators are asymptoti-
cally unbiased and seem to be consistent. No
other important estimator properties ¢an be
evaluated conclusively because we can not be
certain whether or not method-of-moments estima-
tors are minimum variance estimators. Finally,
since our findings are consistent with findings
involving the univariate beta distribution (2);
we infer that similar conclusions probably hold
for higher-dimensioned beta distributions.
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