PERT AND SIMULATION

ABSTRACT

PERT (Program Evaluation and Review Techmique) is a
network planning technique used to plan, schedule,
and control projects. Unlike the CPM (Critical
Path Method) which assumes actual project activity
times are deterministic, PERT views the actual per-
formance time for an activity as a random variable.
The conventional PERT procedure ignores all sub-
critical paths which leads to an optimistically
biased estimate of the expected earliest occurrence
time for the network events. The most promising
approach to solving this problem (called the merge
event bilas problem) appears to be simulation.

INTRODUCTION TO THE PERT STATISTICAL APPROACH

Unlike the traditional scheduling systems of using
a fixed time for each task, the PERT statistical
procedure utilizes probability theory for manageri-
al decision making. 1In the PERT systém three time
estimates are obtained for each activity--—an opti-
mistic, a pessimistic, and a most likely time.

This range of times provides a measure of the un—
certainty associated with the actual time required
to perform the activity sometime in the future. It
is possible to derive the probabilities of finish-
ing a project on or before scheduled dates of the
probabilities of finishing milestone events on or
before scheduled dates. These statements of the
possible range of times and the probabilities asso-
ciated with each results in a meaningful and poten-
tially useful management tool.

EMPERTCAL FREQUENCY DISTRIBUTIONS

To provide a basic background in probability and
statistics, is is logical to begin with observa-
tions from some measurable quality subject to ran-—
dom or chance variation. Consider, for example, an
activity that has been performed a large number of
times under essentially the same conditions. If
one counts the number of times the activity requir-
ed for each duration time, the resulting data can
be displayed in a frequency distribution as shown
in Figure 1. If an infinite number of observations
could be taken and the width of the time intervals
are narrowed to approach zero, the distribution
would merge into some smooth curve. This curve is
referred to as the theoretical probability density
of the random variable. Since the distribution

David E.Douglas

represents the proportion of time that specified

activity duration times occur, the total area under
the curve is exactly one. Thus, the area under the
curve between any two values of t directly provides
the probability that the random variable (activity

duration time) will fal} in this area.
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Activity duration time, t

MEAN AND STANDARD DEVIATIONS OF DISTRIBUTIONS

The mean and standard deviation are the two most
common measures to describe an empirical frequency
distribution quantitatively. The mean is a measure
of central tendency to location and the standard
deviation measures the spread or dispersion in the
distribution. These measures are illustrated in
Figure 2.

If a sample of n observations are taken from a dis-
tribution such as the one shown in Figure 1, and -
the n observations are denoted by tl, tZ""’ tn,

then the mean and standard deviation are defined as
follows:
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standard deviation =
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The variance, the standard deviation squared, is-
also required for the PERT method.
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CENTRAL LIMIT THEOREM

Perhaps thé most important theorem in all of sta-
tistics is the Central Limit Theorem. In the PERT
context Moder and Phillips define it as follows:

"Suppose m independent tasks are to be performed

in order; (one might think of these as the m tasks
which lie on the éritical path of a network). Let
tl’ t2,...tn be the times at which these tasks are

actually completed. Note that these are random
variables with true means tel’tez""te3’ and true

variances V Vtz""VtB’ and these specific tasks

tl’
are unknown until these specific tasks are actually
performed. Now define T to be the sum:

T = tl + t2 + ..t tm
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and note that T is also a random variable and thus
has a distribution. The Central Limit Theorem
states that if m is large, say four or more, the
distribution of T is approximately normal with mean
E and variance Vt given by

E=t

+t,+ ...+t
e em

el 2

"
v + Vt2 + ..+ Vtm 11

£ = Vel

The normal distribution is a well known distribu-
tion which has a characteristic symmetrical bell
shape as shown in Figure 3. Other areas under the
normal curve can be looked up in a normal curve
table in any statistics book. Readers who have not
had a basic course in statistics may wish to refer
to a more complete treatment of this subject given
in text books on statistics. (5, 10)

FIGURE 3
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ILLUSTRATION OF THE ''CONVENTIONAL"Y
PERT STATISTICAL APPROACH

The PERT system utilizes the expected values, te

from hypothetical distributions which have already
been illustrated. Since PERT is used primarily for
projects whose activities are subject to consider-
able variability, it also utilized the standard’
deviations. The traditional method of obtaining an
estimate for expected activity duration time tos

and the standard deviation, s _ requires three time

t
estimates for each activity:

a = optimistic performance time
b = most likely performance time
c = pessimistic performance time

Figure 4 illustrates a hypothetical distribution
and three time estimates. Note this figure shows
a and b as the original O and 100 percentiles of

‘the distribution. Moder and Phillips (11) propose

the use of 5 and 95 percentiles.



THE CRITICAL PATH

Consider the network shown in Figure 5 with its
corresponding estimates of a, m, and b. Defining
the critical path as the longest path through the
network, the forward path computations can be cal-
culations as in Figure 5. Note the expécted activ-
ity time durations, te’ are summed along the criti-

cal path and the variance to any node (circle) is
also summed along the critical path for merge |
events such as 4. The Central Limit Theorem pro-
vides a normal distribution with mean of 20 and
variance of 1.555 for completion of this particular
network. With this information, probability compu—~
tations are possible for any range of desired com~
pletion times. For example, the probability of

. - completing on or before day 21 (computing Z and
The equations for estimating the mean, variance, looking up in normal tables) is: '

a, . . m . .b_.
|} optimistic  most likely pessimistic
time time time

and standard deviation using the estimates of a, m, 21-20
and b are: 2 Z =—=—== 0.80, Probability = 0.7881 or 797%
a+4m+b (b - a) V1.555 .
t = ——— Vo, = = .
e 6 T 6
1 - a 2 0f course, probabilities for other values of inter-
S, = VT2 = 3 ) est are possible.

FIGURE 5

Basic network with t_ and V. computed for.each activity

d Pass Computations

VT=.111

Time Units
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PERT AND SIMULATION...Continued

THE MERGE EVENT BIAS PROBLEM

In the conventional PERT approach, all suberitical
paths are ignored in making the critical path cal-—
culations. Because of this, the earliest (expect=
ed) occurrence time for the network is always
optimistically biased. However, if the longer path
leading to a merge event is much longer than the
second longest path and/or the variance of the
activities on the longest path is small, the bias
can be ignored. For example, consider the PERT
example in Figure 5. The longest path is much
longer than the other path, 14 versus 8, therefore
the bias will be insignificant and can be ignored.

MAGNITUDE OF BIAS

One notable study of the magnitude of bias was made
by MacCrimmon and Ryavec (8). They considered two
of the more important factors that affect the bias,
the number of parallel paths through a portion of a
network, and the closeness of the expected finish
times at merge events of the parallel paths. Mac~
Crimmon and Ryavec (8) illustrated the effect of
the first of these two factors with the networks
shown in Figure 6.

The particular discrete distribution for each of

the activities in Figure 6 is shown below and can
be identified by the corresponding mean shown -on

the network activities.

t Probability t Probability
1 1/4 2 1/4
2 1/2 4 1/2
3 1/4 6 1/4
Mean = te = 2 Mean = te = 4
Std Dev =V, = 0.707 Std Dev = V% = 1.414

Although an extreme case in that all the parallel
paths are equal, one can conclude that the bias in~
creases as the number of parallel paths increase.

The effect of slack on Merge Event Bias is illus-
trated in Figure 7. All activities in Figure 7 are
assumed to be normally distributed with standard
deviation equal to 1 and mean as shown. From this
example, one can conclude that the bias increases
as the length of the parallel paths become equal.
Other Merge Event Bias studies have been conducted
by Klingel (7), Clark (2), Fulkenson (6), Clingen
(3), Elmaghraby (4), and Charnes and Cooper (1).

FIGURE 6

PERT (mean) 6.00
Exact (mean) 6.89

3

(b)
Ratio of Lengths -gg%%—%%c
PERT (mean) 4.00
Exact (mean) 4.69
Error . -17%
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RULES OF THUMB

From a table of studies derived by Clark (2), (giv-
ing the expected value of the greatest of a finite
set of random variables), a useful rule of thumb is
stated as in Moder and Phillips:

"If the difference between the expected complete
times of the two merging activities being consider—
ed is greater than the larger of their respective
standard deviations, then the bias correction will
be small; if the difference is greater than two
standard deviations, the bias will be less than a
few percent and can be ignored. If there are more
than two merging activities, this rule should be
applied to the two with the latest expected finish
times." (11)

Figure 7 depicts the validity of this rule. 1In
part b, the difference between the expected fin-
ishes is less than one standard deviation and is
greater than two standard deviatioms in part c.

The corresponding bias is 8% and 0.5% respectively.

If the rule of thumb indicates a correction for

bias is required, some method should be implemented.

Although several analytical methods have been pro-
posed, simulation seems to have more promise for
practical networks.

SIMULATION APPROACH TO MERGE EVENT BIAS PROBLEM

The simulation of a network not only gives unbiased
estimates of the mean and variance of the project
duration (along with the distribution of total pro-
ject time), but also gives a "criticality" of an
activity (the probability of an activity being on
the critical path). This useful measure allows

«— standard deviation

management to focus attention to activities with a
high criticality index. It should be noted that
the probability of an activity being on the criti-
cal path does not correlate too well with slack as
calculated using the conventional PERT scheme.

Since simulation appears to be the most promising
solution to the Merge Event Bias problem, this
paper will demonstrate this simulation methodology
using a procedural programming language (FORTRAN),
and a special simulation language, GERT (Graphical
Evaluation and Review Technique), designed to work
with networks. Although not well suited for net--
work simulation, the popular simulation language
GPSS (General Purpose Simulation System) can be
used to simulate networks. For an example of sim-
ulation of a network using GPSS, see Schriber (15).
Another popular simulation language, GASP IV, can
be used to simulate networks. See Pritsker (13)
for an example.

NETWORK SIMULATION USING FORTRAN

For illustrative purposes, the network shown in
Figure 8 was simulated 10,000 times. Each activity
was assumed to be normally distributed with means
and standard deviations as shown. Rather large
standard deviations were used to demonstrate the
wide range of possible finish times. Figure 9
shows the FORTRAN program and the output. The out-
put provides the number of times (out of 10,000)
that each activity was on the cirtical path, thus,
providing the probability of each activity being on
the critical path. The distribution of fimish’
times for the network is also provided. For this
example, the mean finish time is 77.74 and stan-
dard deviation of 7.62. Assuming a normal distri-
bution the range of finish times can be from

77.74 - 3(7.62) to 77.74 + 3(7.62) or from 54.88

to 100.60.
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“FIGIRE 9

REAL NODE(100) +LS(100) sLF (100)

DIMENSION I(100),J(100) sTIME (100) sNMCT (100) +£S(100) +5F (100 »
TOTSLK (100) s XMEAN (100) 4SD(100) 4 F [N (10000)

ISEED=4262923

READ (5+501) NNsNACT

FORMAT (215)

WRITE(69501) NNsNACT

DO 25 L=1sNACT

READ (59502) I{ L) 4J(L) sXMEAN(L) +SD(L)

WRITE (655021 1 (L) +J(L) sXMEAN(L) +SD(L)

FORMAT (215 +2F10,0)

NMCT (L) =0

CONT INUE

Cew=—===-5IMULATE FOR 10000 TIMES

400
600

6501

602

DO 600 L=1+10000

----- GET VALUE FROM NORMAL

DO 30 K=1.NACT

R1=RANDU(ISEED)

R2=RANDU (ISEED)

V1=(=-2,0%ALOG(R1)) *¥%0,5%C05(64283%R2)
TIME(K)=VI*¥SD{K) +XMEAN (K)

CONTINUE

TOTMAX=0,

-==SET TIME aT NODES EQUAL TO ZERO

DO 100 K=1laNN

NODE (K)=0,0

~~~FORWARD PASS TO GET EARLY STARTS FOR NODES
DC 150 K=1aNACT

INODE=](K)

JNODE=J (K)

ES(K) =NODE (I~0DE)

TEMP=NCODE ( INDDE) +T IME (K)

IF(TEMP .GT. NODE(JNODE) ) NODE ( JNODE) =TEMP
CONTINUE

~-==LOOP TO GFT EARLY FINISHESs CALCULATE EF
DO 200 K=1eNACT

EF (K)=ES(K)+TIME(K)

IF(EF(K)! «GT, TOTMAX) TOTMAX=EF (K)

CONTINUE -~ =~

FIN(L)=TOTMAY

~-~SET ALL NODES TO EARLY FINISH OF NETWORK

‘===THEN MAKE ‘BACKWARD PASS

DO 250 K=1sNN

NODE (K)=TOTMAX

DO 300 K=14NACT

M=NACT+1-K

INODE=1 (M)

JNODE=J (M)

LS (M) =NODE (JMODE) =TIME (M)

TEMP=NODE (JNODE) -TIME (M)

IF(TEMP «LEe NODE (INODE))NODE (INODE)=TEMP
CONTINUE

~-=CALCULATE LATE FINISHES
--=CALCULATE TOTaL SLACK

DO 400 K=1sNACT

LF(KY=LS(K) + TIME(K)
TOTSLK (K) =LF (K)=EF (K)

IF(LF(K) «EQ, EF{K))TOTSLK({K)=0,
IF(TOTSLK(K) oLEe 0eOINMCT(K)=NMCT (K)+1
CONT INUE

CONTINUE

WRITE(6+601)

FORMAT (1H1+* T~NODE J=-NODE "NUM~ON=CP?)
DO 650 K=1eNpACT
WRITE(69602) 1 (K) sJ{K) sNMCT (K)

FORMAT (1Xs1645X91695Xs1I9)
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FIGURE 9 (Continued)

0057 650 CONTINUE
0058 ‘X=10000.
0059 SUMSQ=0.,
0060 . SUM=0.
0061 DO 750 L=1+10000
0062 SUM=SUM+FIN(L)
0063 SUMSQ=SUMSQ+FIN (L) *%2
0064 . 750 CONTINUE ’
0065 AVG=SUM/X
0066
0067 WRITE(6+605) AVGeSTDEV
0068 605 FORMAT(///7/77//77+1Xe*AVERAGE=%4F10429
1 /7/91Xs'STANDARD DEVIATION='4F10,.2)
0069 STOP
0070 ) END .
0001 FUNCTION RANDU(ISEED)
0002 IY=ISEED*65539
0003 IF(IY)55646
0004 5 IY=IY+21474836474+1
0005 6 YFL=1Y
0006 {SEED=1Y
0007 RANDU=YFL %044656613E-09
0008 RETURN
0009 END
1-NODE J-NODE NUM=ON-CP AVERAGE=
1 2 6
1 4 9994
1 7 .0
2 3 6
3 6 . 6
4 5 3292
4 8 6702
5 6 3292
6 9 3298
7 8 0
8 9 6702

STDEV=SQRT ( (X*SUMSQA~-SUMXSUM) / (X% (X=~1,4)))

TTe74

STANDARD DEVIATION=

NETWORK SIMULATION USING GERT

ing), while GERT allows looping (as in rework,
for a production network). :

One simulation approach which appears to be free of

the shortcomings of the conventional PERT statisti- * PERT allows only one outcome or project comple-
cal system is GERT (Graphical Evaluation and Review

Technique).
technique for analyzing stochastic networks, and
differs in many respects from PERT.
the differeneces are the following.

* PERT requires that all activities be completed

before the project can be completed (determinis—

GERT, developed by Alan Pritsker, is a

Notable among

tion node, while GERT recognizes the possibility
of multiple outcomes (such as success or failure).

In PERT, the critical path is always the path
with the longest expected elapsed time, even

though it is recognized that variation .in the
activity times does exist, as evidenced by the
use of the three time estimates. When GERT is

tic branching), while GERT associates with each
branch a probability that the.branch will be
taken (probabilistic branching). .

PERT requires that all activities leading to a
node be completed before the node is realized,
while GERT allows the user to specify the number
of required activity completions before the node
is réalized. This number of completions may be
less than, equal to, or greater than the number
of activities 'terminating at a node (see looping
below).

* PERT allows no activity to be repeated (no loop~

used for a "PERT" network, paths other than the
PERT "critical path" may become critical,

GERT SYMBOLOGY

The power of GERT is shown in the symbols used in
the technique. The basics of the symbology will be
given by way of review and to show contrast with
PERT.

The type of node symbol most familiar to PERT users

is the round node, with branches leading from it.
This symbol is used in the same manner with GERT
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PERT AND SIMULATION ... Continued

" to indicate a deterministic branch where all activi-
ties leaving the node must be taken, as shown in
Figure 10, on the left.

FIGURE 10

By contrast, the node on the right in Figure 10
indicates a probabilistic branch. It is drawn with
a point on the output side and the probabilities
emanating from the node sum to one. On any one
pass through the node, only one branch may be taken.

The input side of a GERT node likewise has some dis-—
tinct symbols attached to it. This is illustrated
in Figure 11.

P EEE—
FIGURE 11

e — ———————— .|

As discussed before, the roundness of the right
side of the node indicates a deterministic node.
The number in the upper left (2 in Figure 11) is
the number of activities leading into the node that
must be completed before the node is realized for
the first time. The number in the lower left (1 in
Figure 11) is the number of activity completions
needed before the node is realized the second and
succeeding times. The number on the right side of
the node (7 in Figure 11) is simply the node iden-—
tification number.

The activities in the GERT network must also be
described. This is done by specifying three des-
criptors. They are, in order, (1) the probability
that a given branch will be taken, (2) a number
referencing a set of parameters for the time dis~
tribution of that activity, and (3) a code number
specifying the time distribution. This is illus-
trated in Figure 12,

In Figure 12, there is a probability of 0.3 that
the branch will be taken, the parameters associated
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FIGURE 12

O e —

with the time probability distribution are stored

as set number 5, and the time distribution is type

2 (Normal distribution). In parameter set number 5
would be found the mean and standard deviation of
the particular normal distribution associated with
the branch. (GERT allows the selection of any one
of eleven time distributions for an activity).

A PERT/GERT MODEL

As discussed previously, one of the major problems
with the usual PERT network approach is that of
merge event bias. The use of GERT in simulation
of a network allows the addressing of the merge
event bias problem, together with the gathering of
much-needed network statistics. This can perhaps
be best illustrated by using GERT to simulate a
PERT network.

Moore and Clayton (12) use the small PERT network
shown in Figure 13 to illustrate the use of GERT.

FIGURE 13




The usual PERT time estimates, again from Moore and
Clayton (12) are

o
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By using the procedure discussed previously for
calculating PERT mean times and standard deviations,
the following mean times for the three paths through
the network were obtained. (12)

Path Mean Times
1-3-6 17.67
1-4-7 15.50
2-5-7 16.33

The path 1-3-6 is then the critical path because
it has the longest expected time to completion.

The same problem formulated as a GERT network
becomes as shown in Figure 14. (12)

All nodes are coded as deterministic. The number
in the upper left (number of completioms for first
realization) is equal to the number of activities
leading to the node and, since the node can be
realized only once per pass through the network
(no looping),. the number of completion for sub-
sequent realizations is set to infinity. The num-
bers in squares on the activities simply identify
the activities for GERT.

Once the problem has been set up as a GERT network,
the network can be simulated the number of times
desired using the GERTS-IIIZ simulator (available
from Pritsker and Associates). GERT can then list

a criticality index for each activity in the network
by noting the relative frequency with which that
activity is on the longest path. Further, the rela-
tive frequency of a path being the critical path

can be found by noting the activity on that path
with the lowest criticality index.

The GERTS-IIIZ simulator has the capability of ga-
thering summary statistics. If the minimum, maxi-
mum, mean and standard deviation of time to comple-
tion of the project (sink node) are kept, together
with a frequency distribution of these times, it is
easy to see that such information would be signifi-
cant to project management.

In the example just shown, for instance, Moore and
Clayton found that standard PERT techniques were
overly optimistic on mean time to project completion
by a factor of 0.94 days or just over 5% (12). The
GERTS~IITZ approach also yielded a more accurate
estimate of the time to completion(smaller range)
than PERT.

Thus, through calculation of the criticality index
for each activity, the capability of other auto-
matic data gathering features for a network, and
the printing out of a frequency distribution of
project completion times, (all available through
GERTS-IIIZ), it can be seen that GERT is a power-
ful tool for analysis of PERT-type networks, and
essentially eliminates the merge event bias
problem.
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