COMPUTER AIDED SIMULATION FOR COMPUTER SYSTEM STUDIES

George K.Hutchinson

ABSTRACT

This paper introduces a simulation system, CAPS, which interacts with an analyst via an on-line dialog and produces a simulation program that is logically consistent and executes on first submittal. CAPS is based upon the use of activity cycles for system decomposition. Activity cycles are discussed and the system demonstrated by the simulation of a computing system. The major advantages of CAPS are the speed with which models can be implemented and its ease of use which permits non-programmers to develop sophisticated models. For example, the demonstration model of an interactive computer system, from the start of the CAPS dialog to simulation output, was 23 minutes at a cost of \$3.29.

INTRODUCTION

Simulation is now well established as a problem solving tool, yet its use is still severely limited in comparison with the set of problems to which it could contribute solutions. The major reasons for its limited use may be the cost of simulations, the long lead times usually involved, and/or the limited number of people with the ability to use simulation languages. A. T. Clementson [1], recognizing these problems, applied the principles of computer aided design with Computer Aided Programming for Simulation (CAPS) as the result. CAPS interacts with the user, who need have no programming experience, to define the user's model. When this is accomplished, CAPS writes a simulation program which is logically consistent and will execute on the first run. This results in a substantial reduction in the time span from problem definition to simulation output and increases significantly the number of people who can use simulation as a problem solving tool.

CAPS is based upon the use of activity cycles as the means of decomposing the system under study. Activity cycles have long been used in England for both systems analysis and simulation. Hills [5] developed the HOCUS simulation language using activity cycles. HOCUS had several of the characteristics of CAPS but developed its program directly in machine language which limited its use. In contrast, CAPS generated programs are written in Extended Control Simulation Language - ECSL, the

most popular simulation language in England. This paper will show the ease with which simulations can be performed with CAPS.

The first section contains an introduction to activity cycles and the CAPS dialog, using the simulation of a computing system as an example. This example is expanded to demonstrate the method by which a model can be expanded to incorporate more detail. The appendix contains the actual CAPS dialog, a listing of the CAPS generated code, execution results, and analysis. Interested readers should gain a basic knowledge of CAPS and activity cycles from reading the paper and see the ease and speed with which complex systems can be modeled.

AN INTRODUCTION TO CAPS

Any approach to system analysis or simulation of . complex systems requires that the system be broken down into simpler and smaller subsystems for ease of manipulation and understanding. This process is decomposition and activity cycle analysis is one of the methods used to achieve this goal. For the purposes of this paper, a system is considered to be composed of entities, things which we wish to talk about and whose behavior we wish to describe as time advances. In a factory, the entities might be men, machines and jobs. In a store, they might be customers, clerks, and helpers. A computer system might include a CPU, disk, and terminals. These entities may have attributes which distinguish and describe them. Customers might have budgets and number of items. Clerks might have check-out rates and skill levels. Helpers could be described by pay and performance rates, the disk by its read/write speed.

The basic step in decomposing a system under study is to identify the entities of interest and group them into classes having similar or identical behavior patterns. For instance, a user of a computing system might have the activity cycle shown in Figure 1, where the active states are shown as boxes and the idle states, or queues, as circles. The queue, PAUSE, might have zero duration and go immediately from activity LOGOUT to CONTEMPLATE. From the diagram it appears that the user will immediately attempt to perform activity LOGIN after CONTEMPLATE is finished. Actually this merely reflects the fact that the diagram must be drawn so

as to close the cycle for each entity, a requirement of CAPS. The implications of this will be discussed later.

In most systems of interest, important entities will usually spend some time in the queues, because the activity for which they are queued requires more than one entity before it can be undertaken. These activities are known as cooperative activities. For instance, activity LOGIN might require a terminal. If the terminal were also required for COMPUTE and LOGOUT, its activity cycle diagram would be shown in Figure 2. The basic rule for

CONTEMPLATE once the entities for LOGIN become available; thus starting LOGIN has as its logical consequence the starting of CONTEMPLATE, albeit at a later point in time.

Since this is not the way our system operates, i.e., there is a computer, all entities of importance must be included. In Figure 4, the computer cycle is added. Note that activity COMPUTE is no longer bound.

One of the more interesting aspects of activity cycles is their power in portraying the logical

FIGURE 2.
Terminal Activity Cycle Diagram

cooperative activities is that each of the entities required by the activity must be in its immediate predecessor queue before the activity can begin. Thus LOGIN cannot take place until a terminal is in queue IDLE <u>and</u> a user is in queue WAIT.

The other major class of activities is the <u>bound</u> activity. A bound activity is one such that all of the entities required come to it directly from a single predecessor activity. For instance, if the activity cycles for users and terminals are combined, as in Figure 3, activities COMPUTE, LOGOUT, and CONTEMPLATE are bound activities. CONTEMPLATE is bound to LOGOUT and the other two to LOGIN. As drawn, no additional resources are required for

relationships of the system under study. The activity cycle diagram in Figure 4 is independent of 1) the number of terminals, 2) the computers, and 3) the number of users. The diagram is applicable to all computing systems where a user arrives, waits for a terminal, logs in, uses the computer, logs out, and leaves — to restart the cycle later (an issue yet to be considered). The complexities associated with the quantities of the entities interacting disappear and the analyst can concentrate on their behavior.

Another of the virtues of activity cycle diagrams is that they encourage one to start with macro models of a system and expand those activities which

FIGURE 3.

Combined User and Terminal Activity Cycles

FIGURE 4.
Activity Cycle Diagram with Computer

early simulations show are most sensitive, rather than including all model elements at the same level of detail. This procedure tends to produce better models for the same effort.

In the computing system, one might argue that no user would ever have the exclusive use of the computer, as shown. One answer could be to think of the computer as being a partition which the user would occupy for the appropriate time span, rather

than as the central processor. As an alternative, consider a situation where COMPUTE is expanded as follows: once a partition is obtained there is a period of main frame usage followed by I/O activity requiring a disk on a dedicated channel; after which, either another cycle of main frame - I/O or the completion of COMPUTE. The original COMPUTE is shown in Figure 5 and the more detailed cycle diagram in Figure 6. To conserve readability, the immediate queues have not been labeled. The

FIGURE 5.
Original COMPUTE Activity

FIGURE 6.
Expanded COMPUTE Activity

activity cycle diagram is still independent of the number of each of the resources involved. The queues for interface with the remaining elements of the model are the same in Figures 5 and 6, indicating the ease with which a model can be expanded to encompass more detail. In fact, one could expand any of the activities in Figure 6 with the same procedure. The remainder of this paper demonstrates the use of CAPS by modifying the model portrayed in Figure 4.

The User Cycle indicates that, upon completion of LOGOUT, the bound activity CONTEMPLATE merely delays the arrival of the user at WAIT where he will undertake LOGIN when a terminal is available. Essentially the prime factors of interest in the system are the arrival rate of users and their service. In reality, once LOGOUT is complete, the user leaves the system. CAPS requires that all cycles be closed, so CONTEMPLATE is used as a path from PAUSE to WAIT. As drawn, it is a bound activity which one might wish to change to control user arrival patterns. Making the normal assumption of negative expotential arrivals, an additional entity, Arrival Control, is added as shown in Figure 7. CONTEMPLATE is now a cooperative

activity requiring a user and an arrival control, the latter being a logical rather than physical entity. By choosing the proper distribution of times for GAP, the interarrival times, the desired distribution of user arrivals can be achieved.

To complete the activity cycle diagram the usual procedure is to add the number available for each entity and the duration time of each activity. This information is required by CAPS and its inclusion on the activity cycle diagram aids the analyst during the CAPS dialog. The completed diagram is given in Figure 8; with 15 users, 6 terminals, 4 computer partitions, and 1 arrival control. The durations of activities are shown as "D=". The durations may be any arithmetic expression and/or distribution, including the sampling of histograms. The names chosen for queues and activities are arbitrary unique strings of up to 6 alpha characters (additional characters may be used but are ignored by CAPS). The diagram in Figure 8 is now complete and portrays the basic information required by CAPS. It is the basis for both the dialog that follows and the actual system interaction shown in the Appendix.

CAPS DIALOGS

The basic input to CAPS is the topology of the acti-:: vity cycle diagram. The cycles are specified, upon. request by CAPS, by giving for each entity, the alternative queues -- preceded by a Q--and activities--preceded by an A. CAPS performs many logic and consistency tests as the user supplies these cycles pointing out the consequences of the user's model and any inconsistencies (see Reference 6 for details). In fact, CAPS will not allow a user to proceed until a logically consistent model has been specified. Users are often surprised by CAPS ability to point out the logical consequences of their input, such as "LOGOUT IS A BOUND ACTIVITY (IT WILL START IMMEDIATELY UPON COMPLETION OF THE PRECEDING ACTIVITY)" or "NO MORE THAN 7 OF THE 15 USERS CAN BE ACTIVE AT ONE TIME," or most devastating, "YOUR PROBLEM DOES NOT REQUIRE SIMULATION, THE STATIC SOLUTION IS ---".

To complete the information needed for simulation purposes the following categories of user input must be given:

- The queueing disciplines followed by entities at each queue.
- The starting conditions.
- 3. The system recording functions.

Queueing disciplines are assumed to be first-in, first-out unless otherwise stated. Other disciplines, such as last-in, first-out, random, or maximum of an expression, are readily available. For instance, the next user to start COMPUTE might be the one with the highest priority.

The starting conditions for the simulation are usually chosen to avoid transient conditions associated with starting conditions of "empty and idle." This is easily accomplished by indicating the activities in progress and their completion times. All entities which are not involved in activities in progress are placed in appropriate queues.

Simulations run with CAPS written programs automatically provide the user with a count for each activity started. In addition, the user can specify the recording of the length and wait time distributions for queues. The final user input required is the length of the simulation.

The example chosen is simple, by design, to illustrate the capabilities of CAPS and its ease of use. The appendix contains a listing of the actual CAPS dialog, with comments; a listing of the code written by CAPS; and the results of executing the code. Finally, the results are given for three executions, modifying MAR, which specifies the arrival rate.

The computing system used was the University of Wisconsin's Univac 1110. The total elapsed time, including 2 user system errors (i.e., not CAPS errors which are corrected), was 46 minutes 29 seconds at a cost of \$11.18. The foregoing included the 2 system errors, listing the program on-line, and executing 3 runs of the model. The results for the CAPS dialog and a single execution are 22 minutes 55 seconds and \$3.29. The ECSL Code generated consisted of 139 lines. Using \$0.002 per

TERMINAL (6) COMP D=NORMAL (80,8) LOGIN LOGOUT COMPUTE D=NEGEXP(2) D=1READY HOLI PARTITIONS (4) CIDLI USER (15) CONTEMPLATE D=1AWAI ARRIVAL CONTROL (1) DELA GAP D=NEGEXP (MAR)

FIGURE 8.
Completed Activity Cycle Diagram

verified character and an average of 25 characters per line, the costs of manually producing the physical code would be \$6.95. CAPS costs for both the interaction and producing the code is \$0.99, a not insignificant saving. The costs and elapsed times from the interaction given in the Appendix are in Tables 1 and 2. Table 1 follows the history of the interaction, including user system errors. These follow directly the cost history as displayed in the Appendix. In Table 2, the user system errors are eliminated and subtotals provided to highlight the CAPS costs. It is evident that CAPS is cost effective strictly on the basis of producing the simulation code. When the total costs of obtaining simulation results are considered, CAPS should show even greater efficiency and effectiveness when compared with other techniques.

CONCLUSIONS

The ability of the CAPS to provide simulation output in a short time frame has been illustrated for a very simple problem. The use of activity cycles as a basis for system decomposition, for input to CAPS, and for ease of communication of the logical relationships of a system has been demonstrated.

CAPS was demonstrated to be cost effective, considering only key purchasing costs. It is suggested that CAPS's cost effectiveness would be much greater if the total costs of a simulation project were considered.

The CAPS appears to hold promise as a vehicle for making simulation a practical problem solving tool and as a basis for teaching the use of simulation in realistic environments.

TABLE 1.

Elapsed Time and Costs of Appendix Runs

	Time		Cost	
•	Δ	Σ	· Д	Σ.
Start up	0:00		\$0.13	0.13
CAPS Dialog	16:43	16:43	0.99	1.12
List ECSL Code	3:51	20:34	0.24	1.36
User Error	3:14	23:48	2.62	3.98
Execute Model	6:12	30:00	2.30	6.28
User Error	3:40	33:40	0.17	6.45
Execute Model	3:19	36:59	2.01	8.46
Execute Model	9:30	46:29	2.85	11.31

TABLE 2.
Elapsed Time and Costs Excluding User System Errors

CAPS Dialog Execute Model Subtotal	16:43 6:12	22:55	\$0.99 2.30	3.29
Execute Model Execute Model Total	3:19 9:30	35:44	2.01 2.85	8.15

REFERENCES

- Clementson, A. T., "Computer Aided Programming for Simulation," University of Birmingham.
- "Extended Control and Simulation Language -User's Manual," University of Birmingham.
- 3. Hutchinson, G. K., "An Introduction to Activity Cycles," Simuletter, October, 1975.
- Hutchinson, G. K., "An Introduction to CAPS," Simuletter, October, 1975.
- Hills, P. R., "HOCUS User's Manual," P-E Consulting Group.
- Clementson, A. T., "CAPS Detailed Reference Manual," University of Birmingham.

APPENDIX

CAPS Interactive Dialog

This Appendix contains the line by line interaction of a CAPS terminal session submitting the activity diagram shown in Figure . In addition to the CAPS dialog the system commands (shown by a leading @) and editing are given. The implementation of CAPS reflects the desire at the University to provide easy access to the system and the availability of utilities of the University to the lillo. Implementations at other installations would not necessarily have these functions or formats.

The general outline of the Appendix is: the CAPS dialog, use of the Edit processor to list the CAPS generated ECSL code, execution of the generated program, a user error, and two iterations of editing the the code followed by model execution. The cost accounting (@COST) processor is envoked at each major point in the process to give both cost and elapsed time accounting. These were the basis of the cost analysis in the paper.

The arrival rate in the model is determined by a negative expotential distribution with mean MAR. The three runs vary only in the values of MAR, these being 15, 20, and 12 respectively. Analysis of the output and conclusions about the system design are left to the interested reader.

Unfortunately it is somewhat difficult to differentiate between the originators of individual lines

on the listing, i.e., between user input and computer output. Comments have been added that will help. In the most important section, the CAPS dialog, user inputs start 1 character position to the left of computer responses.

@COST
DATA IGNORED - IN CONTROL MODE??????@COST
@P
 READY
@COST

FOR Y10704 AT 14:06:55 ON 02-10-77...

SPECIFY ITEM:

TYPE THE NAME OF THE ITEM YOU WISH TO SEE OR 'HELP'

@P

\$.13

READY

READY

@ASG, UP COMPUTER.

READY

@H*SS.CAPS COMPUTER.

COMPUTER AIDED PROGRAMMING - SIMULATION***C A P S***02/10/77

UNIVERSITY OF WISCONSIN. CONTACT G. HUTCHINSON 963-4274

DO YOU WISH TO HAVE INSTRUCTIONAL COMMENTS-PARDON - PLEASE ANSWER YES OR NO-YES

DURING THIS DISCUSSION YOU WILL BE ASKED FOR A NUMBER OF LISTS.
WHEN A LIST IS COMPLETE A BLANK LINE SHOULD BE ENTERED.

IF WHEN TYPING YOU MAKE ERRORS, THESE MAY BE CORRECTED
BY BACKSPACING (ERACES LAST CHARACTER) USE THE CTRL+H KEYS
OR ERACE FIELD (ERACES LINE)USE THE CTRL + X KEYS
WHEN A LINE IS COMPLETE PRESS EOF.
PLEASE NOTE-ONCE EOF HAS BEEN PRESSED
IT MAY NOT BE POSSIBLE TO MAKE CORRECTIONS IMMEDIATELY
THE DISCUSSION IS IN FIVE SECTIONS
LOGIC-PRIORITIES-ARITHMETIC-RECORDING-INITIAL CONDITIONS
AT THE END OF EACH SECTION IT IS PPOSSIBLE
TO RETURN TO THE BEGINNING OF ANY EARLIER SECTION

DO YOU WISH TO START A NEW PROBLEM YES
PROBLEM NAME USERSIM

TYPE NAME OF ENTITIES

USER

HOW MANY

15

TYPE A LIST OF THE STATES THROUGH WHICH THESE ENTITIES PASS. THIS SHOULD CONSIST OF EITHER-

A) AN ALTERNATION OF QUEUES AND ACTIVITIES STARTING AND ENDING WITH A QUEUE

OR B) A LIST OF ACTIVITIES ALONE

PRECÉDE QUEUES BY Q AND ACTIVITIES BY A

QWAIT

ALOGIN

QREADY

ACOMPUTE

QHOLD

ALOGOUT

QPAUSE

ACONTEMPLATE

QQWAIT

QAWAIT

```
EVERY CYCLE MUST BE CLOSED
 THUS THE FIRST QUEUE MUST REOCCUR AND
 THE LAST QUEUE MUST HAVE OCCURED BEFORE
 CYCLE NOT COMPLETE - DO YOU WISH TO CONTINUE IT -
NO
 USER CYCLE DELETED
  TYPE NAME OF ENTITIES
USER
 HOW MANY
15
 TYPE LIST OF STATES AS ABOVE
QWAIT
ALOGIN
QREADY
ACOMPUTE
OHOLD
ALOGOUT
QPAUSE
ACONTEMPLATE
QWAIT
IS THIS CYCLE CORRECT
PARDON - PLEASE ANSWER YES OR NO -
  TYPE NAME OF ENTITIES
TERMINAL
HOW MANY
6
TYPE LIST OF STATES AS ABOVE
ALOGIN
OWCOMP
ACOMPUTE
QWLOUT
ALOGOUT
QIDLE
IS THIS CUCLE CORRECT
YES
  TYPE NAME OF ENTITIES
COMPUTER
YOU HAVE ALREADY USED THAT WORD IN A DIFFERENT WAY
  TYPE NAME OF ENTITIES
CPU
HOW MANY
TYPE LIST OF STATES AS ABOVE
OCIDLE
ACOMPUTE
QIDLE
NAME IDLE REUSED ILLEGALLY
A QUEUE CANNOT BE IN TWO DIFFERENT CYCLES
QCIDLE
IS THIS CYCLE CORRECT
YES
HOW MANY
1
TYPE LIST OF STATES AS ABOVE
CAWAIT
AGAP
ODELAY
ACONTEMPLATE
```

```
IS THIS CYCLE CORRECT
  TYPE NAME OF ENTITIES
 ARE THERE ANY ACTIVITIES WHICH USE MORE THAN ONE
 ENTITY OF A PARTICULAR TYPE-
NO
 FROM WHAT YOU SAID SO FAR, THE FOLLOWING ARE THE
MAXIMUM NUMBER OF SIMULTANEOUS REALISATION OF THE ACTIVITIES
 ACTIVITY NUMBER
 LOGIN
          6
 COMPUTE
          4
 LOGOUT
          6
 CONTEM
          1
 GAP,
DO YOU WISH TO APPLY ANY LOWER LIMITS
 ACTIVITY LOGOUT APPEARS TO BE BOUND TO COMPUT
 I.E. THE FOLLOWING QUEUES ARE DUMMIES
HOLD
WLOUT
DO YOU AGREE
DO YOU WISH TO SEE A SUMMARY OF THE CYCLES
YES
USER
          15 OWAIT
                   ALOGIN QREADY ACOMPUT Q
                                                     ALOGOUT OPAUSE
             ACONTEM QWAIT
 TERMIN
          6 QIDLE
                   ALOGIN QWCOMP
                                     ACOMPUT Q
                                                     ALOGOUT QIDLE
          4 QCIDLE ACOMPUT QCIDLE
 CPII
ARRIVA
         1 QAWAIT AGAP
                             QDELAY ACONTEM QAWAIT
LOGIN USES 1 USER
                     1 TERMIN
                     1 TERMIN 1 CPU
COMPUT USES 1 USER
LOGOUT USES 1 USER
                     1 TERMIN
CONTEM USES 1 USER
                     1 ARRIVA
GAP
       USES 1 ARRIVA
 DO YOU WISH TO MAKE ANY CHANGES IN THE LOGIC SECTION
NO
PRIORITIES
ARE THERE ANY QUEUES WHOSE DISCIPLINE IS NOT F-I-F-O -
NO
 THE FOLLOWING ARE BOUND ACTIVITIES
 (A BOUND ACTIVITY IS ONE WHICH WILL ALWAYS START IMMEDIATELY
UPON THE COMPLETION OF THE PRECEDING ACTIVITY)
  THE ORDER OF THE FOLLOWING ACTIVITIES IS UNIMPORTANT
 CONTEM
 GAP
 DO YOU WISH TO MAKE ANY CHANGES IN THE PRIORITY SECTION
ARTTHMETIC
AFTER EACH ACTIVITY NAME, TYPE FORMULA FOR ITS DURATION
CONTEM=
1
COMPUT=
```

80

GAP

NORMAL(80 , 8, ABC)

NEGEXP (MAR, RA) LOGIN = NEGEXP (2, RB)

```
LOGOUT=
1
 IN WHICH ACTIVITY IS ABC
                             EVALUATED-
 (N.B. IF VARIABLE IS NOT TO BE EVALUATED BY ANY ACTIVITY,
 JUST TYPE EOF)
WHAT IS ITS INITIAL VALUE-
1241
IN WHICH ACTIVITY IS MAR
                             EVALUATED-
WHAT IS ITS INITIAL VALUE-
15
 IN WHICH ACTIVITY IS RA
                             EVALUATED-
WHAT IS ITS INITIAL VALUE-
1153
 IN WHICH ACTIVITY IS RB
                             EVALUATED-
WHAT IS ITS INITIAL VALUE-
441
DO YOU WISH TO DEFINE ANY OTHER ATTRIBUTES FOR ENTITIES
NΩ
  DO YOU WISH TO MAKE ANY CHANGES IN THE ARITHMETIC SECTION
NO
 RECORDING
 TWO KINDS OF RECORDING MAY BE INCLUDED
 1)LENGTH OF QUEUE
 2) LENGTH OF TIME ENTITY IS DELAYED IN QUEUE
 TYPE, AFTER THE QUEUE NAME, WHICH KIND OF RECORDING IS REQUIRED
 TYPE 0, IF NO RECORDING REQUIRED
 TYPE 3, IF BOTH KINDS ARE REQUIRED
 READY =
 PAUSE =
0
 WAIT =
 WCOMP =
0
 IDLE =
3
 CIDLE =
3
DELAY =
0
 AWAIT =
 FOR EACH QUEUE FOR WHICH DELAYS ARE TO BE RECORDED
100
 WAIT
         RANGE=0 TO
50
         RANGE=0 TO
 IDLE
30
 CIDLE
         RANGE=0 TO
30
  DO YOU WISH TO MAKE ANY CHANGES IN THE RECORDING SECTION
NO
  INITIAL CONDITION
 ARE THERE ANY ACTIVITIES IN PROGRESS
 (NOTE-TERMINATION TIMES MUST BE CONSTANTS)
 ACTIVITY -
LOGIN
 TERMINATION TIME =
 TERMINATION TIME =
```

3

```
TERMINATION TIME =
 ACTIVITY -
COMPUTE
 TERMINATION TIME =
 TERMINATION TIME =
43
 TERMINATION TIME =
55
 TERMINATION TIME =
 ACTIVITY -
  TYPE HOW MANY ENTITIES SHOULD BE IN EACH QUEUE LISTED
 AFTER THE QUEUE NAME
 USER - 15 ENTITIES
  5 USED BY ACTIVITIES IN PROGRESS
 READY -
0
 PAUSE -
 ONLY 10 LEFT - TRY AGAIN
10
 TERMIN - 6 ENTITIES
  5 USED BY ACTIVITIES IN PROGRESS
 WCOMP -
 IDLE
1
 CPU

→ 4 ENTITIES
  3 USED BY ACTIVITIES IN PROGRESS
 CIDLE -
 ARRIVA - 1 ENTITIES
DELAY -
n
AWAIT -
PLEASE GIVE THE DURATION OF THE SIMULATION
1000
 DO YOU WISH TO MAKE ANY CHANGES IN THE INITIAL CONDITION SECTION
NO
YES
YOUR CAPS GENERATED PROGRAM, IN ECSL IS IN FILE COMPUTER.
DO YOU WISH TO SEE ADDITIONAL OPTIONS?
YES
  YOU MAY WISH TO PRINT, EDIT, OR SAVE YOUR FILE:
 TO PRINT: @EDIT,U (FILE)
            P 500
 TO EDIT- SEE EDIT MANUAL
 TO SAVE: @SAVE,S (FILE), (DATE)
 TO COMPILE ONLINE: @ADD,P H*SS.RUNOL
                    @ADD (FILE)
 N.B. ONLINE COMPUTING IS RELATIVELY EXPENSIVE!
TO RUN BATCH ADD TO FRONT OF OF FILE:
  @RUN (PARAMETERS)
  @ADD H*SS.RUN
     OUTPUT IS HIGH SPEED PRINTER
 USE @SYM FOR REMOTE OUTPUT (SEE USER-S MANUAL)
 CAPS AND MACC BID YOU ADIEU.
```

```
@COST
DATA IGNORED - IN CONTROL MODE???@COST
 READY
@COST
FOR Y10704 AT 14:23:38 ON 02-10-77...
SPECIFY ITEM:
@P
 $1.12
 READY
 READY
@EDIT,U COMPUTER.
EDIT 1.39-2/10-14:24
EDIT
:P 555
      COMPILE USER
      THERE ARE 15 USER SET READY PAUSE WAIT
                                                     WITH TIME
      THERE ARE 6 TERMIN SET WOOMP IDLE
                                               WITH TIME
      THERE ARE 4 CPU SET
                              CIDLE
                                        WITH
      THERE ARE 1 ARRIVA SET
                              DELAY AWAIT
      FUNCTION PICTURE NEGEXP NORMAL
      HIST ZAREADY (USER 0,1)
      HIST WREADY (10, 5, 10)
HIST ZBWAIT (USER 0,1)
      HIST WWAIT (10, 2, 5)
      HIST ZCIDLE (TERMIN 0,1)
      HIST WIDLE (10, 1, 3)
HIST ZDCIDLE (CPU 0,1)
      HIST WCIDLE (10, 1, 3)
      DURATION=
      CHAIN
        USER 1 INTO READY AFTER DURATION
        TIME OF USER 1 = DURATION
        TERMIN 1 INTO WCOMP AFTER DURATION
      DURATION=
                    3
      CHAIN
        USER 2 INTO READY AFTER DURATION
        TERMIN 2 INTO WCOMP AFTER DURATION
      DURATION=
                 22
      ADURATION= DURATION+1
      CHAIN
               3 INTO PAUSE AFTER ADURATION
        TERMIN 3 INTO IDLE AFTER ADURATION
        TIME OF TERMIN 3 =ADURATION
             1 INTO CIDLE AFTER DURATION
                 43
      DURATION=
      ADURATION= DURATION+1
      CHAIN
               4 INTO PAUSE AFTER ADURATION
        TERMIN 4 INTO IDLE AFTER ADURATION
        TIME OF TERMIN 4 =ADURATION
        CPU 2 INTO CIDLE AFTER DURATION
        TIME OF CPU
                       2 = DURATION
      DURATION= 55
      ADURATION= DURATION+1
      CHAIN
        USER 5 INTO PAUSE AFTER ADURATION
        TERMIN 5 INTO IDLE AFTER ADURATION
        TIME OF TERMIN 5 =ADURATION
             3 INTO CIDLE AFTER DURATION
                     3 = DURATION
        TIME OF CPU
      RECYCLE
       ACTIVITIES 1000
      BEGIN RECORD
      DURATION=CLOCK-PREVCLOCK
      PREVCLOCK=CLOCK
       ADD A TO ZAREADY , DURATION
      ADD B TO ZBWAIT , DURATION ADD C TO ZCIDLE , DURATION
       ADD D TO ZDCIDLE , DURATION
```

```
BEGIN CONTEM
       FIRST USER A IN PAUSE
FIND
      FIRST ARRIVA B IN DELAY
FIND
DURATION=1
CONTEM+1
CHAIN
  USER
        A FROM PAUSE INTO WAIT
                                   AFTER DURATION
  TIME OF USER A = DURATION
  ARRIVA B FROM DELAY INTO AWAIT AFTER DURATION
REPEAT
BEGIN COMPUT
FIND
      FIRST USER A IN READY
      FIRST TERMIN B IN WCOMP
FIND FIRST CPU
                 C IN CIDLE
DURATION=NORMAL(80, 8, ABC)
COMPUT+1
ADURATION= DURATION+1
CHAIN
  USER A FROM READY INTO PAUSE AFTER ADURATION
  ADD -TIME OF USER A TO WREADY
  TERMIN B FROM WCOMP INTO IDLE AFTER ADURATION
  TIME OF TERMIN B = ADURATION
  CPU C FROM CIDLE INTO CIDLE AFTER DURATION
  ADD -TIME OF CPU C TO WCIDLE
  TIME OF CPU
                C = DURATION
REPEAT
BEGAN GAP
FIND
      FIRST ARRIVA A IN AWAIT
DURATION=NEGEXP ( MAR
                     , RA
GAP +1
  ARRIVA A FROM AWAIT INTO DELAY AFTER DURATION
REPEAT
BEGIN LOGIN
FIND FIRST USER
                  A IN WAIT
     FIRST TERMIN B IN IDLE
DURATION=NEGEXP( 2 , RB
LOGIN+1
CHAIN
  USER
       A FROM WAIT INTO READY AFTER DURATION
  ADD -TIME OF USER A TO WWAIT
  TIME OF USER A = DURATION
  TERMIN B FROM IDLE INTO WOOMP AFTER DURATION
  ADD -TIME OF TERMIN B TO WIDLE
REPEAT
BEGIN COUNT QUEUES
COUNT A IN READY
COUNT B IN WAIT
COUNT C IN IDLE
COUNT D IN CIDLE
FINALISATION
PRINT'CONTEM WAS STARTED'CONTEM' TIMES'
PRINT'COMPUT WAS STARTED'COMPUT' TIMES'
                             ' TIMES'
PRINT'GAP
            WAS STARTED GAP
PRINT'LOGIN WAS STARTED'LOGIN ' TIMES'
PRINT/'HISTOGRAM OF LENGTH OF QUEUE READY '
PICTURE (ZAREADY)
PRINT/ HISTOGRAM OF DELAYS AT READY'
PICTURE (WREADY)
PRINT/'HISTOGRAM OF LENGTH OF QUEUE WAIT'
PICTURE (ZBWAIT)
PRINT/'HISTOGRAM OF DELAYS AT WAIT'
PICTURE (WWAIT)
PRINT/'HISTOGRAM OF LENGTH OF QUEUE IDLE'
PICTURE (ZCIDLE)
PRINT/'HISTOGRAM OF DELAYS AT IDLE'
PICTURE (WIDLE)
PRINT/'HISTOGRAM OF LENGTH OF QUEUE CIDLE'
PICTURE (ZDCIDLE)
```

```
PRINT/'HISTOGRAM OF DELAYS AT CIDLE'
    PICTURE (WCIDLE)
    DATA
PAUSE
      6 TO 15
IDLE
        6
CIDLE
        4
AWAIT
        1
RB
      441
RA
      1153
MAR
       15
ABC
      1241
    END
    EXECUTE
*** TOP OF FILE ***
:@P
NOTHING CHANGED, NOTHING FILED
READY
@XQT H*SS.ECSL
E.C.S.L. SYSTEM - UNIVERSITY OF WISCONSIN
@ADD
@ADD COMPUTER
                      NOLIST NOTABLE
    COMPILE USER
             LIST DENSITY 36496 PER CENT
E.C.S.L. SYSTEM - UNIVERSITY OF WISCONSIN
    EXECUTE
                            PROGRAM - USERNOLI
E.C.S.L. SYSTEM
CUTED ON 2/10/77
                              PAGE 1
                      59 TIMES
CONTEM WAS STARTED
                      50 TIMES
COMPUT WAS STARTED
                      60 TIMES
GAP
     WAS STARTED
LOGIN WAS STARTED
                      50 TIMES
HISTOGRAM OF LENGTH OF QUEUE READY
 CELL FREQUENCY
      195************
    0
       347***********************************
    1
       HISTOGRAM OF DELAYS AT READY
 CELL FREOUENCY
    5
       10******
       13******
   15
       11******
   25
   35
        9******
        2**
   45
        5****
   55
HISTOGRAM OF LENGTH OF QUEUE WAIT
 CELL FREQUENCY
      0
*****
       135***********
    1
       46*****
    2
       29****
    3
    4
       29****
       23***
    5
    6
        5
       45*****
       25***
    8
```

38****

```
HISTOGRAM OF DELAYS AT WAIT
  CELL FREQUENCY
    2
        31**********
        3***
    7
   12
        4****
   17
   22
        0
   27
        2**
   32
        2**
   37
        0
   42
        O
   47
        8******
HISTOGRAM OF LENGTH OF QUEUE IDLE
  CELL FREQUENCY
       529*********************************
       306**************
    1
    2
       134*************
    3
       24****
        7*
    4
HISTOGRAM OF DELAYS AT IDLE
 CELL FREOUENCY
E.C.S.L. SYSTEM UNIVERSITY OF WISCONSIN
                                   PROGRAM - USERNOLI
  EXECUTED ON 2/10/77
                                       PAGE
                                             2
       24********
    1
        2**
   4
        2**
   7
   10
        3***
   13
        1*
        1*
   16
   19
        0
   22
        3***
        3***
   25
       . 11********
   28
HISTOGRAM OF LENGTH OF QUEUE CIDLE
 CELL FREQUENCY
   0
       ****
       27** . .
   1
   2
       10*
HISTOGRAM OF DELAYS AT CIDLE
 CELL FREQUENCY
   1
       48*************
   4
        0
   7
        0
  10
        0
   13
        0
   16
        0
   19
        1*
   22
        n
   25
        1*
E.C.S.L. SYSTEM - UNIVERSITY OF WISCONSIN
COST
FOR Y10704 AT 14:36:55 ON 02-10-77...
SPECIFY ITEM:
@P
$6.28
READY
READY
```