MULTIPLE SEQUENCE
RANDOM NUMBER ZENERATORS

Joe H. Mize

Oklahoma State University

Abstract

Many discrete event simulation models utilize a single random number sequence,

regardiess of the number of random variables included in the model. This paper

illustrates the advantajes of utilizing 2 unique random number seiuence for each

random variable. An example is included to demenstrate the resultirg effects.

A method ;s described for converting a single sequence random number gererator

to a multiple sequence generator. An application is included that compares

simulation results cbtained using a single sequence of random numbers to those

obtained using a unique sequence for each random variable in the modef.

Introduction

Most simulation studies are cenceinied with
systems that contain random phenomena; interarrival
times, service times, demand values, time to failure,
etc. In order to produce useable results, a model of
such a system must provide a mechanism for repre~
senting these random phenomena.

Considerable effort has been directed toward
the development of random' variate generators. Most
of the generators in use today make use of uniformly
distributed random numbers . For examples, see
Naylor, et.al. (1966), Mize and Cox (1968), and
Schmidt and Taylor (1970). These random numbers,

in turn, are converted to a random deviate from an

67

appropriate probability distribution. Thus, simulation
modeling requires the availability of a random number
generator that vill produce numbers uniformly distri-
buted on the interval zero to unity.

The most widely used method for generating
such numbers is the "congruential method," first pro~
posed by Lehmer (1959). Almost every computer
center has a random number function or subroutine on
its system library. Most of tirese generators create a
single sequence of random numbers; beginning with a
ﬁser provided "seed" value.

The purpose of this paper is to demonstrate that
in many simulation models a single sequence of random

numbers is inadequate. This rather crucial feature of

simulation modeling has not been explained suffi-
ciently in most texts and other literature refated to
simulation. The two most widely used simulation
{anguages, GPSS {see Gordon, 1969) and
SIMSCRIPT (see Kiviat, et.ai., 1968) provide a
limited number of random number streams, however,
the reasons for using multiple streams are not made
clear. ‘

Most random number generators based on the
congruential method can be modified easily to produce
as many parallel sequences as the user desires.

One of the prime advantages of using simula-
tion as a means of studying complex systems is that
it offers the analyst a means of comparing one system
configuration to any rumber of other 'configurations.
Furthermore, it is possible to construct the model
such that the alternatives are evaluated using the
identical sequences of event occurrences for each
" alternative .

Special care must be exercised in the con-
struction of such a modeil, however. This is not
always a straightforward process. A common pitfall
of an inexperienced analyst is to believe that his
simulation model compares competiﬁg alternatives
against identical event occurrences, when in fact it
does not. The example in the next section illus~
trates the nature of the problem.

Demonstrative Example

Consider the simulation of a simple queueing
system in which customers arrive at random times
and the length of time required for service is alse
random. Specifically, suppose that the tire between

customer arrivals is a uniformly distributed random

variable over the interval O to 4 minutes. Service
time is also uniformly distributed over the interval 1
to 6 minutes.

It is desired to simulate the performance of
this system, first with one service facility and then
with two. If the mode! is constructed properly, the
performance of the system can be simulated for the
two configurations such that the exact same patterns
of arrivals and service times will occur. In this way,
the two system configurations will be compared under
identical conditions. Any differences in performance
may then be attributed to the difference in system con~
figuration {one service facility versus two) and ot to
“axperimental error.” This removes from consideration
a source of variation which would be impossibie to
eliminate if the experiment were to be conducted in
the real world. -

Denote the time between customer asrivals as
X, and service time as Y. It can be shown that the
followirg process generators will produce random de=
viates for the two random variables, according to the
probability functions specified above:

X =4 .0 RN

Y=1.0+5.0xRN
RN is a uniformly distributed random variable on the
unit interval. If our mode! were computerized, RN
could be obtained by call’ng the system random number
generator each time a new value of X and Y is needed.

We shall observe the performance of this modal
for ten arrivals to the sysiem, first with one service
facility and then with two. We will need a random
number to determine the time of arrival of each cus-

tomer and another to determine the service time of

each customer. We will use single digit random
numbers to simplify computations, although in an
actual experiment we would use much greater accu=

racy. We will use the foliowing sequence of random

numbers:
3,.6,.5,.5, .c, .8, .9,.7, .9,
.6, .6, .5,.9, .8, 3,.3, .4, 4,
.1, .5, .C,.5,.6,.4,.8,.9, .0,
7, .4,.0,.9,.4,.6,.9,.7,.1,
3,.1,.9,.9,.2,.9,.6, .2, .2,

2,.2,.5,.0,.4

We will perform our simulation in an "event~
oriented" manner. In such a simulation, process
generators are used to determine when particular
events will occur and all events are allowed to occur
in their natural sequence.

The simulation results using a single random
‘number sequence _and one seiver, are shown in

| Table 1. The random numbers used were taken in

consecutive order from the source included above.
There are three numbers in each c2ll of the second
and fourth columns of Table 1. In the upper left
hand corner is simply the sequence number of the
random number taken fromgthe above source and used
in the determination of the occurrence time of the in-
dicated event. In the upper right hand corner is the
random number itse!f. The value in the lower portion
of the cell in column two indicates the time of arrival
of a particular customer and is determined by substi=
tuting the random number (RN) in the upper right
corner into the equation X = 4.0% RN and adding
the resulting value to the arrival time of the previous

customer. The value in the lower portion of the cell

69

in column four indicates the service time for 2 parti~
cular customer and is obtained by substituting the
random number (RN) in the upper right hand corner into
the equation Y =1.0+5 0* RY. Column three
indicates when service may begiﬁ fdr a particular cus~
tovfrer and is simply the larger of the two values, Time
of Awival of that customer and End Service of the

previous customer. Column five is simply the sum of

columns three and four for a particutar customer.

It will be instructive to trace the occurrence of
a few events in the mode!. The arival of the first
customer is obviously the first event. The time of its
occurrence is determined by using the first random
number from the basic saurce. This gives an arrival
time of 1.2. Since no previous customey is i} ser-
vice, the first customer may go immediately into
service. We must now detérmine the service time for
this customer by using the second random number from
the basic source; Y=1.0 + 5‘.0* 0.6 =4.0. Thus,
customer one begins service at 1.2 and ends at 5.2.

The arrival time of customer two is determined
by using the third random number in the manner de-
scribed previously. it is found that customer two
arsives at 3.2, This is prior to the End Service
time of customer one. Thus, the service time for
customer two cannot be determined at this point in
the simulation. The next-event orientation of our
model requires that we place customer two in a holding
pattern and go on to determine the arrival time of
customer three, using the fourth random number from
the basic source. This results in an arrival time of
5.2 for customer three, the exact same time that

customer one completes service. We now use the fifth

Table 1. Single R.N. Sequenice; One Server

Time
Customer of Begin Service End
Numbet Arrival Service Time_ Service
0 0 0 0 0
1. .3 2 .0
i 1.2 1.2 4 5.2
3 5 - 0
2 3.2 5.2 0 5.2
q .5 5 .8
3 5.2 5.2 5 10.2
7 .9 9)
4 8.8 10.2 5.5 15.7
‘ 8 Vi 12 .5
5 11.6 15,7 3.5 : 19.2.
. .5 14 .8
6 14.0 19.2 5.0 24,2
11 .0,
7 6.4
1 9
8 23.0
15 3
9 21.2
16)
30 22.4
Table 2. Single R.N. Sequence; Two Servers
Begin End
Sepvice Service
‘ Time
Customer of Service Server No.
Number | Time 1 1 2
0 0 0 0 0
it 3 A .6
3 1.2 11.2 4 1.5.2
3 5 4 .5
2 3.2 3.2 3.5 6.7
5 .0 7 9
3 3.2 5.2 5.5 10.7
() .8 g .9
4 6.4 6.7 5.5 12.2
8 o 11)
5 9.2 10.7 4.0 14.7
10 .6 13 Ky
6 11.6 12.2 | 5.5 17.7
12 .5 15]
7 13.6 14.7 2.5 17.2
14 .8 17 4
8 1€.8 17.2 3.0 20.2
16 3 18 4
9 18.0 18.0 3.0 21.0
19 o
10 18.4

70

random number to determine the service time of cy:=
tomer two. Since this random number is zero, custe~
mer two departs immediately and we use the sixui
random number to determine the service time of custo-
mer three. The remaining events siown in Table 1 -
are determined by following this same procedure.

We riow wish to observe the performance of
this model when t.ve service facilities are provided.
Again using the event oriented simulation proceduie,
the results shown in Table 2 are obhtained. The first
three eveﬁts are the same as in Table 1. However,
when customer two arrives at time 3.2, he may go
immediately ifto service at servef* number two. Thus,
the iourth random number in this case is used to
determine th> service time of customer two, wheireas
in Table 1 it was used to determine the arrival time
of customer three. Many other discrepancies exist
between Tables 1 and 2.
| The critical point is that the two system con-
figurations are being evaluated under different streams
of event occurresces. Forexample, customer number
six, who might - 2 John Doe, arrives at time 14.0
in Table 1 and at time 11.6 in Table 2. Such a
result obviates one of the orincipal advantages of
simulation analysis.

Clearly what is required is a unique sequence
of random numbers for each random variable in the
model. This will permit the generation of identical
streams of event occurrences, no matter how the

system configuration may be modified.

Converting to_Multiole Sequence Generators

It is a relatively simple matter to convert a

FORTRAN random number subroutine to a multiple

A

sequence generater. Consider, for example, the
following generator:
SUEROUT!NE SRAND (IS, R)

EMP = 1S
IF(!S)B 10,3
3 15=90

ARG = 475518104.

IF (TEMP - 2500.) 4,4,5
5 TEMP= TEMP - 2500.
4 ID=TEMP
10 IF (ARG) 11,12,11
12 ARG =475918104.

GO 10 14 | |
11 ARG = ARG%23.

iF (ARG - 100G000010.) 15,16,16
16 ARG = ARG ~ 1000000010,
GO TO 14

15 IF (ARG - 100000001.)17, 18 18 -
18 ARG = ARG - 100000001.
GO 1015
17 IF i®) 20,20,19
19 D=1D-1
GO T0 10
20 = ARG/100000000.
RETURM
END

As it is written, this subroutine will generate
a single sequence of random numbers. The user
specifies an initial burn value (an integer called iS)
in the calling program. The appropriate call is as
follows:

CALL SRAND (iS, R)
When called the first time, the generator wiil "burn"
and ignore the first IS random numbers in the sequence.
Thereafter, on each cail, the next number in the
sequence is generated and returned as R. ARG =
475918104 is the initial seed value and 23 in
statement 11 is the multiplier in the congruence
relation. The generator will not ailow more than
2500 values in the sequence to be burned,

The follawing subroutine shows the same

generater, but modified to generate any number of

paralle! random number sequences:

SUBROUTINE MRARD(S,R,ARG,N)
DIMENSION ARG(1)
TEMP = IS
IF(iS)3,10,3
3 15=0
ARG(N) = 475918104.
IF(TEMP - 2500.)4,4,5
5 TEMP = TEMP - 2500
3 ID=TEMP |
10 IF(ARGIND11,12,11
12 ARG(N) = 475918104,
GO TO 14
11 ARG(N) = ARG(N}23,
14 IF(ARG(N) - 1000000010.)15,16,16
16 ARG(N) = ARG(N) ~ 1000000010,
GO 70 14 e
15 IF(ARG(N) - 1000600001 .17,18,18
18 ARG(N) = ARG(N) - 100000001 .

GO 70 15

17 IF(D20,20,19

13 i=iD-1 ,
GO 70 10 :

20 R = ARG(N)/10000000C.
RETURN .
END

In this modified generator, the user specifies
an array of burn values (called LSEED(n) . all
integers and each unique) in the calling program. In
additioh, the array ARG(n) is dimensioned in the
calling program. The dimension séze, n, of both
LSEED and ARG is made équal to the nymber of
unique random number streams desired. The appro-
priate call is as follows:

CALL MRAND (LSEED (i), R, ARG, D)
where "i" is the pavrticular random niumber stream
desired on this call. The initial portion of each
stream is "burned” on the fir.t cal‘i to the subroutine
for that stream. On subsequent calls to that stream,
the modified generator will produce the next rumber
in the ith sequence and return it to the calling pro-
gram as R. It is the user's responsibility to use the
proper sequence designation as he is programming
the logic of each random phenomenon.

It is noted that the modified generator pre=

sented above actually produces different portions of

the same random number sequence..: Suppose, for
exanple, that we set LSEED (1) = 5 and LSEED (2)=
10. MRAND would burn the first five numbers of the
sequence for random variable 1 and the first ten num=
bers of the same sequence for random variable 2.

Thus, the 6“‘, 751, Sth, etc., event occurrences for

random variable 3 are governed by the same random

~ numbers as the ISt, 2"d, 3“’, etc., event occur~

rences for random variable 2. This problem can be
overcome by specifying in the cailing program an array
of multipiier values. The name of this array would be |
passed through the argument list and used in place of
the constant 23 in s;afenzeﬁt 11 in Subroutine
MRAND. in this way, a truly unique sequence is
generated for each random variable. The numerical
values for the multiplier array must be selected care~
fuliy, in accordance with the theory underlying the
congruential method. {See Mize and Cox, 1968,

or Schmidt and Taylor, 1970).

A more commonly used random number generator
is that supplied in the 1BM System/360 Scientific
Subroutine Package. This subroutine, slightly modi-
fied, is listed be low: |
SUBROUTINE RANDU (I1X, YFL)

Y = X% 65539
S 5147483647 + 1
YFL = VFL .4656613E - 9

IX= 1Y
RETURN

on

IX is initialized in the calling program to any
odd integer value with nine or fewer digits, and YFL
is a uniformly distributed random number on the unit
interval (0,1.0].

This generator is easily modified to atlow the

generation of any number of paralle! random number
sequences:

SUBROUTINE MRANDU (IX, YFL, N)
DIMENSION IX(1)

Y = IX(N»¥ 65539

IF (IV) 5,6,6

L4
5 1IY=1Y+2147483647+ 1
6 YFL=IY
YFL = YFLx 4656613 E -9
IX(N) = 1Y
RETURN
END

In this modified generator, the user specifies
an array of seed values (called IX(n), all edd integers
witﬁ nine or fewer digits and each unique) in the
calling program. The dimension size, n, of IX s
made equal to the number of unique random number
streams desired. The appropriate call is:

CALL MRANDU (IX(, YFL, i)
where "i" is the particular random number stream
desired on this call. .

Most random number generators can be modi~
fied in a similar way. Such modifications would be
especially useful when using GASP or FORTRAN as
the simulation language. GPSS provides the capa-
bility of generating up to eight para!lei sequences,
while SIMSCRIPT permits up to ten sequences.

An Application in GASP*

To illustrate the usefulness of the multiple
sequence generator, the results of an application are
included. The model was written in GASP (see
Pritsker and Kiviat, 1969).

Two types of jobs arrive at a job shop for
processing. Interarrival times and servicing times
are exponentially distributed with the following

means:

73

Entegatrival Service
Type 1 . ' 5 Eg
Type 2 —2.00 0.75

Type two jobs have a higher priority than type one
jobs. Newly arrived type two jobs are scheduled ahead
of type one jobs unless N or more type one jobs are
waiting for proceséing , where N is an unknown number
which we wish to find such that total waiting cost is
m_inimized. Waiting costs foé. type one jobs and type
two jobs are $1.00/minute and $3 .00/minute,
respectively.

Processing of type one jobs is never iater=
rupted in order to process newly arrived type two jobs.
Ten percent of type two jobs fail to pass inspection
and are immediately reprocessed. Conoeptbal!y , they
never move off the machine, A new service time is
determined. 7

A GASP model was constructed for this system
and run for varying values of N. Each run of the mode!
was fer 1000.0 time units,

The experiment was first conducted using a
single sequence random number generator. |t was then
repeated using a unique random number sequence
(produced by Subroutine MRAND) for each random

variable in the system. The results for several values

of N are plotted in Figures 1 and 2.

In Figure 1, the cost curves are very erratic
and do not appear to be converging to any kind of
optimum. In Figure 2, both component cost curves
and the total cost curve behave very nicely, displaying
*The author gratefully acknowledges the assistance of
Glenn C. Dunlap, Arizona State University, in the

programming of this example and in the development of
the multiple sequence generator, MRAND.

$16,000
- Cost

8,000
6,000

4,000

2,000

$10,000
Cost

8,000

6,000

4,000

2,000

s o ~ ~
.\\
Total Cost
N
— \
\,, Cost Type 1
«— Cost Type 2
1 2 3 4 5 6 <7 8 9 10 N
- Figure 1. Cost Curves Using One R.N. Sequence
~ -
\\‘ ~
' \ ’ T 77T T "~ Yotal Cost

\(, Cost Type 2

eeeeee—"""%— Cost Type 1

//

/

1 2 3 4 5 6 7 8 9 10 N
Figure 2. Cost Curves Using Multiple R.N. Sequences

74

the monotonic characteristics that ene would expect.
it is clear from Figure 2 that the total cost curve will
eventually converge to an optimum value, which it

does at N= 32.

Figure 3 shows the Avei‘age Number of Units

in the System for several values of N. The solid
line shows the results obtained using the single
sequence rangom number generator SRAND.. The
dashed line shows the results obtained using the
multiple sequence generator MRAND. The difference

in variabiiity is rather striking.

Summary

In many discrete event simulation models, a

unique random number sequence is desirable for

each random variable in the model. Failure to

incorporate this feature may lead to ili~hehaved

models having a-much larger vari'abifity than is

pos'siblé with multiﬁievsequences.

It is very easy to convert most single se~

quence random number generators to muitiple

sequence generators. The advantages of doin{; 50

are well worth the effort.

Igo._ in
ys?tem ' / Results Using MRAND
5.0 s
’/‘, \\ |
~ Y 7 »
4.0 ~V \(- Resuits Using SRAND
\
3.0
1 2 3 4 5 6 7 8 9 10 N

Figure 3. Average Number of Units in System for 100 Hours

75

N L T e e

References

Gordon, Geoffrey, System Simulation. Prentice~
Hali, Inc., Eng ewoo% Clif?s, N.J., 1969.

International Business Machine Corporation, -

stteméBbO Scientific Subroutine Package (360 A-
CM -~ orm - ~-0. ite Plains, :

New York, 1966.

_Kiviat

s P.J., R. Villanueva, and H. M. Markowitz,
e S{MSCRIPT 1l Programming Lanayage.. The
RAND Comoration, Santa ! nica, Calit., 1968.

Lehmer, D. H., "Mathematical Method in Large=

 Scale Computing Units"; Proceedings of the Second
~ Symposiumon Lamge-Scale Digital Eo uting
s %‘ Harvah University bress, %amEridge,
£ SS., . :

952, 2

Mize, J. H., and J. G. Cox, Essentials of Simula-
%%%. Prentice-Hall, Inc., Ernglewood Cliffs, _ﬁJ.,

Naylor, T. H., J. L. Balintfy, D. C. Burdick, and
K. Chu, Computer Simulation Techniques. John
Wiley & Sons, Inc., New York, I?Elg. B
Pritsker, A.A.B., and P. J. Kiviat

Schmidt, J. W., and R. E. Taylor, Simulation and

Analysis of Industrial Systems. Richard D, Trwin,
Tnc., Homewood, Ilfinois, 1970. TRt

~ Sigﬂliﬁn_‘og with . SR
gASP llb Prentice-Hall, Inc., Engfewoo iffs, o
° L] .' . .

%

