SLAM_TUTORIAL

INTRODUCTION

SLAM is a simulation language that allows for
alternative modeling approaches. It allows systems
to be viewed from a process, event, or state
variable perspective. These alternate modeling
world views are combined in SLAM to provide a
unified systems modeling framework (1).

In SLAM, a discrete change system can be modeled
within an event orientation, process orientation,
or both. Continuous change systems can be modeled
using either differential or difference equations.
Combined discrete-continuous change systems can be
modeled by combining the event and/or process
orientation with the continuous orientation. In
addition, SLAM incorporates a number of features
which correspond to the activity scanning orienta-
tion,

The process orientation of SLAM employs a network
structure comprised of specialized symbols called
nodes and branches in a manner similar to Q-GERT
(2). These symbols model elements in a process
such as queues, servers, and decision points. The
modeling task consists of combining these symbols
into a network model which pictorially represents
the system of interest. In short, a network is a
pictorial representation of a process. The enti-
ties in the system (such as people and items) flow
through the network model. The plctorial repre-
sentation of the system is transcribed by the
modeler into an equivalent statement model for in-
put to the SLAM processor.

In the event orientation of SLAM, the modeler de-
fines the events and the potential changes to the
system when an event occurs. The mathematical-
logical relationships prescribing the changes
associated with each event type are coded by the
modeler as FORTRAN subroutines. A set of standard
subprograms is provided by SLAM for use by the
modeler to perform common discrete event functions
such as event scheduling, file manipulations, sta-
tistics collection, and random sample generation.
The executive control program of SLAM controls the
simulation by advancing time and initiating calls
to the appropriate event subroutines at the proper
points in simulated time. Hence, the modeler is
completely relieved of the task of sequencing
events to occur chronologically.

A.Alan B.Pritsker
Claude Dennis Pegden

" A’ continuous model is coded in SLAM by specifying

the differential or difference equations which
describe the dynamic behavior of the state vari-
ables. These equations are coded by the modeler
in FORTRAN by employing a set of special SLAM de-
fined storage arrays. The value of the Ith gtate
variable is maintained as variable SS(I) and the
derivative of the Ith gtate variable, when re-
quired, is maintained as the variable DD(I). The
immediate past values for state variable I and its
derivative are maintained as SSL(I) and DDL(I),
respectively. When differential equations are in-
cluded in the continuous model, they are automatic—
ally integrated by SLAM to calculate the values of
the state-variables within an accuracy prescribed
by the modeler. The event and continuous aspects
of SLAM are based on GASP IV concepts (3).

An important aspect of SLAM is that alternate
world views can be combined within the same simu-
lation model. There are six specific interactions
which can take place between the network,.discrete
event, and continuous world views of SLAM:

1. Entities in the network model can initiate
the occurrence of discrete events.

2. Events can alter the flow of entities in’
the network model.

3. Entities-in the network model can cause

" instantaneous changes to values of the

state variables.

4. State variables reaching prescribed
threshold values can initiate entities in
the network model. .

5. Events can cause instantaneous changes to
the values of state variables.

6. State variables reaching prescribed
threshold values can initiate events.

The ability to construct combined network-event-
continuous models with interactions bétween each
orientation greatly enhances the modeling power of -
the systems analyst. In the following sections of
this tutorial, illustrations of nétwork, event,

and continuous models are given.

A NETWORK MODEL

Consider a situation'involving two types of jobs
that require processing by the same server. The

27



SLAM. TUTORIAL ... Continued

FIGURE 1

Network model of a multiple entity, single server queueing situation

& Time between arrivals

ATRIB(1)=EXPON(7.)

s

Assign estimated
processing times

| ATRIB (1)=EXPON(10.)

Maximum number of arrivals

job types are assumed to form a single queue before
the server. The network model of this situation is
shown in Figure 1. The input statements corres-
ponding to the network shown in Figure 1 are listed
below.

NETWORK ;
CREATE,S8,,,100;
ASSIGN,ATRIB(1)=EXPON(7.);
ACTIVITY,, ,QOFS;
CREATE,12,,,50;
ASSIGN,ATRIB(1)=EXPON(10.);
QOFS QUEUE(1);
ACTIVITY/1,ATRIB(1)+RNORM(0.0,1.0);
TERM;
ENDNETWORK ;

In this model, one type of entity is scheduled to
arrive every 8 time units and only 100 of them are
to be created. These entities have a service time
estimated to be a sample from an exponential dis-
tribution with a mean time of 7. This service
time is assigned to attribute 1 at an ASSIGN node.
For the other type of entity, the time between
arrivals is 12 time units and a maximum of 50 of
these entitieés can be created. The estimated
service time for each of these entities is ex-
ponentially distributed with a mean time of 10.
Both types of entities are routed to a QUEUE node
whose label is QOFS.

The server of the system is modeled as activity 1
where the service time is specified .as attribute 1
plus a sample from a normal distribution. Thus,
the actual processing time is equal to the estim-
ated processing time plus an error term that is
assumed to be normally distributed. This model
might be used to represeat a job shop in which jobs
are performed in the order specified by the ranking
rule specified for the QUEUE node.

28

QOFS :

QUEUE Node

1\mun (1)+RNORM(0.0,1,

Departuie
of entity

Service activity

AN EVENT MODEL

In this section, we illustrate the building of a
discrete event simulation model by describing the
coding of a single server queueing situation. In
the coding which follows, we assume that the time
between arrivals is given by the exponential dis-
tribution with a mean of 20 minutes and that the
service time 4s uniformly distributed between 10
and 25 minutes. The operation of the system is to
be simulated for a period of 480 minutes.

To construct a discrete event simulation model in
SLAM, the user must do the following:

1. Write a main program to dimension a filing
array, specify values for input and output
devices, and call SLAM;

2. Write subroutine EVENT(I) to map the user
assigned event codes onto a call to the
appropriate event subroutine;

3. Write subroutine INTLC to initialize user

¢ defined variables and to schedule the
first arrival to the system;

4., Write event subroutines to model the logic
for the arrival event and the end=of-ser-
vice event; and .

5. Prepare the input statements required by
the problem.

In this discussion, we will concentrate on item 4.
We will code the logic for the arrival everit in
subroutine ARVL and assign it event code number 1.
The code for the logic for the end-of-service event
will be written in subroutine ENDSV and it will be
referenced as event code number 2,

The logic for the arrival event, ARVL, is presented
in Figure 2. The values of the SLAM discrete event
variables are passed to the event routine through



COMMON block SCOML. The SLAM variable XX(1) is
equivalenced to the user defined variable BUSY.

The first function performed by the event is the
rescheduling of the next arrival event to occur at
the current time plus a sample from an exponential
distribution with mean of 20.0 and using random
stream number 1. The first attribute of the cur-
rent entity is then set equal to the arrival time,
TNOW. A test is then made on the variable BUSY to
determine the current status of the server. If
BUSY is equal to 0.0, then the server is idle and a
branch 1s made to statement 10 where BUSY is set to
1.0 to indicate that the server is busy and the end-
of-service event is scheduled to occur at time TNOW
plus a sample from a uniform distribution between
10.0 and 25.0 using random stream number 1. Other-
wise, the entity is placéd in file 1 to wait for
the server. In either case, the entity is identi-
fied by its arrival time which is stored as attri-
bute 1.

FIGURE 2
Subroutine ARVL for bank teller problem.

SUBROUTINE ARVL

COMMON/SCOM1/ ATRIB(100),---
EQUIVALENCE (XX(1),BUSY)

CALL SCHDL (1 ,EXPON(20.,1) ,ATRIB)

ATRIB (1)=TNOW
IF(BUSY.EQ.0.) GO TO 10
CALL FILEM(1,ATRIB)
RETURN
10 BUSY=1.
CALL SCHDL(2,UNFRM(10.,25.,1),ATRIB)
RETURN
END

The logic for the end-~of-service event, ENDSV, is
depicted in Figure 3. The variable TSYS is set
equal to the current time, TNOW, minus the first
attribute of the current entity being processed.
When an event is removed from the event calendar,
the ATRIB buffer array is assigned the attribute
values that were associated with the event when it
was scheduled. Since the value of ATRIB(1) is the
entity's arrival time, the value of TSYS represents
the elapsed time between the arrival and end-of-
service event for this entity. A call is then made
to subroutine COLCT to collect statistics on the
value of TSYS as collect variable number 1. A test
is made on the SLAM function NNQ(1l) representing the
number of entities waiting for service in file 1.

FIGURE 3
Subroutine ENDSV for bank teller problem.

SUBROUTINE ENDSV
COMMON/SCOM1/ATRIB(100) ,+++
EQUIVALENCE (XX(1),BUSY)
TSYS=TNOW-ATRIB(1)

CALL COLCT(TSYS,1)

IF(NNQ(1).GT.0) GO TO 10
BUSY=0.

RETURN
CALL RMOVE(1,1,ATRIB)

CALL SCHDL(2 ,UNFRM(10.,25.,1) ,ATRIB)
RETURN

END

If the number of entities waiting is greater than
zero, a transfer 1s made to statement 10 where the
first entity waiting {s removed from file 1 and
placed onto the event calendar. The end-of-service
event 1s scheduled to occur at time TNOW plus the
service time. If no entity is waiting, the status
of the server is changed to idle by setting the
variable BUSY to 0.

The .input statements for this example are shown in
Figure 4. The GEN statement specifies the analyst's
name, project title, date, and number of runs. The
LIMITS statement specifies that the model employs 1
file, the maximum number of attributes is 1, and the
maximum number of simultaneous entries in the system
is 20. The STAT statement specifies that collect
variable number 1 is to be displayed on the standard
SLAM summary report with the label TIME IN-SYSTEM
and that a histogram is to be generated with 10 in-
terior cells, the upper limit of the first cell is
to be 0, and the cell width of each interior cell is
to be 4. The TIMST statement causes time-persistent
statistics to be automatically maintained on the
SLAM variable XX(1) and the results to be displayed
using the label UTILIZATION. The INIT statement
speclifies that the beginning time of the simulation
is time O and that the ending time is time 480. The
FIN statement denotes the end to all SLAM input state-—
ments. This completes the description of the dis-
crete event model of the single server queueing
situation.

FIGURE 4

Data statements for bank teller problem.

GEN,C. D. PEGDEN;BANK -TELLER, 11/20/77,1;

LIMITS,1,1,20;

STAT,1, TIME IN SYSTEM,10/0/4;
TIMST,XX(l),UTILIZAIION;
INIT,0,480;

FIN;

NETWORK AND DISCRETE EVENT INTERFACE

In SLAM, a discrete event can be caused by an entity
arrival to an EVENT node. When this occurs, sub-
routine EVENT is called with an event code establish-
ed as part of the EVENT node description. In addi-
tion, attribute assignments and activity-durations
can be prescribed as user functions which indicates:
that a FORTRAN subprogram is to be written by the
modeler.

An entity can be inserted into a network model from
a discrete event by calling subroutine ENTER(I).

Such a call causes an entity with attribute values

as defined by the vector ATRIB(-) to arrive at -
ENTER node I. In addition, activities in a network
can be stopped within an event subroutine by calls

to subroutine STOPA(NIC) where NIC is a value asso-
ciated with an activity duration specification. This
is one of the procedures in SLAM that supports ac-
tivity scanning modeling concepts.

A CONTINUOUS MODEL

To illustrate a model of a continuous system using

29



SLAM TUTORIAL ... Continued

SLAM, we present a model of Cedar Bog Lake that was The entire SLAM program consists of writing the
developed by Williams (4). main program, subroutine STATE, and the input state-
ments. These are shown in Figure 5. The main pro-
The model includes three species, a solar energy gram is in the standard SLAM form. In subroutine
supply (xg), and the organic matter that forms a STATE, the set of differential equations is coded.
sediment on the lake bottom (xp). These lake vari- The translation of the equations from the model to
ables are modeled in terms of their energy content the SLAM code is direct and normally does not re-
(calories/cetitimeter2) and the energy transfers be- quire an excessive amount of work. The input state-
tween the various lake variables and losses to the ments for the model involve mainly the definitions
environmernt (xq). The three species are plants of the variables to be plotted which is done on
(xp), herbivores (xy), and carnivores (xc). The RECORD and VAR input statements. The CONTINUOUS
igferential equations relating these species to the statement defines the limits on the step size and
sediment and the solar emergy source are shown below. the accuracy requirements for the numerical inte-
gration of the differential equations.
dx
—P - -
dt T ¥g T 4-03x, . FIGURE 5
dxh SLAM program of Cedar Bog Lake. .
at O.48xp 17‘87xh : "PROGRAM MAIN(INPUT,OUTPUT, TAPES=INPUT ,TAPE6=0UTPU
dx 1TAPE7)

DIMENSION NSET(1000)

c . | - ,
— 4.85xh 4.65xc .

dt COMMON/SCOM1/ ATRIB(100),DD(100),+--
dx 1 ,NCRDR, NPRN%' gbOIRI)IN sNNSET,NTAPE SS(lOO) X
To o A COMMON QSET (1000
gt " 2%, + 6.1k + 1.95x . EQUIVALENCE (NSET(1),QSET(1))
NNSET=1000
e . , NCRDR=5
It 1.00xp + 6.9Oxh + 2.70xc . NPRNT=6
NTAPE=7
The values of the variables at time zero are: ) CALL SLAM
xp(0) = 0.83, x,(0) = 0.003, x,(0) = 0.0001, STOP
xo(O) = 0.0, and x,(0) = 0, 0. END
The annual cycle in solar radiation is simulated ’ SUBROUTINE STATE
using the following equation: ‘ COMMON/SCOM1/ ATRIB(100) ,DD(100) ;.
’ »,NCRDR,NPRNT ,NNRUN ,NNSET ,NTAPE,SS (100) ,«
X, = 95.9(1+0.635 sin 2wt) DATAPI/3.14159/
5 ‘ 85(6)=95.9%(1.4+0.635%SIN(2, *PT+TNOW))
vhere t is time in years. These equations represent DD(1)=SS(6)~4.03xSS(1)
such processes as the predation of one species by DD(2)=0.48%5S(1)-17.874SS(2)
another, plant photosynthesis, and the decaying of W DD(3)=4.85%5S5(2) -4, 65455 (3)
dead species. Energy transfers between lake en- DD(4)=2,55%8S (1)+6.124SS (2)+1.95485(3)
tities and their environment are due to respiration DD(5)=SS (1)+6.94SS(2)+2.7%S5(3)
and migration. RETURN
END
We will use SLAM to illustrate the procedure for. ob-
taining the values of the variables.xp, Xp, X¢» Xo, GEN,PRITSKER,CEDAR BOG LAKE,3/5/1978,1;
Xg» Xg over time. First, we make an equivalence be- CONTINUOUS,S5,1,.00025,.025,.025;
tween .the model variables and the SLAM state vector INTLC,SS(1)=.83,55(2)=.003,8S(3)=,0001;
SS(+) as shown below. INTLC ,SS(4)=0.0,58(5)=0.0;

RECORD, TNOW, TIME ,0,P, 0. 025
VAR, SS(1) ,P,PLANTS;
VAR,SS(2) ,H,HERBIVORES ;
VAR, SS(3) ,C, CARNIVORES +
VAR, SS (4) ,0,0RGANIC;
VAR,SS(5) ,E,ENVIRONMENT ;
VAR,SS(6) ,S,SOLAR ENERGY;

'SS(I) = xp -+ DD(1) =

alf 2l alf ol olf
[a41r] o tio [231-3 (24

SS(2) = x, * DD(2)

’ ZE,0,2.0;
‘ SS(3) - xc - DD(3) = ] ;?;fIALI sV, H ‘
The INTLC statement initializes the SS(.) values as
S5(4) = x, * DD(4) = prescribed by the problem statement, and the

INITIALIZE statement specifies that the simulation

should start at time zero and end at time 2. This

example i1llustrates the ease of coding continuous
models in SLAM.

x .

§S(5) = LS DD(5)-

and . SS(6)

30



DISCRETE AND CONTINUOUS INTERFACE

Values of state variables and their derivatives can
be changed at ASSIGN nodes by directly replacing
the values of SS(.) and DD(-). Such changes can
also be performed in event subroutines. Equations
in subroutine STATE can be written as a function of
XX(:) values which can also be changed at ASSIGN
nodes or event routines. The detection of state
variables crossing thresholds can be modeled using
DETECT nodes and an activity can be specified to
end upon the release of a DETECT node. Input
statements are provided that cause an event to
occur when a state variable crosses a threshold.

As can be seen, there are diverse procedures in
SLAM to model interactions between network, event,
and continuous model segments.

SUMMARY

SLAM supports the modeling of systems from diverse
viewpoints., It is written in ANSI standard

FORTRAN and, hence, is transportable. Flexible
freeform input procedures and standard summary
reports have been designed into SLAM. In addition,
SLAM provides all the support subprograms re-
quired by simulation modelers and analysts.

REFERENCES

1. Pritsker, A.A.B. and C.D. Pegden, Jr., Intro-—
duction to Simulation and SLAM, Systems
Publishing Corp., 1978.

2. Pritsker, A.A.B., Modeling and Analysis Using
Q-GERT Networks, Halsted Press and Pritsker &
Associates, 1977.

3. Pritsker, A.A.B., The GASP IV Simulation
Language, John Wiley, 1974.

4, Williams, R.B., "Computer Simulation of Energy
Flow in Cedar Bog Lake, Minnesota Based on the
Classical Studies of Lindeman," in Systems

Analysis and Simulation in Ecology, B. C. Patten,

Ed., New York: Academic Press, 1971.

31



