GAME: A LANGUAGE FOR WRITING BUSINESS GAMEé

ABSTRACT

The GAME Language is designed to greatly simplify
the process of designing business and other organi-
zational simulations. A successful game requires
not only a well-specified model with appropriate

relationships between variables, but also a speci- .

fication of input data, output reports, file.
structures and error checks. It is these latter
components which.are usually the most tedious to
code, the most poorly coded and the most standard
in requirements. The GAME Language is designed to
simplify or eliminate these functions while main-
taining a great deal of flexibility in model
specification.

A generator converts free~format specifications
in the GAME Language into a PL/I program. Options
permit Monte Carlo and Sensitivity Analysis and
corporate simulations.

INTRODUCTION

Business games have been used for more than a
decade to provide a simulated environment in
which students can practice decision-making.
There are literally hundreds of them in existence,
each one having been designed to-model a parti-
cular environment and illustrate a particular set
of decision problems. While all are different in
various respects, most share many similarities.

The problems common to all computer operated
business games are the need for editing input, up~
dating historic parameters, maintaining historic
data files, and administering input decisions.
These components typically account for well over
half of the code in most business game programs.
Yet these functions are very poorly organized in
most business games.

A business game is typically desighed and
programmed by someone with no previous experience
in designing business games. . Thelr interest is
usually in developing a .model to.illustrate some
concept. The.data-handling .components.are treated
as a necessary evil and little thought is given to
the problems of checking errors and maintaining °
multiple.files for multiple. classes.
a large workload that could be automated is left
to the gampe administrator to handle manually.

) These problems are difficult to eliminate in any

.:performed automatically.
~design :would be much easier with such and aid, it

As a result, .’

Leonard Fertuck

glven game becduse games are generaliy.complex and
difficult to modify. The addition of a single
decision. parameter in the game can effect the
input section, the output reports, the- reading,
writing, and updating of history files, the model
computations, and the data definitions in each
routine. As a result, the game desigper tends: to
avoid modifications and improvements because they

will require a great deal of work and will be very .

error-prone. A few attempts at modification-will
leave him so frustrated that he will not only
avoid further modifications, but will avoid having
anything to do with designing business games in
the future. As a result most designers design’
only one game and most games are designed by
inexperienced designers.

These problems can be greatly feduced or N
eliminated by providing the designer with a com-
puter applications language which could provide an
organized framework for designing games and
relieve the designer of the necessity of re-;
producing designs for standard operations such as
file handling and report formatting. Such a
language would produce a program in which all
file input, file output, and history updates are
automatic and require no specifications from the
designer. Standard features would be provided for
editing input cards and formatting output reports.

Many standard checks would be performed for common

input errors. Since these operations would stan-
dardize many of the administrator's functions, a
large part of the administrator's operating manual
could also be pre-written.

The designer would be left with the task of speci-~
fying the variables in the game, the relationships
between these variables, the data which are to be
provided by the players, the data which are to be
provided to the players, and the playing rules.
This is still a significant task, but it is one
which the designer can perform. Testing of alter-
nate designs is made much easier by the use of an
applications language, since many of the time~
~consuming operations in a modification are .
“Since testing and re-

is likely -that more improvedents would be incorpo-
rated before a design is finalized. Since the
process would be much less frustrating for the
designer, he would be more likely to attempt other
designs whiéh would benefit.from his previous
experience.

Winter Simulation Cbnferenc‘e

£33

434

* periods which may be played.

. names.

GAME ... Continued

THE GAME LANGUAGE

The GAME (Greatly Augmented Modeling Environment)
Language eliminates the need for coding of stan-
dard functions and allows the designer to concen~-
trate on his design. The language processor
translates the User's Model into a PL/I program
which can then be compiled and executed. The
translator is also coded in PL/I. The GAME
Language assumes that a model will have one or
more industries whose data are stored on separate
files, and whose decisions do not interact in any
way. This is a convenience in administering games
since input for several independent groups of
players, possibly at different stages of plays may
be batched together. Each industry consists of
one or more firms whose decisions may interact.
All parameters for the industry are simultaneously
available. Decisions or plays in the game are
made periodically. If decisions are not submitted
or some decisions are left blank, previous deci-
sions are automatically repeated on the assumption
that a continuing policy has been established.

' This reduces input preparation for the players and

makes administration easier., The number of firms
in an industry can be dynamically set during the
initial period of play.

Each firm may be designed with multiple sub-
components which may represent regions, factories,
products, or other factors. The number of these
can be easily changed but must be the same for all
firms,

There is no inherent limit to the number of

Data for 1 previous
period is always available for use in lagged rela-
tionships or as a backup in the event of process-
ing fallures. Multiple periods may be processed
in a single run.

The GAME Language has 8 distinct blocks: OPTIONS,
LIMITS, GLOBALS, FIRMS, TEMPS, INPUT, COMPUIE,

and QUTPUT. Each block must start with the key-
words DEFINE block and end with the keywords END
block where block is replaced by one of the block
Blocks can be omitted if not needed, but
they must be in the specified crder if they are
used.

In describing the syntax of the blocks, the
following notation will be used:

a) Keywords are shown in capitals and user-
defined variables are shown in lower case.

b) Square brackets ([]) denote optional
elenients of the language.

¢) Three dots (...) denote that the pre-
ceeding element may be repeated one or
more times.

d) A vertical stroke (]) indicates that one
of the elements separated by vertical
strokes must be chosen.

e) , : 3 () and blank are used as delimeters
and extra blanks may be inserted for
readability.

December 5-7, 1977

-named factor by 1.

BLOCK DESCRIPTIONS

1. OPTIONS

The ORTIONS section is used to specify which of
several optional output features and program

-features will be used during this run of the GAME

language. The syntax is: DEFINE OPTIONS
[ATTRIBUTES] [INPUT] [SPLIT (m)] [VARIABLES (n)]
END OPTIONS .

Only the first letter of each option name is
significant. Thus ATTRIBUTES, ATTR, A or
AARDVARK have the same effect. The default op-
tions are that none of the outputs are provided.

ATTRIBUTES will cause, a table in alphabetic
order to be printed at the end of the run listing
all of the variable-names and their initial
values, dimensions, extended labels, and upper
and lower legal values.

INPUT will produce a table of the colummns in
which the input data variables are to be punched
on the decision cards submitted by simulation
players.

SPLIT (m) allows the translation to distinguish
between input data provided by the player and
input data provided by the administrator. A

card number equal to or greater than m is treated
as administrator reports to warn that a change of
parameters has been made., The default value of m,
is 100 implying that all input is treated as
player input. See the INPUT section for more
details on the use of this parameter.

VARIABLES (n) allows the programmer to change the
size of the internal tables used to store varia-
ble names and their properties. The default
value of n is 100. Any increase in the size of n
will increase the REGION needed by the computer
to operate the tramnslator. About 300 bytes of
storage are needed for each variable.

2. LIMITS

The LIMITS section is used to specify the dimen-
sions and labels of any repetitive factors in
variables to be defined later. The syntax is:

DEFINE LIMITS
[name: label [,labell...;]
END LIMITS

Up to 9 names may be defined and each may have as
many labels as required. Each label will
increase the maximum subscript number of the

As an example, REGION:EAST,
WEST will make provision for 2 regions in any
varZable whose SIZE in the next section is
defined by REGION.

3. GLOBALS, FIRMS, and TEMPS

- The GLOBALS, FIRMS, and TEMPS sections are used

to define the properties of all variables used in
the program. The three sections are identical

except for the way in which the specified variables
are used and stored. Variables specified in the
TEMPS section are not stored in the history files
and may not be changed by input cards. They are
intended only for use as intermediate variables in
calculations, vor as variables. computed for use in
.~ reports. -Variables.specified in the -FIRMS and
GLOBAL -sections are saved for reuse 4in future
-.perdiods. Thus.a lagged value.is .available -for each
s.ofmthem. FIRMS variables are:automatically given a
~~dimension equal to'-the-number of ‘firms in the
industry. GLOBALS variables are not given any
automatic dimension and are used for factors which
apply identically to each firm,

L

AN

The syntax is:

DEFINE section

[structure~level variable—name [option]ee. 3].e.
END section

where.

section is FIRMS|GLOBALS|TEMPS

structure-level is a positive integer between 4
and 10

variable-name is a name not previously defined

option is any of:

HI(value)

LO{value)

INIT(value [,valuel...)

LABEL (character-string)

SIZE(name [,namel...)

The rules for structure levels are the same as
those for PL/I except that the first 3 levels
are internally defined by GAME.

The SIZE option converts the element or struc-
ture to which it is applied into an array of
elements or structures with dimensions defined
by name in the LIMITS block.

INIT (value[,value]...) allows the designer to
specify initial values for a variable. The
default value is zero for all elements. If
there are not enough values to fill an array,
they will be repeated from the beginning
until enough values are obtained. Arrays
will be filled by cycling the last subscript
fastest.

HI (value) can be used to specify a maximum
allowable value for input variables. The
default value is 1E75. If an input value
exceeds the HI value, it is reset to the HI
value and a warning message is printed.

L0 (value) can be used to specify a minimum
allowable value for input variables. The
default value is -1E75. If an input value
is less than the LO value it is reset to the
LO value and a warning message is printed.

LABEL (character-string) can be used to give an
..extended label to variable names. [This. label
.will. be:used- on,allwoutput.reports 'on which
~this variable is printed. The character string

must not exceed 30:.characters. Leading blanks

and- excess characters are deleted.

4. INPUT

The INPUT section defines the format of input data
cards which are used to submit decisions and para-
meters to the simulation.. This section is not.

T required in: simulatiopns, ‘such-as growth models,

-.which operate entirely. on :dinitiallized values.

. The syntax is:
" DEFINE INPUT.
[CARD(n}'[@][variable(column,digits)],..,]...
‘END INPUT

n must be between 1 and 97.
be defined in numeric order. The column number
-must be greater than 8. The @ symbol enables the
input of array cross-sections as described later.

Cards do not have to

All data cards have the following fields pre;
defined, and each field must be punched on each
card.

col 1~2 = Industry number. Industry numbers may
‘be between 1-and 99 and must be punched on every
input card. A check is performed for illegal num-
bers above a user defined value so the - lowest
possible numbers should be used.

col 3-4 ="period number. Input for period ~1
initializes the history files for am industry.
Period O can be used to provide the first printed
report to be distributed to players so that they
can see the Initial status of their firms. .
Subsequent periods are then played in numeric
order,

col 5-6 = firm number. Firms are numbered from 1
to N in each industry. N is defined for the
industry during period -1 and may not be changed.
. The definition is performed using an authoriza-
tion card to be described later in this section.
Administrator input, which applies to no indivi-
dual firm, should have a blank or zero in this
field. T

col 7-8 = card number. This field identifies the
format by which the card is to be read. This is
the npumber referred to in the CARD(n) portiom of
the DEFINE INPUT section. Card numbers must be
positive 2 digit integers. The format of cards O,
98, and 99 have been predefined.

The above fields uniquely identify every input
data card and are arranged so that sorting the
cards by these fields will keep all cards for a
single firm, period, and industry together.
Since the simulation automatically performs this
sort, input cards may be submitted in any order
by the game administrator.

Three cards with special uses have been pre- -
defined, Card 0 is an authorization card used by
the administrator to authorize play for each
period. Card 98 is used to broadcast NEWS
messages .£o .all tedams in an industry. Card 99
4s used .to enter .industry and firm names and’
control the number of copies of each report that
are printed,

Card 0, the authorization card, is needea to allow

the game administrator to set certain control .
variables each perjod and also to insure that

Winter Simulation Conference

435

GAME ... Continued

players do not accidentally initiate play for one
or more periods by a keypunching error. -All cards
for an industry and period will be ignored if an *
authorization card has not been submitted for that
industry and period. The:firm number must be left
blank ot zero on this card. The format of the
card is: '

[

col 11-19 = Flags. These flags are either zeroc
(or blank) or one. These 9 flags can be used to
suppress reports specified in the OUTPUT section.
Reports will be printed if the corresponding flag
is set to zero and suppressed if the flag is set
to one. This is a simple way of inhibiting needed
reports or controlling reports that are required
intermittently such as every 4 periods.

col 20-21 = number of firms. This field is needed
only during period -1 when the number of firms
must be specified so that arrays and files of
appropriate size can be created. It will have no
effect in other perilods.

col 22-23 = firm number to be saved. The current
history of 1 firm and of the GLOBALS variables can
be saved on file SAVE to be used to subsequently
initiallize all firms in ai industry. The initia-
1lization may occur in an industry with a higher
number during the same run or in any industry
during a subsequent run if the SAVE file is
permanent., This parameter will have no effect if
it is zero or an illegal firm number. Subsequent
saves will overwrité the file which has been
created. This feature is very convenient for
storing standard initial values or using an old
result as a new starting point.

col 24 = code to get file SAVE. If this field is
nonzero the data saved by a previous use of col.
22-23 will be copied into all FIRMS and GLOBALS
variables. It has an effect only during initial-
lization in period ~1. The copying takes placé
before a save on the same card is performed.

. Card 98 is used to generate a file of messages to
be printed for the administrator and each firm.
Any character string may be entered in columns 11-
80. Up to 99 lines of message may be submitted by
the administrator and each of the teams. Each
line must be numbered in the index field in col.
9-10 of the data card beginning with the index 1.
All 5 fields in cols. 1-10 must be punched. The
message will beé printed only in the specified
industry and period. This is a convenient way of
distributing administrative information ox
advertising firm information such as willingness
to sell surplus product.

Card 99 is used to enter an industry name if the
firm number is zero or a firm name if the proper
firm number is specified. The name .is entered
without leading blanks in cols., 11-78 and is
centered and printed on all reports. If this
card is not submitted, the name fields on the
reports remain blank.

The designer should arrange all of the input data
on the card so that data to be provided by the

436 pecember 5-7, 1977

players is on the first cards and data to be pro=

vided by the administrator follows. The SPLIT

option in the OPTIONS section will generate code
to check which kind of data is being read and
issue a .warning when.administrator data is being
read. This will warn the administrator if a
player accidentally submits data which changes
parameters he is not entitled to change.

If input fields are filled with blanks, the
simulation automatically uses the value from the
previous period as stored in the history file.

All input is checked to ensure that it is within
the allowable range specified in the HI and 1O
options of the variable definitions. If it is

‘not, a warning message is issued to the adminis-

trator and the variable is set to the nearest
allowable value. Input data may be entered as
integers, decimals, or scientific numbers.

Under some circumstances, cross-sections of
arrays may be filled with one entry. This is
particularly useful if the administrator wishes
to set all firms, products, regions, etc. to
have the same value. This feature can be
enabled only for the administrator data above
the SPLIT card.

The designer enables the cross-section feature
by preceding the desired variable with an @
symbol. When this is done, the regular input
routine is replaced by a routine which cycles
through all defined values of any firm number or
index number which has been set to blank or zero.
Thus if X is an array of 3 variables for N firms,
a data card with index number=2 and firm=0 con—
taining a value of 10 for X will have variable 2
set to 10 for each firm, The sorting of input
cards causes cross-sections to be encountered
before individual values. It is therefore
possible in the above example to submit another
card to give a value of 20 to team 2 only. When
cards with identical identification fields are
submitted, the last one read overrides previous
ones, but the sorting order cannot be predicted,
so the result is not predictable.

The column parameter on the input specification
indicates the card column in which data for the
specified variable begins and the digits para-~
meter indicates how many columns are reserved for
this variable. The column number on subsequent
variables must be greater than the column numbers
used on any previous fields.

5. COMPUTE

The COMPUTE section is used to specify computed
relationships between wvariables. Array and
structure computations are possible. Facilities
are provided for including PL/I code to perform
loops and logical tests. The syntax is:

DEFINE COMPUTE .

[{FOREACH| FORALL]:variable =
value[relation value]...;["PL/I code"]]...
END COMPUTE

e

- administrator and to the players.

where
a) variable is a variable or struéture name
defined in the FIRMS, GLOBALS, or TEMPS section.

.b) wvalue is a variable, a:constant, or.a £uncbioq
wreference of the form function. (value). All
..variables in a.syntactic line must have the same
+dimensions and-structure.

* A variety of mathe-
matical.functions .are provided.

c) relation is one of the following:
+ for addition
- for subtraction
/ for division
* for multiplication
** for exponentiation

d) PL/I code is any syntactically correct PL/I
code. Since GAME performs no syntax checking,
errors will not be detected until the PL/I
program is compiled.

FOREACH specifies that a loop is to be cons-
tructed to compute values for one team at a time
until anether FOREACH or FORALL closes the loop.
This will produce some saving in execution code
and will allow the insertion of PL/I code to
perform individual handling of firms.

FORALL specifies that the computations will be
array or structure operations applying identi-
cally to all firms. Effectively, a loop is
generated around each syntactic line:

Lagged values of variables obtained for the
previous period from the history file may be
obtained by preceding the variable name with the
structure name LAG. Thus, a change in X can be
computed as shown below:
CHANGE=X-LAG.X;
optionally, the current period may be preceded
by the structure name NOW., but the translator
will insert this if required. Only FIRMS and
GLOBALS variables may be lagged and only a
single period may be lagged. Situations where
multiple period lags are required can usually be
handled by an exponential lag equation of the
form: i
X=a*LAG.X+(1-a)*X; '
where a is between 0 and 1, The effective lag
period increases as a increases,

PL/I code can be included after a ; in the
COMPUTIE section by enclosing it in double quotes
("). This is not the same as using two conse-
cutive apostrophes. Anything between double’
quotes is inserted without syntax checking, so
it is important that the code be correct.

6. OUTPUT

The OUTPUT section is used to specify the varia-
bles which will be printed on reports to the
Automatic
formats and headings are provided.
reports are available.
the current value of all input variables on a
report for each firm so that input can be
verified.
label, any subscripts, and the value of the
element in single columns in the order specified.

Four -kinds of
The ECHO report will list

The LIST .report will.list the variable

The TABLE report will perform the same fumction
in multiple columns, one for each team. It is
most useful for listing comparison figures for
the administrator or releasing public data,.

. such.as financial statements, to all teams. - °~ .
The NEWS.réport is used to Print messages sub--..

mitted on. CARD (98) of the input.
is:

The syntax,

* DEFINE OUTPUT

[Loption]..s: variable] P P
END OUTPUT .

where option- is one of the following .(defaults
are underlined):

HEADING(YES|NO) .

FLAG(0[1]{2]...|9) -

FORM(LIST | TABLE | ECHO INEWS)

FILE(PLAYER | ADMIN)
TITLE(blank]charac;er-string)

and variable is an element name or structure
name or format control. A format control is
one of LINE, SKIP, or PAGE. The options can be
used to control format and direct reports to
desired files.

TITLE (character-string) will define a title of
up to 70 characters to be inserted in the
standard heading. Tf the option is not used, .
this field will be left blank.

HEADING (YES|NO) determines whether a complete
heading is printed at the top of the report,

or only the title from the TITLE option. If a

complete heading is printed, it will start at-
the top of a new page and include, the indus-
try, firm, period, and page numbers, and the
date, industry name, firm name, and title. If
the heading is not printed, a title is printed
two lines after the end of the last report on
the same page. If the end of a 60 line page

is encountered, a heading will be printed auto-
matically at the top of the next page regard—
less of which option was selected.

FLAG(n) determines which of the 9 flags on the
authorization card will control printing of .
this report. If the corresponding flag on the
authorization card is set to 1, instead of O or
blank, the report will be suppressed. If this
option is not used, the default is to use a
hidden FLAG(0) which is set to always print the
report.

FILE (PLAYER|ADMIN) determines whether the
report will be printed on the PLAYER or the
ADMIN file. This option is provided so that-
PLAYER reports can be printed on multipart -
paper without also printing ADMIN files on
multipart paper. The default is to print on
the PLAYER file.

FORM (LIST|TABLE|ECHO|NEWS) deteimines the for-
mat and content of the output report. The ECHO
report produces a report on the current value
of all data items on cards with numbers below
the SPLIT level in the OPTIONS section. A
report is created on the PLAYER file for each
firm and contains only data for that firm. No
variable list is required since all variable

names are obtainéd from fhe. INPUT specifica;

Winter Simulation Conference

‘437

GAME ... Continued

tions.

The NEWS report is a listing of any messages sub-
mitted by the administrator or players on CARD
(98) of the input. TIf FLLE(ADMIN) is specified,
this becomes a means for players to send messages
or complaints to the administrator. This report
does not require a variable list.

The LIST report produces a 1 column listing of
labels (from the LABEL option of the variable
definitions) subscripts and element values under
a standard heading and title. The variables to
be listed are taken trom the list following the
colon. If an array is included in the list, it
is printed with 1 element per line, cycling the
last subscript fastest. If a structure is
listed, each element of the structure is listed
in order.

The TABLE report produces a table with variables
listed vertically and firms ordered horizon-
tally. Thus, there is a column of data for each
firm. If there are more firms than columns on a
page, the report will be continued on the next
page.

LINE will cause an underline to be printed under
the most recent value. SKIP will cause 1 blank
line to be inserted in the -output. PAGE will

. skip to a new page.

438

IMPLEMENTATION °

The GAME Language is currently being implemented
in PL/I. While this choice of language limits
its use to IBM installations, it also makes
development a great deal easier because many of
the powerful features of PL/I such as data
structures can be incorporated directly into the
language without a great deal of complex coding.

The translatot consists of a separate subroutine
to handle each one of the language blocks. The
GLOBALS, FIRMS, and TEMPS blocks are used to
construct a data structure which defines all

user vadriables and all intermal variables.
Internal variables always start with the @ symbol
to distinguish them from user defined variables.
Tables of HI and LO values and LABELS are also
constructed for later use. The data structure is
then copied into the main program and later into
subroutines which perform. INPUT, COMPUTE, and
OUTPUT functions when called by the main program.
These subroutines are automatically overlaid to
conserve core storage.

The main program performs all file operations by
reading and writing substructures. It is also
capable of bypassing computations and reports so
that input can be economically checked for
errors.

The INPUT block is translated into an INPUT sub-
routine which reads all data for a single
industry and period. Aa internal routine checks
each date field for legal non-blank values and

Deceaber 5-7, 1977

o~

inserts them into the database. When input has
been completed, the updated database is passed
on for computation.

The COMPUTE block is the weakest part of the
language since it only allows limited array
calculations and no conditional statements. An
IF-THEN-ELSE capability is being contemplated
for the [uture.

The OUTPUT block is translated into a series of
internal subroutines with one routine for each
report. These in turn are called sequentially
by another routine which first performs stan-
dard operations like printing headings and
titles.

The translator also has routines to list some

of its internal tables. One lists the variables
and their dimensions and labels which is useful
for debugging. Another lists input variables by
card and column. This list is very useful in
producing player manuals.

One of the advantages of using the GAME Language
is that most of the procedures followed by both
the players and the administrator are very
standardized. This means that a large part of
the documentation which is required in the
Player's Manual and the Administrator's Manual
can be taken directly from the GAME Language
Manual. This eliminates a large part of one of
the most onerous chores of model implementation.

FUTURE EXTENSIONS

Since a corporate simulation can be thought of
as a business game with only one team, the GAME
Language could be used for corporate simula-
tions if it were provided with some of the
commonly used functions such as depreciation

and discounting. It would also be relatively
easy to add some random number generators, add
some different reports and modify the main
program to permit the iterations required for
sensitivity analysis and Monte Carlo simulation.
These features would also be very useful to the
game designer because it would make it very easy
for him-to test the stability of his model under
a variety of inputs. '

SUMMARY

The GAME Language provides a simple tool for the
design and implementation of business or other
interactive organizational games. The tedious
chores of documentation, variable definition,
file handling, error checking, and input or out-
put formatting have been greatly reduced or
eliminated. This allows. the .designer to con-
centrate on.designing a good.model and makes it
easy to improve the model.

