ABSTRACT

With the increased capability of modern simulation languages, more complex models are being structured to describe highly interactive, dynamic systems. This has resulted in an almost geometric increase in the computer time required to execute these models when the number of scheduled events (or processes) in the future scheduling list becomes abnormally high. This is especially true in the case of process-oriented languages such as SIMPL/I.

This paper presents the results obtained from a comparative study of several well-known scheduling strategies in the context of useful test cases and of the operational environment of a typical large system. The test cases comprise a set of stochastic distributional patterns which are

STMT 1 PROBLEM: MODEL OPTIONS(MAIN);

V. L. Kapil and V. G. Ashar IBM System Products Division East Fishkill Facility

Hopewell Junction, New York 12533 of particular interest in the simulation of queuing and reliability systems. Both the linear and the stratified list types included in the study combine with sequential or binary search techniques to formulate alternative scheduling strategies.

The comparison of various strategies is focused on the empirical distributions of the number of scans required for m insertions over a period of time under different operating conditions.

In this study, SIMPL/I is used as the simulation vehicle, although the conclusions are, in general, expected to be valid for other process-oriented languages. The program below represents a SIMPL/I model for the classical machine-repairman problem which is used as the major instrument of analysis for comparing alternative scheduling strategies.

```
SIMPL/I MODEL OF MACHINE REPAIRMAN PROBLEM WITH M MACHINES AND R REPAIRMEN
                      MACHINES: BEHAVIOR;
TAKE (NEGEXP(1,60));
BREAKDOWN_TIME=CLOCK;
CHECK: IF VOID(FREE_REPAIRMEN) THEN
  23456789
                                 DO:
HOLD UNTIL CHANGE(REPAIRED);
GOTO CHECK;
                            END;
OO;
REPAIRMAN = FIRST (FREE_REPAIRMEN);
REMOVE FIRST FROM (FREE_REPAIRMEN);
REPAIRMAN -> MACHINE = CURRENT;
NOTIFY REPAIRMAN;
1Ó
1123415678
118118
                                        ENTER OBSERVED (CLOCK-BREAKDOWN_TIME) IN (REPAIR_TIME);
                      END MACHINES:
                 REPAIRMEN: BEHAVIOR;
INSERT CURRENT IN (FREE_REPAIRMEN);
HOLD;
TAKE (NEGEXP(1,5));
REPAIRED=REPAIRED+1;
NGTIFY MACHINE;
END REPAIRMEN;
9012345
26
                        GET DATA ( M, R, SIMULATION_TIME);
                        DO I = 1 TO M;
START MACHINES AFTER TIME(0);
END;
DO I = 1 TO R;
START REPAIRMEN AFTER TIME(0);
END;
27
28
29
30
                        DO I=1 TO SIMULATION_TIME/100;
TAKE (SIMULATION_TIME/10);
SIMSNAP;
PLOT REPAIR_TIME;
334
35
36
37
                        END PROBLEM;
```