DESIGN AND ANALYSIS OF SIMULATION EXPERIMENTS

INTROBDUCTION

We define simulation as the process of design-
ing a model of a real system and conducting experi-
ments with this model for the purpose either of
understanding the behavior of the system or of
evaluating various strategies for the operation of
the system [25]. It then follows that we must con-
cern ourselves with the strategic and tactical
planning of how to design and run an experiment
that will yield the desired information.

The design of a computer simulation experi-
ment is essentially a pTan for purchasing a quan-
tity of information that may be acquired at vary-
ing prices depending upon the manner in which the
data are obtained. The effective use of experi-
mental resources is profoundly affected by the
choice of design because:

1. The design of the experiment determines
in great measure the form of statistical
analysis that can be used appropriately
to analyze the-results.

2. The success of the experiment in answer-
ing the questions of the experimenter
(without excessive expenditure of time
and resources) depends Targely upon the
right choice of design.

Computer simulation experiments are expensive
in terms of time and Tlabor of the experimenter as
well as cost of machine time. Since the more
effort he expends on one investigation the less he
can spare for another, it is important that the
researcher plan for obtaining as much information
as possible from each experiment. The primary
purpose of conducting simulation studies is to
Tearn the most about 'the béhavior of the system
being simulated for the lowest possible cost. To
do so, wa must plan and design carefully not only
the model but also how it is to be.run or used.
The purpose of using these designs is twofold:

(1) they are economical in terms of reducing the
number of experimental trials required; and (2)
they provide a structure for the investigator's
learning process.

In a well-conducted study, there are two
areas of interface between experimental planning
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and the total simulation process. Figure 1 illus-
trates these two interface areas with a block dia-

_gram representing the overall simulation study

process from the genesis of the problem to the
final documentation and implementation of the

study results. The two blocks representing the
experimental planning/design functions are shown

in heavy outline. Once the experimental objectives
and a system definition have been established and
the decision is made to employ computer simulation,
careful preliminary experimental planning at an
early stage in the development of the computer
model can be very helpful. It is-good to have a
fairly detailed idea of the experimental plan early
so that the model itself can be better planned to
provide efficient generation (and possibly partial
analysis) of the desired experimental data. Since
computer time is expensive, knowledge of the magni-
tude and special requirements of the desired data
output may have a significant impact on the con-
cept and details of the model.

As indicated in Figure 1, the second and
principal function of experimental design is that
of providing the final strategic and tactical
plans for the execution of the experiment. Here
the project constraints on time (schedule) and
costs must be updated to the current conditions
and imposed upon the design. Even though careful
planning and budget control may have been exercised
from the beginning of the project, now is the time
to take a good hard, realistic look at the re-
sources remaining and how best to utilize them.
Whether the objectives of a given study are effec-
tively and efficiently accomplished depends to a
significant degree upon the care taken and skill
exercised in the experimental design. The larger
and more complex is the simulation, the more
critical this phase becomes.

DESIGN CONSIDERATIONS

Although the underlying objectives of design-
ing computer simulation experiments are essentially
the same as those for conducting physical experi-
ments, some differences must be considered. Among
the more important of these are the.following:

1. Difficulties in defining a éing]e datum
point or sample;
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FIGURE 1. STMULATION PROCESS
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2. Ease with which experimental conditions
may be repeated or reproduced;

3. Ease of stopping and resuming experi-
mentation;

4. Presence or absence of correlation be-
tween subsequent data points;

5. Control of varjability--in physical ex-
periments stochastic variability is be-
yond the control of the experimenter; in
simulation, variability is deliberately
built into the model by the experimenter,

In determining how to run our model and ana-
lyze the results, one of the first issues we must
decide upon is what we shall consider a single
datum point or sample to be. There are several
possibilities, including:

1. A complete run of the model. This may
entail considering the mean or average
value of the response variable for the
entire run as being the datum point.

2. A fixed time period during the run in
terms of simulated time. For example,
the model might be run of n time periods,
where n is measured in hours, days,
weeks, etc., and the mean or average
value of the response variable for each
time period considered a datum point.
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3. Each transaction considered a separate
sample. For example, turn-around time
for each job or the total time in the
system of each customer is considered a
separate datum point.

4. Transactions aggregated into groups of
fixed size. For example, we might take
the turn-around time of each 25 jobs
flowing through the system, and then use
the mean time of the group as a single
datum point.

We will return to the consideration of this
point later.

The ease with which experimental conditiorns
can be repeated or reproduced in a computer model
is often a distinct advantage 6f computer simula-
tion over physical experimentation. If we are
interested in comparing two alternatives in a
relative manner only, we can run the model in such
a way that each alternative is compared under
identical conditions (same sequence of events).
This is accomplished by repeating or using the
same series of random numbers for each alternative,
which reduces the residual variation in mean per-
formance of the alternatives and requires con-
siderably smaller sizes to establish statistically
significant differences in the response. On the
other hand, if we are interested in evaluation of
absolute system performance, we can usé a new
stream of random numbers for each run.



Another difference between experimentation
with computer models vs. that with physical sys-
tems is the ease with which we can stop and resume
the experimentation. This facility allows us to
use sequential or heuristic experimental methods
that might not be feasible in a real world system.
With the computer model we can always stop the
experiment while we analyze the results and decide
whether to change the parameters or continue as we
were. The ability to put the model back on the
shelf (so to speak) while we think about what is
occurring can be a distinct advantage not readily
available in the real world. Again, the question
of starting conditions may turn this advantage into
a disadvantage.

Analysis of computer simulation experiments
often presents some difficult probliems, because
outputs are sometimes auto- or serially correlated.
Autocorrelation arises when the observations in
the output series are not independent of each
other (one of the assumptions of many experimental
designs). In many simulation models, the value of
one output observation depends upon the value of
the previous observation or upan some other past
observation. Thus, not as much information is con-
tained in that observation as there would be if the
two were completely independent. Since most experi-
mental designs found in the literature assume in-
dependence of observations, many common statistical
techniques are not directly applicable to auto-
correlated simulation results.

SYSTEM CHARACTERISTICS

Before we can turn to specific design con-
siderations, we must first consider certain char-
acteristics of the system being simulated. For
example, we must consider whether the system is
terminating or continuous and whether it is sta-
tionary or non-stationary. These system charac-
teristics and their effect upon experimental design
are discussed more fully by Gafarian and Ancker [11]
as well as Kleijnen [14,16].

In a terminating system the simulation ends
if a specified event occurs, e.g. in a duel one or
both participants are killed or the weapons expend-
ed. In a continuous system no such critical event
occurs and the system- continues indefinitely, e.g.
a telephone exchange. Terminating systems can be
physically terminating (e.g. the piece of equip-
ment fails) or it can be arbitrarily terminated by
the goal of the study (e.g. determine the maximum
profit for the next year). In the latter example,
the terminating critical event is arbitrarily set
as the end of the planning period of interest.

A second system characteristic of interest is
whether the system is stationary or non-stationary.
A system is stationary if the distribution of its
response variable (and hence its mean and variance)
does not change over time. With such systems we
are usually concerned with finding the steady-state
conditions, i.e. the value which is the Timit of
the response variable if the length of the simula-
tion went to infinity without termination.

These classifications will perhaps be clearer
-if we give some examples of each.

A. Terminating - Non-Steady State
1. Space mission to the moon.

2. Restaurant or store which closes each

night.
3. Air or missile attack on ground tar-
gets. .
4. A duel.

B. Terminating - Steady State

1. Chemical plant or oil refinery which
closes down annually for clean out and
repair or is subject to randomly
occurring breakdowns.

2. Automobile or manufacturing plant
which closes down annually for a mode
change. )

C. Continuous - Non-Steady State

1. Takeoffs and landings at an airport.

v
. F

2. Computer or power utility.
3. City telephone exchange.
4. 24 hour grocery store.

D. Continuous - Steady State
1. Assembly line. .

2. Chemical plant or refinery between
shutdowns .

The same system can often times be considered
either terminating or non-terminating depending
upon the analyst's viewpoint and time frame. For
example, most assembly lines, chemical plants and
011 refineries are non-terminating for long periods
of time {usually a year) but do close down on a
periodic basis for either clean out or a model
change.

The same thing is true when considering
whether a system is steady-state or stationary.
Most non-terminating systems are cyclic in nature.
Consider for example a restaurant. Even though it
might be open 24 hours a day, there will be busy
periods and slack periods. Thus, the system never
truly reaches a steady state condition. However,
over a short period of time, e.g. during rush hours,
it may be desirable to consider the system as sta-
tionary in order to study its behavior.

DESIGN CRITERIA.

In the design and execution of simulation ex-
periments, we are concerned with two types of
variables, which we call factors and responses.

We can distinguish them clearly if we consider

a simple experiment entailing only two variables,

x and y, in which the purpose of the experiment is

to answer the question, "How does a change in x
affect y?" In this case, x is a factor and y is a .

57



DESIGN OF EXPERIMENTS ... Continued

response. The Titerature also refers to factors
as treatments or independent variables and re-
sponses as yields or dependent variables. We also
use the terms exogenous (input) and endogenous
(output or status) in the same sense as factors
and responses. Thus, we see that the terms factor,
treatment, independent variable, input variable,
and exogenous variable all refer to the same thing,
as do response, yeild, dependent variable, output

variable, status variable, and endogencus variable.

This terminology derives from the fact that much
of the early interest in statistical experimenta-
tion came from agricultural research followed by
the biological sciences. Authors in each of these
fields have tried to use terms that were most
meaningful to their readers.

As in any design problem the ultimate char-
acter of the final design is dictated by the
design criteria, which are determined to be perti-
nent. Among the criteria to be considered are the
following:

1. The number of factors to be varied.

2. The number of levels (values) to be used
for each factor.

a) Are the levels of the various factors
quantitative or qualitative?

b) Are the levels of the various factors
to be fixed (controlled) or random
(uncontrolied)?

c) Are nonlinear effects to be measured?

d) Are all factors to be set at an equal
number of Tevels?

3. The number of measurements of the re-
sponse variable to be taken.

a) Are interactions between the factors
to be measured?

b) Do resource limitations exist owing
to lack of time, money, or computer
time?

¢) What precision is reqdired?

To make sense of the available literature, we
again define some of the terms we have just intro-
duced. A quantitative factor or variable is one
which occurs in various degrees that can be mea-
sured on a specified (either interval or ratio)
scale. Examples would be temperature, length,
velocity, cost, time, etc. A qualitative variable
on the other hand, is one whose occurrences cannot
be placed in an order of magnitude, i.e., it is
measured-on an ordinal or nominal scale. Examples
of a qualitative variable would be machines, pol-
icies, geographic areas, organizations, decision
rules, etc. The terms random or fixed levels are
fairly self-evident. If we decide to control or
set the levels or values of the variable for each
run of the model, the levels are fixed. If we
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Tet the Tevels or values vary randomly (perhaps
using a Monte-Carlo sampling technique), the
Tevels are random. An interaction effect may be
defined as the combined influence of two or more
factors on the response, which is in addition to
the individual influence or-effect of these fac-
tors separately.

In most complex simuTation studies, the num-
ber of possible combinations of factors and fac-
tor levels of interest is almost infinite; hence,
a large number of design tradeoffs are made to
stay within the resource constraints. The type
of design the expérimenter should choose is very
much dictated by the purpose or goal of the study
and the type of statistical analysis required %o
fulfill those goals. Depending upon the specific
purpose of the experimenter, several different
types of analysis may be required, among the more
common of which are: :

1. Comparing means and variances of alter-
natives;

2. Determining the importance or effect of
different variables and their Timitations;

3. Searching for the optimal values of a set
of variables. ’

Designs to accomplish the first type of ana-
lysis are generally so-called single-factor experi-
ments and are fairly straightforward, with the
major concerns of the experimenter being such mat-
ters as sample size, starting conditions, and the
presence or absence of autocorrelation. The se-
cond type of analysis is one toward which most
textbooks on design and analysis of experiments
are directed. These designs primarily utilize
analysis of variance and regression techniques for
the interpretation of the results. The third
type of analysis usually requires sequential or
search techniques of experimentation.

GOAL OF THE SIMULATION

The whole process of designing the model,
validating it, designing experiments, and drawing
conclusions from the resulting experiments is
closely tied to the specific purpose of the model.
No one should build a model without having an
explicit experimental goal in mind. Simulation
experiments are conducted for a wide variety of
purposes, some of which are as follows:

1. Evaluation: determining how good a pro-
posed system design performs in an abso-
Tute sense when evaluated against speci-
fic criteria,

2. Prediction: -estimating the performance
of the system under some projected set of
conditions.

3. Comparison: comparing competitive sys-
tems designed to carry out a specified
function; or comparing several proposed
operating policies or procedures.



4. Sensitivity analysis: determining which of
many factors are the most significant in
affecting overall system performance.

5.  Optimization: determining exactly which

: combination of factor levels will pro-
duce the best overall response of the
system.

6. Functional relations: establishing the
nature of the relationship among one or
more significant factors and the system's
response.

This Tist is not exhaustive and merely sug-
gests the most common goals or purposes. The ex-
plicit purpose of the model has significant impli-
cations for the whole model building and experi-
mentation process. For example, if the model's
goal is to evaluate a proposed or existing system
in an absolute sense, this imposes a heavy burden
upon the accuracy of the model and demands a high
degree of isomorphism. On the other hand, if the
goal is the relative comparison of two or more
systems or operating procedures, the model may be
valid in a relative sense even though the absolute
magnitude of responses varies widely from that
which would be encountered in the real worid.

SINGLE FACTOR DESIGNS

For studies where the goal is evaluation, pre-
diction or comparison we are predominantly interest
ed in calculating means, proportions and variances
for comparative purposes. The major consideration
as mentioned are sample sizes, starting conditions
and the presence or absence of autocorrelation.

If the system is terminating we simply take
the natural initial conditions characteristic of
the system. Since in a terminating system we can-
not manipulate the length of the run, we replicate
the runs, using a new starting random number for
each run. Each run then yields one independent
observation, and we can use the methods given in
chapter five of Shannon [25] to test for auto-
correlation and to calculate the required sample
sizes. If we are specifically interested in
selecting the best alternative then the methods
proposed by Dudewicz [7,8] and Chen [5] may be
used.

If the system is continuous but cyclic in
nature, we again use the natural state for start-
ing conditions. In the case of cyclic systems
which periodically return to an empty state, the
problems are similar to those éncountered with
terminating systems. The paper by Crane and
Lemoine [6] and Kleijnen [16] are of particular
interest with these systems.

When the system is continuous and stationary,
either replicated or long runs divided into batches
are possibie. In this case we must also be con-
cerned with starting conditions so as not to bias
the results. The papers by Ancker, Gafarian and
Morisaku [1], Bengston [3] as well as Law and
Carson [17] deal with these problems.

MULTIPLE FACTOR DESIGNS

The purpose of many studies is to determine
the relationships between the independent and de-
pendent variables in order to determine which vari-
ables have the greatest effect upon the response
variable. In such-cases the analyst is also con-
cerned with determining how or if the factors in-
teract with each other. The most powerful designs
for such studies are called factorial designs. A
factorial experiment is one in which all levels of
a given factor are combined with all levels of
every other factors in the experiment. ’

One traditional approach to multiple factor
problems is to vary the levels of one factor at a
time while keeping all other factors constant.
Such an approach is inefficient and does not pro-
vide as much information as the factorial designs.
We can summarize the advantages of factorial de-
signs over the classical "one factor at a time"
approach as:

1. Maximum efficiency in the estimation of
the effects. of the variables.

2. Correct identification and interpretation
of factor interactions if they exist.

3. The effect of a factor is estimated at
several levels of the other factors, and
thus the conclusions reached hold over a
wide range of conditions.

4. Ease of use and 1n£erpretation.

Several excellent texts present the basic ideas of
factorial designs including Hicks [12] and
Montgomery [20]. The paper by Beckhofer [2] and
Kleijnen [16] will also be of interest to the
analyst. :

If our interest is in finding the combination
of factor levels of the independent variables
which optimizes the response variable we should
Took at response-surface methodology. A fairly
substantial Jiterature exists on the application
of response-surface methodology to computer simu-
lation. Examples are Duer [9], Meir [18],
Montgomery, Talavage and Mullen [19] and Farrell
[10]. An optimization technique has been incor-
porated into GASP-IV by Pegden and Gately [24].
Most of this 1iterature deals with experiments in
which there is a single response variable. Opti-
mization of multiple-response experiments has been
discussed by Biles [4] as well-as Montgomery and
Bettencourt [21]. :

CONCLUDING REMARKS

In this short paper it has been possible to
merely call the attention of the reader to a few
of the aspects of the design and analysis of simu-
Tation experiments and to reference a miniscule
amount of the available literature. Although
simulation is a statistical sampling technique,
one finds that analysts often spend most of their
time on the development of the model and its pro-
gramming while ignoring the critical statistical
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issues. This is unfortunate because in any sta-
tistical experiment a careful design and analysis
is necessary to (1) extract all the information
possible for the effort expended and (2) to reveal
the Timitations of the conclusions drawn. For a
more comprehensive discussion of the design and
analysis of computer simulations, the reader is
referred to Kleijnen [14,15], Naylor [22], Hunter
and Naylor [13] and Shannon [25]
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