ON THE PRECISION OF PROBABALISTIC PROCESS GENERATORS IN GPSS

ABSTRACT

The precision of several "standard"
probabalistic process generators, as
provided to the GPSS user in various
textbooks and language manuals, are

investigated in this paper. In particular,

the unique requirements in GPS3 for
integral increments in its simulation
clock, as well as its background integer
and truncation features, are seen %o

have an inherent impact on methodologies -

for the generation of probabalistic
processes. Thus, GPS3 requires that we
invoke a discrete approximation to any
underlying continuous probabalistic
process, The GPSS programmer should be
keenly aware of these aspects; failure to
do so could lead to a model lacking the
desired verisimilitude to the object
system under study.

A methodology is then developed in this
paper which utilizes a least squares
approach to yield process generators for
the exponential, Gaussian and other
continuous distributions. This approach
is seen to overcome several of the
difficulties associated with the
conventional GPSS process generators,
and will be useful in numerous instances.

INTRODUCTION

Simulation practitioners who utilize the
GPSS language will, for any reasonably
sophisticated application, be required
to generate random variates from a
probabalistic process. When this
underlying probabalistic process happens
to be continuous, the design philosophy
inherent in the GPSS processor will
significantly impact the selected
generator, since the increments of the
simulation clock in GPSS are restricted
to integer values. Practitioners in GPSS
must therefore be prepared to accept 2
compromise — a discrete approximation to
the underlying continuous probability
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process. One approach that is often
suggested (1) for the minimization of the

error in the resultant discrete approximat-

ion is in the prudent selection of an
appropriate implicit time unit for
running the simulation. Adherence to
this rule entails that the implicit btime
unit be chosen as a lowest common
denominator of the times to be
encountered during a simulation run.

ANALYSIS - THE STANDARD GPSS_POISSON

TROCESS GENERATOR

The generation of random variates from a
Poisson process is equivalent to
requiring that the interarrival times
follow the exponential probability
density function.given by

£(t) = ue %’ £20
where u_l will be the mean interarrival
time. An application of the well-known

inverse probability transform method (2)
provides us with the following .
generator for simulating exponential
interarrival times:

-1
'tl = =1 1n(1—1‘i)

where r; is distributed U(0,1)}. The
"standard" GPSS implementation of this
consists of an approximation to -1nf{1l-r)
with a sequence of 23 straight-line
segments, utilizing the GPSS WFUNCTION"
and follower cards. The 24 points
comprising this approximation may be
found in %3) and elsewhere; we shall
refer to this function as EXPON and
present them below as vectors X and Y,

where Xl = Yl =0, Xp = .1 4, etc.

X=r; Y = —1n(1—ri)
0 0
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Following normal GPSS procedures, we
assign the mean interarrival time +to the
upn Field of a "GENERATE" block, with
"ENSEXPON" in the wpy field; the GPSS
procegsor will then multiply the two.
resultant values, and the truncated
result becomes the, GPSS—-approximated
exponential variate.

The fundamental postulate (4) which
leads to the system of differential
equations by which we derive the

Poisgon process requires that there be a
negligible probability of having two or
more arrivals in a given instant of time.
An equivalent interpretation of this is
that the probability of observing an
interarrival %time of zero should be
negligible. Schriber (5) cautions us that
for mean interarrival times below 50

the suggested GPSS generator seriousiy
violates this postulate. Tc reiterate
his example, the block

“"GENERATE 5,FNJEXPON" will, via the
inherent truncation mechanisms referred
to earlier, yield an interarrival time
of zero more than 18% of the time
(whenever the value generated from
BXPON is less than .2). By making the
implicit time unit smaller by a factor
of 10, obtaining an equivalent
interarrival time of 50 (the minimum
recommended by Schriber), the basic
Poisson postulate will still be violated
about 2% of the <time.

For given ul (which will be assumed o
be integer), we can easily derive an
expression to evaluate the percentage

of time our Poisson postulate is violated
by the standard GPSS exponential

generator.
Let n = min (Yi_l‘lléYi) 1=2,404,8
i

We then obtain .
Prob(GPSS yields a zero interarrival tm)

- Prob(u~l* (EXPON variate) <l )
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= P(EXPON variategu )

Then, due to the linear interpolation
which occurs in GPSS, the above prob-
ability becomes

Xpq + (u - Yy 3) % (%, - Zp1) .
(Yn - Yn—l)

In (6), we have_ivaluated this expression
for wvalues of u ranging from 2 {(which
yields a probability of GPSS violating the
Poisson assumption close to 40% of the
time) to 400 ?where the postulate is
violated slightly more than 2 times out of
a thousand).

A desirable characteristic for a GPSS
process generabtor would be that it
provides the same expected value as the
probability distribution it seeks to
mimic (we might refer to this as the
unbiased property of the generator).

I+t should be clear, however, that the
expected value of the standard GPSS
exponential generator should be less |
than 1/u, due to the inherent truncation
mechanisms in GPSS. We may derive a
precise expression for the expected
yalue for the probability distribution
inherent in the GPSS standard exponential
generator as follows:

=1
E(Y).=%E:k * P( GPSS interarrival time = k)

k=1

8 -1

=S x * B( Efl* EXPON variate] =% }
- .

Since values from EXPON are bounded above
by 8, and since, if a pseudorandom
number is generated 2.9998, then the value
assumed by GPSS for EXPON is 8, the above
su%maﬁion is equivalent to

u =1

k*¥P(ku & EXPON variatel(k+1)u)

KL=

+ .0016/u

Invoking the imbedded linear interp-
olation which occurs, ‘the above
summation becomes

8/u -1

k(X 1 X 4 F
o n(k+1)-1 “n(k)-1

-((k+1)u - n§k+l)—1)*(xn(k+1)-‘n(k+1)’1)

(Y (a1 Tna(xs1)-1)



~(ku - Yn(k)—l)*(xn(k) = Tp(x)-1))

(Yn(k)_ Yn(k)—l)

where n(k):m;n(Yi_lglﬂngi) i=2,.4.,24.
i

The expected value of an exponential
distribution with parameter u is 1/u;

in (6) we have tabulated the expected
value of the GPSS exponential generator
for selected values of u, with results
generally indicating that it will
underestimate the true mean interarrival
by about .4 to .5, depending on the
parameter u. A comparable expression for
computing the variance is also presented
there. .

In actuality, one might maintain that
since the standard GP3S exponential
process generator prohibits values
above 8/u, what it seeks to discretely
approximate is not the usual exponential
distribution with which we are most
familiar with, but rather an exponential
distribution truncated from above, whose
general form would be
-ut
N f('t) =" ue

l_e—uT

OLtaT .

One can readily.- show that the expected
value of the exponential distribution
truncated from above will be

- T
WL - )

For our application under study, T=8u"l;
substituting this into the above
expression, one obtains

~1 8 -1
u 1 - -—gT ) = .9973u
( (e®~1)

or slighfly less than wt, Clearly then,
the standard GPSS exponential,process
generator also underestimates the mean
of an exponential distribution
truncated from above at T=8/u.

ANALYSIS -~ THE STANDARD GPSS NORMAL
PROCESS GENERATOR

To generate a normal random variate R
with mean M and standard deviation g,
several references (see (3)) provide us
with the standard GPSS process generabor
for a Normal variate with mean zero and
standard deviation equal to one, to which
we apply the following well-known
transformation to obtain our N(M,3):

Ri = s*N(o,l)i + M,

We next present the points comprising the
standardized normal generator in GPSS as
vectors X and Y.

X=r; Y = SNORM( N(0,1) )
.0 -5
.00003 —4
.00135 -3
.00621 -2.5
.02275 -2
.11507 -1.2
.15866 -1.0
.21186 -0.8
« 27425 ~0.6
.34458 -0.4
42074 -0.2
.50000 0.0
57926 0.2
.65542 0.4
72575 0.6
. 78814 0.8
.84134 1.0
.88493 1.2
.93319 1.5
.97725 2.0
.99379 2.5
.99865 3.0
. 99997 4.0

1.0 5.0

The intent of the GPSS standardized normal
processor is to exclude the tail ares ’
beyond 5 standard deviations from the

, mean; in actuality, then, what we are

being provided with is a discrete
approximation to what is referred to as a
doubly truncated normal distribution,
whose mean will equal zero and whose
standard deviation, for our truncaétion
points, will be ,9999261 (see (7) for a
discussion of some of the properties of
doubly truncated normal distributions).

The aforementioned transformation from

the standardized normal processor to the
desired N(¥,%) will take place in a GPSS
FVARIABLE block, which has the effect of
delaying the truncation until after all
the arithmetic operations have been
performed. As with the exponential, though,
the truncation distorts the desired
precision of the discrete approximation,

The most distinguishing property of the
normal distribution is its symmetry; we
shall demonstrate that the "recommended
GPSS normal process generator does NOT
provide this symmetry, but is skewed %o -
the left of the mean. To illustrate, let
us suppose one wished to generate Normal
random variates with mean equal to 6 and
standard deviation equal to 1. To
generate the value 5 from this distribu-
tion, one would require that the
standardized generzator yield

~1 £ SNORM £.0.

Referring to the aforementioned table for
SNORM, we find that a 5, which is one
standard deviation below the mean, will be
generated by our GPSS process generator
over 34% of the time. On the other hand,
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On the Precision of Probabalistic Process Generators im GPSS {continued)

in order for our GPSS process generator
to yield & 7, whic¢h is one standard
deviation zbove the mean, the
requirement on-the standardized
generstor becomes

14& SNORM & 2 ,

Consulting our +table, we find that a 7
would be generated about 133% of the
time. Thus, we are more than twice as
likely to generate a value one standard
deviation below the mean then we are

to generate = value one standard
deviation above thée mean; for this
distribution. Continuing in this
monner, we find that we will generate

a 4 (wvhich is 2 standard deviations
below the meon) over 13%% of the time,
while orly slightly more than 2% of the
tine will an 8 be genercted, which is

2 deviations above the mean;(i.e.,'a
factor of 6 here). The table below
summarizes .the probability distribution

. for this GPSS discrete sdproximation to

a N(6,1) :

Value GPSS—generated Prob.
1 .000032
2 .00132
3 0214
4 .12591
5 .34134
6 .34134
7 .13591
8 .0214
g .00132

- 10 .00003
11 0.0

One readily determines that the mean of
the GPSS discrete approximation to N(6,1)
is 5.5, while the standard deviation is
1.0408265. Thus, the approximation to
N(6,1) underestimates the mean by over
84, overestimates the standard deviation
by about 4%, and does not preserve the
desired symmetry of the Normal
distribution.

Let us derive a general relationship for-
determining the mean and standard

deviation of the probability distribution

inherent in the GPSS approximation to
N(®,8). Let us define - :

n(x) = min(¥g(k-)/S27Y,; 1) .
1 - .

We shall restrict ourselves to positive
values for the domain of k in the
following formulas, which invoke the
implicit linear interpolation which
oceours in the GPSS processor, We shall
define F(k) = k, and evaluate the
expected value.. )

December S-7,,197%

TL.et M be the mean, and S the standard
deviation of GNORM.

K455
. F(X)Prob{GNORM = k)
M-58

E(Y) =

I+ 538
= E T(X)Prob(k &£ GNORM & k+1)
M~-53

M+58

P(k)P((k-M)/S &£SHORML (k+1-})/S)
=53

I+53
=i F(k)(}in(k.*_l) - Xn(k) b

=58

O kelM
S n(lk+1)

*(Xp(1er1)+1 Fn(ies1))

+ )
(Yn(k+l)+l - Yn(k%i)

kT
5 " Yo

~Yn(k)+1"Yn(k)

* Enyer = Fn(xy))-

It is clear that we can obtain the second
moment aaout the origin by substituting
F(k) = ¥° in the above expression, from
which we can readily obtain the variance
by subtracting from the second moment the
square of the mean. A FORTRAN implement—
ation of this revealed, for various N€M,S),
that the discrete epproximation
consistently underestimated the true mean
by .5, while always overestimating the
standard deviation.

To recapitulate our analysis, we have
found that the discrete Normal approx-
imation provided to us in GPSS texts and
manuals

i) provides a skewed distribution;

ii) consistently underestimates the

- desired mean of the Normal by .53
iii) overestimates the standard deviation.

. THE LEAST SQUARES PROCESS GENERATION

We shall develop a methodology for
probabalistic process generators in
GPSS which will overcome several of the
difficulties with current probabalistic
process generation technigques caused by
+he imbedded truncation features in the



language. Our philosophy is to accept as
inevitable the truncation mechanisms
inherent in GPSS, and to develop an
approach which incorporates this
truncation into a well-defined procedure.
The methodology to be developed is seen
to be a special case of a more general
line-segmenting approximation technique
presented by Stone (8).

Theorem 1, Let the cumulative distribution

function of our desired continuous

probability process be denoted by F(x),

and let us assume that by invoking the

Inverse Pfobability Transform, we

obtain F - (r), where r is Ugg{l;. Let ‘the
r

discrete approximation to F be
given by
1 uo=O &r g uq
To y Wgreu,
¥ U,Er &
y = 3 2= 3
i UN-_1EF & Uy
IN41 U 4T & Uy, 1 =1

where y=(y1,y2,y3,...,yN) is given, and
the breakpoints u=(ul,u2,u3,...,uN) are
$0 be determined. The following equation

yields the values for uy which provides,

in the least squares sense, the best
discrete fit to the continuous probability
process:

uy = F(3(y #yp1)) p=lyee.,N .

Proof: By the least sguares criteria,
we wish to determine u=(uq,us,...uy)
.which will minimize

N+l ..

Qu) = Z SJ (FL(r) - yj)zdr'
J: Y

j-1

To determine the normal equations, an
application of Leibnitz's rule yields (9)

F
Yp

I

(572 (uy) - v = (w02
=0 for p = lyeeeyN

Solving for F_l(up), we obtain
P (uy) = Bypip,)

from which we obtain

Uy = F( %(YP + yp+1) .

Corollary When ypr= p, we obtain the
breakpoints by

w, = F( p+3 ) .
EXAMPLES AND APPLICATIONS OF THE LEAST
SQUARES PROCESS GENERATION THEOREM

Let us consider an exponential .
probabalistic process generator, with
Yy = P Invoking the corollary to Theorem

l: and substituting into the cumulative
distribution function for the exponential,

we have 1
up - l —_ e—u(P+2)
for »=1,2,...,N.

Since yl=l, our new exponential process

generator guarantees that we will never
generate an interarrival time of zero,
and thus will never violate the
fundamental Poisson postulate. Let us
next derive an expression for the
expected value of an exponential variate
generated by our procedure. We have

E(Y) E_ ij
J:
_ -1.5u .
= l-e +i3(uj—uj_l)

=2
+ (1) e~ 5)
=1 - g~Ll:5u +z(e—l.Su - e-2.5u)

+3(e_2'5u—e'3'5u)+...+(N+1)e—u(N+%)
= Lye~1-5u +e—'2'5U‘+...+e—(N""%)u
= l+e"l'5u(1+e_u+...+e'(N—l)u)

E(Y) —l.SU. . (l_e—Nu)

1 +e
(1-e™)

In (6) we have evaluated an equivalent
exnression for the expected value, with
results indicating an error in the
generated mesn of less than 10% of that
of the "standard" exponential generator.
Similar expressions and results are
readily obtained for the standard
deviation of our proposed exponential
generator.

If we let g denote the percentage of time
that we wish to generate the largest
possible interarrival time, N+1, then we
may analytically determine the number of
brezkpoints N by noting that the

probability of generating an interarrival

Fime o N+l is e M%) igetting this
equal to g and solving foxr N, we have
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On the Precision of Probabalistic Process Generators in GPSS (continued)

N = ‘u—lln(q;l)ngj.

Some broad suggestions for the
implementation of this generator in
GPSS are nresented in {6).

Our attention next turns to the
development of a process generator for
the Normal distribution. The following
theorem will simplify this task
considerably.

Theorem 2, In GPSS, to generate discrete

Option 2 :

Option 3 :

Option 4 :

Let us now

Expand SNORM to more points, to
increase precision by minimiz-
ing the slight error due +to
linear interpolation.

Build a FORTRAN quadrature
routine for Normal evaluation,
and access it via the GPSS HELP.

Use Theorem 1 directly to
determine the breakpoints.

return to our earlier problem

Normal variates which best fit, in the
least squares sense, the continuous

of constructing a GPSS process generator
for N(6,1). We first will apply Option 4
and use Theorem 1 directly to obbain the

Normal distribution, utilize the
following

FVARIABLE VJSTDEVX¥FN$SNORM+VEMEAN+1/2 .

Proof: Without loss of generality, let us
evaluate the probability of generating
an integer W,where .

M-55&WLN+55,

invoking the Least Squares Process
Generation Theorem for a N(M,S) with

CDF given by F(x). We readily obtain from
our Theorem 1 ‘that a W should be
generated whenever, for a random number v,

P(W-3) &4 r & F(W+3) .

breakpoints. With the aid of 6-place
Normal tables in (10), we would build our

GPSS FUNCTION to provide the following:

Range Value Prob.

0.0 £ r< 000003 1 . 000003
.000003 ¢ & ,000233 2 . 000920
.000233 ¢ re ,006210 3 .005977
.006210 ® v+ ,066807 4 . 060597
.066807 £ r& ,308538 5. .241731
.308538 €re .691462 6 .382924
601462 &£re ,933193 7 . 241731
.933193 &£re .993790 8 . 060597
.9383790 #re ,999767 9 . 005977
«999767 %ere .999997 10 .000230
.999997 &r& .999999 11 .000003

Denoting the standardized CDF by Z(x),
we thereby obtain .

We.note the desired symmetry present in
this GPSS discrete generator, which has
its mean equal %o 6. Another calculation

_ z(.W_:'__‘;:L;.M. 'jéri_z(ELi‘_:_M)

This is equivalent (but see note below)
0 requiring that )

31 1
Wz N, smom‘,"li_?_iq (1)

S
Equation (1) them becomes

W&S*SNORM + M + 2 & W+l .

This last result, however, is what we
obtain from our FVARIABLE statement in

GPSS. Q.E.D.

Note: The proof and implementation of
Theorem 2 are dependent upon having a
precise evaluation of the probability
statement of equation 1, rather than an
approximate linear interpolation.
Depending upon, the individual GPSS
programmer's concern for precision, as
well as the amount of additional effort
one wishes to expend for his simulation
program, four options are available:

Option 1: Continue utilizing the 25 point
SNORM in the above FVARIABLE.
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yields the

standard deviation of +this

distribution as 1.0408333.

We will next apply Option 1 to the same
problem, i.e., we use the modified
FVARIABLE (with a 1/2 correction factor
we discussed) and the 25 point SNORM. We
can analyze the probability distribution
obtained from the following:

Range Value Prob.

0.0 &r & . 000015 1 .000015
.000015&r ¢ 000690 2 .000675
.000690%r & ,006210 3 .005520
.006210¢r « , 066810 4 . 060600
.0668108&r & .309415 5 « 242605
.309415&re ,690585 6 .381170
.690585&re ,933190 7 « 242605
.9331904r+ ,993790 8 . 060600
»993790&r& ,999310 9 . 005520
.999310%r+ ,999985 10 . 000675
- «999985£r € .399999 11 .000015

For this distribution (which is symmetric
with the desired mean), the standard
deviation is 1.044854, which is slightly
higher than the previous one.



As our last example, let us derive a
discrete process generator in GPSS
to approximate the continuous
probability process given by the
density function

2
f(x) = ¥
243

0&x&9

Invoking Theorem 1, we see that we will
need to evaluate F(.5), F(1.5),...,
F(8.5), where the CDF F(x) is easily
found to be 3
Px) = X

— by £
TG 0&2x&29
The GPSS processor for this distribution

is characterized in the following
table:

Range Value Prob.,.
0.0 £re ,0001714 O . .0001714
.0001714%re 0046296 1 .0044582
.0046296%re 0214334 2 .0168038
.0214334¢re 0588134 3 .0373800
.0588134sre .1250000 4 .0661866
.1250000%re ,2282235 5 .1032235
.22822354r¢ 3767146 6 .1484911
.3767146&re 5787037 7 . 2019891
5787037kre 8424211 8 2637174
.8424211sr ¢ .9999999 9 .1575789

The expected value of this discrete
approximation is calculated %o be
6.7638893, which compares quite well
with the true expected value of the
continuous distribution of 6.75 .
Similarly, the standard deviation of this
discrete approximation turns out to be
1.783933, which is very close to the

true standard deviation of 1.7428425.

CONCLUSION

The "time-honored" probabalistic process
generation methodologies in GPSS have
been analyzed, with their precision-in
certain regards found to be lacking.

The process generation methodologies
suggested in this paper should prove
useful to the GPSS programmer who has

a concern for precision and the
attainment of verisimilitude of his. .
models to the object systems under study.
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