A VEHICLE FOR DEVELOPING STANDARDS FOR SIMULATION PROGRAMMING

Henry Kleine
Jet Propulsion Laboratory

ABSTRACT

The objective of SDDL is to provide an effective communications medium to support the design and documentation of complex software applications. This objective is met by providing (1) a processor which can express design specifications in an intelligible, informative, machine-reproducible document, (2) a design and documentation language with forms and syntax that are simple, unrestrictive, and communicative, and (3) methodology for effective use of the language and processor.

The application of SDDL to the specific problems of simulation models is discussed, with emphasis on the potential of SDDL for developing and specifying design and documentation standards for simulation and modeling.

INTRODUCTION

Effective communication is an essential part of science and engineering. Although secondary in importance to the original creative thinking, without the ability to communicate creative thoughts effectively, progress in science would be impossible. Computer program development especially requires effective communication since the resultant product, aptly named "software," consists entirely of large volumes of complex creative thoughts.

SOFTWARE DEVELOPMENT TEAM COMMUNICATIONS

A complex software project usually involves many team members and many different kinds of communication links. Figure 1 identifies these team members and shows the many links over which information must flow. As suggested in the diagram, programming languages are satisfactory for only a few of the links. Older programming languages were barely suitable for the programmer-machine link, while modern languages which provide Structured Programming capability [1] are becoming very effective for this and also for part of the programmer-programmer communication needs.

The remaining links, which must convey such information as the program's justification, functional requirements, design/documentation, and development status, also have a critical need for an effective communication capability. This need is being met by the Software Design and Documentation Language (SDDL) [2] and other processors [3].

SOFTWARE DESIGN AND DOCUMENTATION LANGUAGE

The SDDL approach supports effective communication for software design and documentation by providing:

(1) A processor which can express design specifications in an intelligible, informative, machine reproducible Software Design Document (SDD).

(2) A program design and documentation language with forms and syntax that are simple, unrestricted and communicative.

(3) A methodology for effective use of the language and the processor.

The purpose of the SDDL processor is to translate the designer's creative thinking into an effective communications document. The processor must perform as many automatic functions as possible, thereby freeing the designer's energy for the creative design effort. Many new automatic functions have been added to the processor's capability and more are being discovered through continuing SDDL applications.

The SDDL syntax is the means by which the designer communicates the design to the SDDL processor. The syntax is comprised of keywords, used to invoke design structures, and a collection of directives which provide the user with control of processor actions such as indentation, page width, start of a new page, etc.

The third component of the SDDL approach is the methodology for using the language and...
the processor to express program design concepts in lucid, meaningful, precise terms. Since SDDL functions by operating on certain keywords, any or all of which the user may select, complete freedom of creative expression is provided, and therefore the methodology is a valuable guideline. Most of the existing SDDL syntax and processor functions were implemented to support the methodology developed while SDDL was being used on two simulation programs [4].

STANDARDS FOR SOFTWARE DESIGN AND DOCUMENTATION

Effective communication of software design can be further enhanced by adopting standards or conventions for using systems such as SDDL to express design concepts and other software project information. SDDL, which was designed for maximum flexibility, may be used as a vehicle for creating and testing methods and techniques to be considered for adoption as software design standards. Once standards have been agreed upon they could be enforced by generating a special version of the SDDL processor which accommodates the standards without the flexibility of the general version.

DESIGN STANDARDS FOR SIMULATION MODELING

To illustrate some candidate standards for expressing simulation and modeling design concepts, the design of a barber shop simulation is presented below. All information regarding the simulation model itself is contained entirely within the example, but some preliminary remarks will help the reader to approach the examination of the illustration from an appropriate perspective:

1. The SDDL processor reads the designer's input expressed in SDDL syntax, augments the input data with structure indentation, cross reference tables, etc., and produces the SDD.

2. The SDD is the medium for communicating the high-level design and project management information among the members of the software development team. It serves as the current, definitive statement of the status of the project and the design.

3. The SDD shown below presents a simulation program under development. It should be evaluated with respect to how well it performs its function of communicating information regarding the status and content of the model and of the project. The SDD must communicate to programmers who will implement the design and to other team members who must evaluate the progress and direction of the design effort.

4. The organization, structures, and statements used in the SDD to convey the information should be evaluated with respect to their usefulness as standards for specifying simulation programs.

5. Following the evaluation of the SDD, the SDDL system should be evaluated with respect to how well it supports and facilitates the production of the SDD. It is difficult to judge the efficacy of the SDDL system without actually using it, but some evaluation can be made by comparing the SDD to the input data from which it was generated. Documentation of the SDDL system can be obtained from the Jet Propulsion Laboratory.

Items to note while making this comparison are:

a. Line numbers on the SDD correspond exactly to input line numbers of the source data.

b. Indentation in the style of Structured Programming is provided by the processor by recognition of certain keywords.

c. Keywords can be established freely by the user.

d. Flow lines and page reference numbers augment the information content.

e. Parts of lines may be automatically right justified for emphasis.

f. Document format (page width, indentation amount, etc.) can be specified by the user.

g. Cross reference tables and the table of contents are supplied automatically.

e. Logic errors are detected and reported by the processor.
EXAMPLE SDD FOR A BARBER SHOP SIMULATION

THE
SOFTWARE DESIGN AND DEVELOPMENT LANGUAGE
SAMPLE DESIGN FOR
YE OLDE BARBER SHOPPE

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PAGE</th>
<th>LINE</th>
<th>NUMBER</th>
<th>NUMBER</th>
<th>MODULE NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
<td>TITLE SDDL EXAMPLE</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td></td>
<td></td>
<td>PROGRAM MEMORANDUM</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td></td>
<td></td>
<td>PROGRAM OBJECTIVES</td>
</tr>
<tr>
<td>3</td>
<td>62</td>
<td></td>
<td></td>
<td>PROGRAM MAIN ROUTINE</td>
</tr>
<tr>
<td>4</td>
<td>77</td>
<td></td>
<td></td>
<td>PROCEDURE EVENT_SELECTOR</td>
</tr>
<tr>
<td>5</td>
<td>96</td>
<td></td>
<td></td>
<td>EVENT FOR CUSTOMER.ARRIVAL ACTIONS</td>
</tr>
<tr>
<td>6</td>
<td>119</td>
<td></td>
<td></td>
<td>EVENT FOR HAIRCUT_COMPLETION ACTIONS</td>
</tr>
<tr>
<td>7</td>
<td>142</td>
<td></td>
<td></td>
<td>EVENT FOR ARRIVAL_RATE_CHANGE ACTIONS</td>
</tr>
</tbody>
</table>

8 MODULE REFERENCE TREE
9 MODULE - CROSS REFERENCE LISTING
10 MODEL PARAMETERS - CROSS REFERENCE LISTING

LINE |
16 PROGRAM MEMORANDUM
17 |
18 |
19 NOTE: BECAUSE OF SPACE LIMITATIONS SOME DESIGN MODULES AND DESIGN DETAIL
20 HAD TO BE EXCLUDED. TO ACCOUNT FOR THIS INCOMPLETENESS THE SDD SHOULD BE
21 UNDERSTOOD TO REPRESENT AN IN-PROGRESS, PARTIALLY COMPLETE DESIGN.
22 |
23 SOME OF THE PROJECT CONTROL MODULES WHICH HAD TO BE OMITTED ARE:
24 CALENDAR OF TEAM MEETINGS AND AGENDA
25 ACKNOWLEDGEMENTS OF TEAM MEMBERS AND OTHER CONTRIBUTORS
26 DOCUMENT READING CONVENTIONS
27 LIST OF HIGH PRIORITY PROBLEM AREAS
28 DATA STRUCTURE LIST AND EXPLANATIONS
29 |
30 |
31 ENDPGRAM
PROGRAM OBJECTIVES:

SIMULATE ONE DAY'S OPERATION OF A BARBER SHOP WITH THE FOLLOWING OPERATING CHARACTERISTICS:

THE SHOP:
1. OPENING AND CLOSING TIMES ARE INPUT PARAMETERS.
2. CUSTOMERS IN THE SHOP BEFORE CLOSING TIME MUST BE SERVICED.

THE CUSTOMERS:
1. CUSTOMER ARRIVAL TIMES ARE EXPONENTIALY DISTRIBUTED.
2. MEAN TIME BETWEEN ARRIVALS IS AN INPUT PARAMETER WHICH VARIES THROUGHOUT THE DAY.
3. CUSTOMERS HAVE BARBER PREFERENCES.
4. EACH CUSTOMER HAS A WAITING TIME PATIENCE FACTOR.

THE BARBERS:
1. THE NUMBER OF BARBERS IS AN INPUT PARAMETER.
2. BARBERS SHOULD HAVE A LUNCH BREAK AFTER 3 AND BEFORE 5 HOURS OF WORK.
3. BARBERS ARE PAID 1.5 TIMES NORMAL RATE FOR TIME WORKED IN EXCESS OF 6 HOURS WITHOUT A BREAK AND 8 HOURS IN ONE DAY.
4. EACH BARBER HAS A SERVICE RATE.
5. EACH BARBER HAS A CUSTOMER POPULARITY FACTOR.

SIMULATION OUTPUT:
1. CUSTOMER WAITING TIME
2. QUEUE LENGTHS
3. BARBER UTILIZATION

END PROGRAM OBJECTIVES

PROGRAM MAIN ROUTINE

CALL INITIALIZATION TO READ DATA AND SET UP THE MODEL

SCHEDULE CUSTOMER ARRIVAL ON THE EVENT SCHEDULE
* GIVING EVENT TIME = IMMEDIATE
SCHEDULE ARRIVAL RATE CHANGE ON THE EVENT SCHEDULE
* GIVING EVENT TIME = IMMEDIATE
SCHEDULE END OF SIMULATION ON THE EVENT SCHEDULE
* GIVING EVENT TIME = CLOSING TIME

CALL EVENT SELECTOR TO BEGIN THE SIMULATION

CALL SUMMARY AND REPORT ROUTINE

END PROGRAM MAIN ROUTINE
LINE 77 PROCEDURE EVENT_SELECTOR
 **
78 *
79 • IN SOME PROGRAMMING LANGUAGES (E.g., SIMSCRIPT) THIS *
80 • FUNCTION IS SUPPLIED AUTOMATICALLY. *
81 *
 **
82
83 SEARCH THE EVENT_SCHEDULE FOR THE NEXT MOST IMMINENT EVENT
84 SELECT THE APPROPRIATE EVENT ROUTINE
85 CASE 1
86 CASE 2
87 CALL CUSTOMER_ARRIVAL EVENT-----------------------------------(5)
88 CASE 3
89 CALL HAIRCUT_COMPLETION EVENT-----------------------------------(4)
90 CASE 4
91 CALL END_OF_BREAK EVENT--(1)
92 CASE 5
93 CALL ARRIVAL_RATE_CHANGE EVENT-----------------------------------(7)
94 ENDSCHEDULE
95 ENDOCLASS

LINE 96 EVENT FOR CUSTOMER.ARRIVAL ACTIONS
97 IF IT IS PAST CLOSING TIME
98 EXIT EVENT WITHOUT FURTHER ACTION
99 ELSE
100 SCHEDULE CUSTOMER_ARRIVAL EVENT ON THE EVENT_SCHEDULE--------(5)
101 • GIVING DELAY TIME = EXPONENTIAL DRAW (MEAN, time, between, CUSTOMERS)
102 MAKE A RANDOM SELECTION OF A BARBER CHOICE
103 • USING BARBER,PREFERENCE FACTORS
104 SELECT ACTION BASED ON BARBER ACIVITY, STATUS
105 CASE: BARBER IS ON A BREAK
106 REMOVE THE CUSTOMER FROM THE SHOP
107 TALLY LAST CUSTOMER STATISTICS
108 CASE: BARBER IS BUSY
109 PLACE THE CUSTOMER IN THE WAITING QUEUE
110 RECORD THE CUSTOMER'S QUEUE, ENTRY, TIME
111 CASE: BARBER IS IDLE
112 SCHEDULE HAIRCUT_COMPLETION ON THE EVENT_SCHEDULE------(6)
113 • GIVING SERVICE RATE OF THE BARBER
114 OTHER CASES: PROGRAM FAULT
115 PROVIDE PROGRAM DIAGNOSTIC
116 ENDSCHEDULE = STM SUPPLIED BY PROCESSOR
117 ENDDO
118 ENDEVENT FOR CUSTOMER.ARRIVAL ACTIONS

Winter Simulation Conference 735
LINE 119 EVENT FOR HAIRCUT_COMPLETION ACTIONS
120 * GIVEN BARBER AND CUSTOMER
121
122 ACCUMULATE AVERAGE SERVICE TIME AND CUSTOMERS SERVICED
123
124 IF THE BARBER HAS WORKED MORE THAN 5 CONSECUTIVE HOURS
125 SEARCH THE WAITING QUEUE FOR A CUSTOMER WAITING FOR THIS BARBER
126 IF A CUSTOMER IS WAITING
127 REMOVE THE CUSTOMER FROM THE WAITING QUEUE
128 ACCUMULATE AVERAGE WAITING TIME
129 SCHEDULE HAIRCUT_COMPLETION EVENT ON THE EVENT SCHEDULE
130 * GIVEN BARBER, CUSTOMER, AND SERVICE TIME
131 ELSE
132 IF THE BARBER HAS WORKED MORE THAN 3 CONSECUTIVE HOURS
133 SET THE BARBER'S ACTIVITY STATUS TO "ON BREAK"
134 SCHEDULE END_OF_BREAK ON THE EVENT SCHEDULE
135 * GIVEN BARBER, BREAK TIME = 30 MINUTES
136 ELSE
137 SET BARBER'S ACTIVITY STATUS TO "IDLE"
138
139 ENDF IF
140 ENDF IF
141 ENDEVENT

LINE 142 EVENT FOR ARRIVAL_RATE_CHANGE ACTIONS
143 READ IN A NEW VALUE FOR MEAN TIME BETWEEN CUSTOMERS
144 READ IN THE DURATION TIME FOR THIS ARRIVAL RATE
145 IF THE NEXT RATE CHANGE IS DUE BEFORE CLOSING TIME
146 SCHEDULE ARRIVAL_RATE_CHANGE ON THE EVENT SCHEDULE
147 * GIVING EVENT TIME = DURATION
148 ENDF
149 ENDEVENT

*************** MODULE REFERENCE TREE ***********
ARRIVAL_RATE_CHANGE
PAGE 3 PROGRAM MAIN
LINES 67
PAGE 4 PROCEDURE EVENT_SELECTOR
LINES 93
PAGE 7 EVENT FOR ARRIVAL_RATE_CHANGE
LINES 142, 146
CUSTOMER.ARRIVAL
PAGE 3 PROGRAM MAIN
LINES 65
PAGE 4 PROCEDURE EVENT_SELECTOR
LINES 87
PAGE 5 EVENT FOR CUSTOMER.ARRIVAL
LINES 96, 100, 118
END_OF_BREAK
PAGE 4 PROCEDURE EVENT_SELECTOR
LINES 91
PAGE 6 EVENT FOR HAIRCUT_COMPLETION
LINES 134
END_OF_SIMULATION
PAGE 3 PROGRAM MAIN
LINES 69
EVENT_SELECTOR
PAGE 3 PROGRAM MAIN
LINES 72
PAGE 4 PROCEDURE EVENT_SELECTOR
LINES 77
HAIRCUT_COMPLETION
PAGE 4 PROCEDURE EVENT_SELECTOR
LINES 89
PAGE 5 EVENT FOR CUSTOMER.ARRIVAL
LINES 113
PAGE 6 EVENT FOR HAIRCUT_COMPLETION
LINES 119, 129
INITIALIZATION
PAGE 3 PROGRAM MAIN
LINES 63
MAIN
PAGE 3 PROGRAM MAIN
LINES 62, 76
MEMORANDUM
PAGE 1 PROGRAM MEMORANDUM
LINES 16
OBJECTIVES
PAGE 2 PROGRAM OBJECTIVES
LINES 32, 60
SUMMARY_AND_REPORT
PAGE 3 PROGRAM MAIN
LINES 74
ACTIVITY STATUS
PAGE 5 EVENT FOR CUSTOMER ARRIVAL
LINES 105

PAGE 6 EVENT FOR HAIRCUT COMPLETION
LINES 133

AVERAGE SERVICE TIME
PAGE 6 EVENT FOR HAIRCUT COMPLETION
LINES 122

AVERAGE WAITING TIME
PAGE 6 EVENT FOR HAIRCUT COMPLETION
LINES 120

BARBER PREFERENCE
PAGE 5 EVENT FOR CUSTOMER ARRIVAL
LINES 103

CLOSING TIME
PAGE 3 PROGRAM MAIN
LINES 70

PAGE 5 EVENT FOR CUSTOMER ARRIVAL
LINES 97

PAGE 7 EVENT FOR ARRIVAL RATE CHANGE
LINES 145

CUSTOMERS SERVICED
PAGE 6 EVENT FOR HAIRCUT COMPLETION
LINES 122

EVENT SCHEDULE
PAGE 3 PROGRAM MAIN
LINES 65, 67, 69

PAGE 4 PROCEDURE EVENT SELECTOR
LINES 84

PAGE 5 EVENT FOR CUSTOMER ARRIVAL
LINES 100, 113

PAGE 6 EVENT FOR HAIRCUT COMPLETION
LINES 129, 134

PAGE 7 EVENT FOR ARRIVAL RATE CHANGE
LINES 146

MEAN TIME BETWEEN CUSTOMERS
PAGE 5 EVENT FOR CUSTOMER ARRIVAL
LINES 101

PAGE 7 EVENT FOR ARRIVAL RATE CHANGE
LINES 143

QUEUE ENTRY TIME
PAGE 5 EVENT FOR CUSTOMER ARRIVAL
LINES 111

SERVICE RATE
PAGE 5 EVENT FOR CUSTOMER ARRIVAL
LINES 114

WAITING QUEUE
PAGE 5 EVENT FOR CUSTOMER ARRIVAL
LINES 110

PAGE 6 EVENT FOR HAIRCUT COMPLETION
LINES 125, 127
SOURCE INPUT FOR THE BARBER SHOP SIMULATION SDD

1: #DEFINE MODULE EVENT ENDEVENT EXITEVENT
2: #DEFINE BLOCK SELECT; ; OTHER
3: #DEFINE CALL SCHEDULE
4: #TITLE SODL EXAMPLE
5:
6: THE
7: SOFTWARE DESIGN AND DEVELOPMENT LANGUAGE
8:
9: SAMPLE DESIGN FOR
10:
11: YE OLDE BARBER SHOPPE
12:
13: #END
14: PROGRAM MEMORANDUM
15: #TEXT
16:
17: NOTE: BECAUSE OF SPACE LIMITATIONS SOME DESIGN MODULES AND DESIGN DETAIL
18: HAD TO BE EXCLUDED. TO ACCOUNT FOR THIS INCOMPLETENESS THE SDD SHOULD BE
19: UNDERSTOOD TO REPRESENT AN IN-PROGRESS, PARTIALLY COMPLETE DESIGN.
20: SOME OF THE PROJECT CONTROL MODULES WHICH HAD TO BE OMITTED ARE:
21: CALENDAR OF TEAM MEETINGS AND AGENDA
22: ACKNOWLEDGEMENTS OF TEAM MEMBERS AND OTHER CONTRIBUTORS
23: DOCUMENT READING CONVENTIONS
24: LIST OF HIGH PRIORITY PROBLEM AREAS
25: DATA STRUCTURE LIST AND EXPLANATIONS
26:
27: #END
28: ENDPROGRAM
29: PROGRAM OBJECTIVES
30: SIMULATE ONE DAY'S OPERATION OF A BARBER SHOP WITH THE
31: FOLLOWING OPERATING CHARACTERISTICS:
32:
33: THE SHOP:
34: 1. OPENING AND CLOSING TIMES ARE INPUT PARAMETERS.
35: 2. CUSTOMERS IN THE SHOP BEFORE CLOSING TIME MUST BE SERVICED.
36:
37: THE CUSTOMERS:
38: 1. CUSTOMER ARRIVAL TIMES ARE EXPONENTIALLY DISTRIBUTED.
39: 2. MEAN TIME BETWEEN ARRIVALS IS AN INPUT PARAMETER WHICH VARIES
40: THROUGHOUT THE DAY.
41: 3. CUSTOMERS HAVE BARBER PREFERENCES.
42: 4. EACH CUSTOMER HAS A WAITING TIME PATIENCE FACTOR.
43:
44: THE BARBERS:
45: 1. THE NUMBER OF BARBERS IS AN INPUT PARAMETER.
46: 2. BARBERS SHOULD HAVE A LUNCH BREAK AFTER 3 AND BEFORE 5
47: HOURS OF WORK.
48: 3. BARBERS ARE PAID 1.5 TIMES NORMAL RATE FOR TIME WORKED IN
49: EXCESS OF 9 HOURS WITHOUT A BREAK AND 8 HOURS IN ONE DAY.
50: 4. EACH BARBER HAS A SERVICE RATE.
51: 5. EACH BARBER HAS A CUSTOMER POPULARITY FACTOR.
52:
53: SIMULATION OUTPUT:
54: 1. CUSTOMER WAITING TIME
Simulation Programming (continued)

58: 2: QUEUE LENGTHS
59: 3: BARBER UTILIZATION
60:ENDPROGRAM OBJECTIVES
61:* MARK MODEL PARAMETERS * MODULES *
62:PROGRAM MAIN ROUTINE
63:CALL INITIALIZATION TO READ DATA AND SET UP THE MODEL
64:
65:SCEDULE CUSTOMER.ARRIVAL ON THE EVENT.SCHEDULE
66:* GIVING EVENT TIME = IMMEDIATE
67:SCEDULE ARRIVAL RATE CHANGE ON THE EVENT.SCHEDULE
68:* GIVING EVENT TIME = IMMEDIATE
69:SCEDULE END OF SIMULATION ON THE EVENT.SCHEDULE
70:* GIVING EVENT TIME = CLOSING TIME
71:
72:CALL EVENT_SELECTOR TO BEGIN THE SIMULATION
73:
74:CALL SUMMARY AND REPORT ROUTINE
75:
76:ENDPROGRAM MAIN ROUTINE
77:PROCEDURE EVENT_SELECTOR
78:* TEXT
79:* IN SOME PROGRAMMING LANGUAGES (E.G. SIMSCRIPT) THIS
80:* FUNCTION IS SUPPLIED AUTOMATICALLY.
81:* END
82:
83:
84:RESEARCH THE EVENT SCHEDULE FOR THE NEXT MOST IMMINENT EVENT
85:SELECT THE APPROPRIATE EVENT ROUTINE
86:CASE 1
87:CALL CUSTOMER.ARRIVAL EVENT
88:CASE 2
89:CALL HAIRCUT COMPLETION EVENT
90:CASE 3
91:CALL END OF BREAK EVENT
92:CASE 4
93:CALL ARRIVAL RATE CHANGE EVENT
94:ENDSELECT
95:ENDPROCEDURE
96:EVENT FOR CUSTOMER ARRIVAL ACTION
97:IF IT IS PAST CLOSING TIME
98:EXIT EVENT WITHOUT FURTHER ACTION
99:ELSE
100:SCEDULE CUSTOMER ARRIVAL EVENT ON THE EVENT SCHEDULE
101:* GIVING DELAY TIME = EXPONENTIAL DRAW (MEAN TIME BETWEEN CUSTOMERS)
102:* MAKE A RANDOM SELECTION OF A BARBER CHOICE
103:* USING BARBER PREFERENCE FACTORS
104:
105:SELECT ACTION BASED ON BARBER ACTIVITY STATUS
106:CASE 1: BARBER IS ON A BREAK
107:REMOVE THE CUSTOMER FROM THE SHOP
108:CALL LAST CUSTOMER STATISTICS
109:CASE 2: BARBER IS BUSY
110:PLACE THE CUSTOMER IN THE WAITING QUEUE
111:CALL THE CUSTOMER'S QUEUE ENTRY TIME
112:CASE 3: BARBER IS IDLE
113:SCEDULE HAIRCUT COMPLETION ON THE EVENT SCHEDULE
114:* GIVING SERVICE RATE OF THE BARBER

740 December 5-7, 1977
OTHER CASES: PROGRAM FAULT
PROVIDE PROGRAM DIAGNOSTIC
ENDIF
ENDEVNET FOR CUSTOMER ARRIVAL ACTIONS
EVENT FOR HAIRCUT COMPLETION ACTIONS
* GIVEN BARBER AND CUSTOMER

ACCUMULATE AVERAGE SERVICE TIME AND CUSTOMERS SERVICED

IF THE BARBER HAS WORKED MORE THAN 5 CONSECUTIVE HOURS
SEARCH THE WAITING QUEUE FOR A CUSTOMER WAITING FOR THIS BARBER
IF A CUSTOMER IS WAITING
REMOVE THE CUSTOMER FROM THE WAITING QUEUE
ACCUMULATE AVERAGE WAITING TIME
SCHEDULE HAIRCUT COMPLETION EVENT ON THE EVENT SCHEDULE
* GIVEN BARBER, CUSTOMER, AND SERVICE TIME
ELSE
IF THE BARBER HAS WORKED MORE THAN 3 CONSECUTIVE HOURS
SET THE BARBER'S ACTIVITY STATUS TO "ON BREAK"
SCHEDULE END OF BREAK ON THE EVENT SCHEDULE
* GIVEN BARBER, BREAK TIME = 30 MINUTES
ELSE
SET BARBER'S ACTIVITY STATUS TO "IDLE"
ENDIF
ENDIF
ENDEVNET
ENDEVNET
EVENT FOR ARRIVAL RATE CHANGE ACTIONS
READ IN A NEW VALUE FOR MEAN TIME BETWEEN CUSTOMERS
READ IN THE DURATION TIME FOR THIS ARRIVAL RATE
IF THE NEXT RATE CHANGE IS DUE BEFORE CLOSING TIME
SCHEDULE ARRIVAL RATE CHANGE ON THE EVENT SCHEDULE
* GIVEN EVENT TIME = DURATION
ENDIF
ENDEVNET

BIBLIOGRAPHY