CLASS

COMPOSITE LANGUAGE APPROACH FOR SYSTEM SIMULATION

(A TUTORIAL)

Harold G+ Hixson

Computer Sciences Division (ACTR)

Headguarters, Air Force

Logistics Command

Wright-Patterson Air Force Base, Chlo 45433

Summary

There are several possible approaches to
providing both discrete event and continuous
system simulation capability in the same
modeling context. One approach is to develop
a new language which has this capability.
Another, which is addressed in this tutorial,
is the use of compatible 1Enguages in com-
bination. One possibility™ involves the use
of SIMSCRIPT II as the basic language.
Another possibility is the use of the General
Purpose Simulation System (GPSS) and its
"HELP" language FORTRAN. This tutorial
explains the basic capabilities required for
discrete event modeling, those needed for
continuous system simulation, and the con-
siderations involved in achieving a "hybrid"
language capability. It also includes appli-
cation examples, concentrating or an applica-
tion requiring additional language facilities
for modeling process control computer systems.

Introduction
Backgtround

A recent paper'LL described the union of
the SIMSCRIPT II language and GPS3 concepts
to provide capability for both discrete event
and continuous system simulation. It is pos-
sible to use *the combinatlon of GPSS and
FORTRAN for the same purpose and that pos-
sibility is addressed here. A "natural"
application for this simulation capability is
the modeling of process control computers.
However, general purpose simulation languages
need augmentation so that they are adequate
for modeling computers. For example, 7
SIMSCRIPT II is the host language for ECSS
(Extendable Computer System Simulator).
Similarly, a recent development effort
utilized GPSS as the host language for imple-
menting concepts inherent w%thin the System
and Software Simulator (S3)°. These two
examples illusitrate the possibility for a
vertical relationship between languages
(building on a basic language in 'macro'
fashion) as opposed to a horizontal relation-
ship between languages (permitting communica-
tion and transfer of control between programs
written in two or more languages).

X

Tutorial Organization

The first section of this tutorial is
designed to impart a basic understanding of
discrete event simulation in two of 1ts most
popular forms - GPSS and SIMSCRIPT. The
sesond section provides descriptions of the

474

basic logical, computational, time dependent,
and special elements necessary for continuous
system simulation. The third section pre-
sents the major considerations for achleving
full communication between, and compatibility
of, the sub-models in a combined discrete
event and continuous system simulation. The
fourth section describes several very simple
examples of CLASS applications. The fifth
section concentrates on one of the most
ehallenging applications of CLASS - a process
control computer system. The last section
addresses language needs, GPSS adaptations,
and preprocessor capzbilities which are
required to make this a_.plication practical.

Basic Simulation Concepts

Discrete Event Simulation

Figure 1 summarizes the basic capabilities
possessed by GPSS and SIMSCRIPT. In general,
the conditions under which the use of one 1is
preferred over the use of the other are speci-
fied in Fipure 2. Discrete event simulation
features event occurrences at irregular
intervals.

Continuous System Simulation

Figure 3 summarizes the basic capabilities
possessed by most continuous system simula-
tors. These operational elements appear in
categories defined by functional similarities.
Continuous system simulation features regular
time incrementation with periodic state
change throughout the model. This regularity
is indicated by the term "sampled-time
simulation”. .

The Ties That Bind

A continuous sampled-time simulation can
be exactly represented as a discrete event
simulation by defining a special event which
computes the outputs of each simulated
"analog" block in the continuous portion of
the model at every sampled time instant. This
technigue is used in the CLASS approach and
allows the discrete event and continuous sec-
tions of the model %o interact on a global
basis. One of these possible interactions is
that of allowing output variables from the
discrete portion of the model to become input

variables to the continuous subsystem (and

vice versa). Modification of continuous block
parameters by a discrete event process allows
re-specification of a block's characteristics




during the course of a simulation. The use of
continuous block forced state change allows a
discrete event to cause a step change in an
otherwise continuously changing variable. The
process of entity ftransformation models
material flow between continuous and discrete
event storage areas. When the value of a
specifled continuous variable passes a pre-
determined threshold a discrete event may be
triggered, either immediately or after a time
delay. Continuous sub-model structure change
may allow substitution, addition, or deletion
of blocks with appropriate adjustments in
thelr interconnections. These adjustments

may be activated by a discrete event and
thereby allow system self-organization or
special effects.

Process Controller Applications of CLASS

Application Description

A variation of the CLASS approach has been
used to simulate a process control computer
(the IBM 1800), which can be used to control
and measure the performance of a number of
aircraft engines in various stages of trial
(ground) operation in test cells. The details
of th&s application were provided in a recent
paper™ and hence are not repeated here. In
addition to the criginal implementation des-
cribed in that paper, this application is
under study using a combination of GPSS and
FORTRAN.

Continuous System Simulation Submodel

The aircraft engines in this application
are belng simulated with a Continuous System
Sinulation Language (CSSL) implemented in
FORTRAN. Communication with fthe FORTRAN sub-~
routine required is through the GPS3 HELP
block and its arguments (Standard Numerical
Attributes). The integration technique used
in the suphmodel is the second order predictor-
corrector®, A sorting method? is utilized to
initially place the elements in the correct
sequential order %o permit solution. Inter-
pretive execution of the logic and computation
specified by these elements produces output
which is arranged in time series tabular form.
This output is printed throughout the duration
of the CLASS simulator execution.

Discrete Event Submodel

The logic of programs used by the process
control computer are described by GPSS blocks.
The components of the computer are represented
by either GPSS facilities or storages, as
appropriate, However, for obvious reasons,
the capability of GPSS needed to be enhanced
through special adaptations for this applica-
tion. Thils enhancement is addressed in the
following section.

Language Adaptations and Supplements

Computer System Modeling Needs

The need for a powerful, efficlent, flex-
ible, responsive, and open-ended simulation
language for studying computer systems has
been universally recognized. However, com-
pletely documented and tested languages which

475

approach this ideal have been slow to appear.
Two languages show great promise but the suc-
cess of each depends on further development,
extension, and refinement. The System and
Softwvare Simulator (S3) had neither a rich
syntax nor reasonable limitations on the size
of computer configurations to be simulated in
its first full implementation on the UNIVAC
1108 computer. Th recently developed Air
Force version of S> for the Honeywell (GE) 615
and the commercially available (proprietary)
System Analysis Machine (SAM) have both over-
come these limitations to some degree. The
second language which has been developed to
fill these needs is the Extendable Computer
System Simulation (ECSS). The commercially
available simulation algorithm packages used
widely for computer configuring and costing
are not considered here because each of these
is pre-programmed and parameter-driven as
opposed to being a language for compilation or
pseudo (interpretive) language. It should be
noted that the composite language described
here was developed and used prior to_the
availability of the 615 version of 83, SAM, or
ECSS. As such it was intended solely for use
as an interim technique. However, its success
in simulating large scale multiprocessors and
small scale process controllers indicates that
it employs a sound approach and that therefore
a aore efficient implementation of this
approaci niay be worthwhile. In such an imple-
mentation, the syntax could be modified to
reflect "natural’ computer terminology.

GPLUS

GPLUS is a completely obscure acronym for
the composite of the "GP3S Language Using S
Concepts" and serves only to provide a con-
cise name for this approach. _Common functions
of computer operating systems” and application
programs are listed in Figure 4 along with a
few of the GPSS blocks used in simulating
these functions. A sample of the similarities
between mogt of these blocks and corresponding
original 33 statements is provided in Figure 5.

One of the primary mechanisms of GPLUS
(which enables it to take on the form of S3)
is that of recursion. Contiguous parameters
of each GPSS transaction are utilized in
creating a pushdown stack of GPSS subroutine
return block numbers. Ordinarily, two para-
meters are required for each level of sub-
routine call, one for the identification num-
ber of the subroutine, and the other for the
location where the transaction departed that
subroutine. The transaction will eventually
return to the block immediately following
that location.

Figure 6 describes the GPLUS logic for
simulating individually activated load modules
and subroutines. Simulated programs may be
reentrant, conditionally reusable, serially
reusable or non-reentrant. GPLUS provides for
lodding a reentrant module only prior to its
first use and for loading a new copy of each
non-reentrant module for every activation. It
also provides for speclal loading conventions
and user queuing for reusable modules. GPSS
subroutines are used to describe the logic of
program modules which execute synchronously.
The GPSS "SPLIT" block creates transactions
which are sent to GPSS subroutines which
represent load modules which execute



asnychronously. Special events which occur
only when the last one ¢f a famlly of asyn-
chronously executing load modules terminates
are triggered by GP3S blocks which route the
related GPSS transactions to one common
ASSEMBLE block.

A fey,of the possible output statistics
from GPLUS are listed in Figure 8. These are
used to analyze processor, channel, and device
utilization and identify under-utilization,
imbalanced utilization between similar compo-
nents, or saturation. Program execution
statistics indicate areas within software
modules or application programs where revised
logic might result in more efficient (faster)
execution. Analysis of job or activity
queuing may result in useful hypotheses con-
cerning workload management or proper settings
for software control variables. A system-wide
review of the statistics may indicate revi-
sions to the system configuration, such as
cross~-barring channels, standardizing memory
partition size, etc. If adjustment does not
provide sufficient performance improvement,
system augmentation may be necessary. After
deciding what actions may be desirable, the
altered system may be simulated to test and
validate its predicted performance improvement.

The Need for Readily Available Models of
Computer Systems. When computer component
capacity and rated performance factors,/con-
figuration connections, software descriptions,
and application program logic must all be col-
lected from diverse sources for a large com-
puter system, preparations for a simlation
study can be excessively time co:;yhing. When

the time necessary for manually cdding the
simulation language statements ig added, the
resulting manpower resource regulirement may
either become prohibitive or impose an accep-
table time delay before obtaining simulation
results. As an aid in minimizing the time

and manual effort required for obtaining one
of the items listed above (the simulation
logic for application programs), the following
technique was developed.

SIGNAL, The §3 Input Generator for All
Languages (SIGNALY is a decompiler/%ecompiler.
Tt is used in the process of transforming
source language programs into either original
83 statement form or the GPSS blocks needed %o
implement GPLUS (at the option of the user).
It currently allows the user to choose either
FORTRAN IV or COBOL as input. The current
implementation is in FORTRAN for the Honeywell
615 computer and depends on the utilization of
the compilers for that computer. The first
step of the process is to complile the source
language. The object code produced by the
compiler, a list of computer (binary) opera-
tion codes and associated timings, and a list
of input/output operations and their associated
average times are input to SIGNAL, SIGNAL
decompiles the object code, computes timings
of instruction execution, and translates
looping and I/0 operation codes to their
equivalent GPSS blocks., Instruction and code
words are counted and incorporated into the
simulated program description, This simulated
application program description, in terms of
GPSS blocks, is punched out in card form. The
user selects one of a number of large-scale
computers to which this simulation input
applies by means of a control variable which

is simply the model number (e.g., 615, 635,
6000, 1108, 1110, 6600, 7600, 155, 165, etec.).
In addition, upon user request the total pro-
gram execution time and an estimate of pro-
gram I/0 time for each of these computers is
printed, The I/0 time estimate assumes aver-
age seek time, average latency time, no I/0
request queuing, and no channel, device, or
read/write head contention. Figure 7 is an
example of application program statement
input to the compiler and the corresponding
simulgtion program statement output from
SIGNAL.

BIBLIOGRAPHY

1. D; Fahrland, "Combilned Discrete Event/
Continuous Systems Simulation," SRC-
68-16, Systems Research Center, Case
Weggern Reserve University, July
1960,

2. D, Fahrland, "Combined Discréte Event/
Continuous Systems Simulation,"
Simulation, Volume 14, Number 2,
February 1970.

3. H. Hizxegon, "Equipment Maintenance Studiles
Using a Combination of Discrete
Event and Continuous System Simula-
tion," Proceedings of the Third Con-
ference on Applications of Simula-
tion, December 1969,

4, H. Hixson, "CLASS - Composite Language
r Approach for System Simulation,' Pro-
cegedings of the Fourth Conference on
Agpéications of Simulation, December
1970,

5., Leo J, Cohen, "Operating System Analysis
and Design,"” Spartan Book, 1970.

6. Leo J. Cohen, "System and Software Simula-
tor," Documents AD679269 through
ADG79272, Clearinghouse, U,S. Depart-
ment of Commerce, 1968,

7. N, R. Nielson, "ECSS, An Extendable Compu-
ter System Simulator," RM-6132-NASA,
The RAND Corporation, February, 1970,

8. D. D, McCracken and W, S. Dorn, "Numerical
‘ Methods and FORTRAN Programming,"
John Wiley and Sons, New York, 1964,

9. M. L, Stein and J. Rose, "Changing From
‘ Analog to Dlgital Programming by
Digital Techniques," Journal of the
Association for Computing Machinery,
7, 10-23, 1960,

BIOGRAPHY

Harold G. Hlxson is the Group Leader of
the Numerical Methods and Information Systems
Group in the Headquarters of the Air Force
Logistics Command at Wright-Patterson Air
Force Base, Ohio, He has held positions at
that location as an actuary, mathematician,
and ‘operations research analyst. Mr. Hixson
graduated with a B.S. in Mathematics from
Otterbein College in 1957. His professional
affiliations include Simulation Councils, Inc.
and the Association for Computing Machinery.

476




GPSS
TRANSACTIONS/PARAMETERS
ASSEMBLY SETS
GROUPS OF TRANSACTIONS
CHAINS OF TRANSACTIONS

(SYSTEM/USER)

BLOCKS

HELP SUBROUTINE
MACROS

QUEUES

FACILITIES

STORAGES

SYSTEM NUMERICAL ATTRIBUTES

SAVEVALUES

FUNCTTIONS
VARIABLE STATEMENTS
SWITCHES

SIMSCRIPT
TEMPORARY ENTITIES/ATTRIBUTES
PERMANENT ENTITIES/ATTRIBUTES
SETS OF ENTITIES

SETS OF EVENT NOTICES
EVENTS
EVENT NOTICES
EVENT ATTRIBUTES
EVENT ROUTINES

CALLED ROUTINES
INVOKED FUNCTIONS

TIME/RANDOM NUMBERS

SY3TEM VARIABLES
LOCAL VARIABLES

RANDOM LOOK-UP TABLES
STATEMENTS

Figure 1

Comparison of Basic Language Features

USE GPSS FOR:

QUEUING PROBLEMS

SMALL TO MEDIUM
APPLICATIONS

LITTLE INPUT AND
STANDARD OUTPUT
SUFFICIENT

NUMERIC PRECISION AND
MAGNITUDE REQUIREMENTS
NOT SEVERE

PROGRAMMING EFFORT AT
NOVICE LEVEL, SHORT
DURATION AND/OR
INDIVIDUAL APPROACH

FAST COMPUTER EXECUTION
NOT REQUIRED

FREQUENT MODEL
MODIFICATION EXPECTED

Pigure 2

USE_SIMSCRIPT FOR:

COMPLEX NUMERIC, EVENT, AND/OR
SET -ORIENTED PROBLEMS

LARGE APPLICATIONS REQUIRING
EFFICIENT MEMORY USE

SUBSTANTTIAL INPUT AND/OR
TAILORED OUTPUT REQUIRED

PRECISE AND/OR LARGE
NUMBERS REQUIRED

PROGRAMMING EFFORT AT
EXPERT LEVEL, LONG DURATION,
AND/OR TEAM APPROACH

FAST COMPUTER EXECUTION
REQUIRED

INFREQUENT MODEL
MODIFICATION

Comparison of Language Applicability



Basic Single Values:

INDEPENDENT VARIABLE
CONSTANT
ABSOLUTE VALUE

Arithmetic Operations:

SUMMER (4)
MULTIPLIER
DIVIDER

Roots and Powers:

SQUARE ROOT
LOGARITHM
EXPONENTIAL
POWER OF VARIABLE

Trigonometric Functions:

SINE

COSINE
TANGENT

ARC SINE
ARC COSINE
ARC TANGENT

Calculus Operations:

INTEGRATOR
DERIVATIVE

Logical Elements:
AND/NAND/NOT
EOR,/IOR/NOR
EQUIVALENCE
RESET (Flip-Flop)
COMPARATOR

Switches (Relays):

INPUT SWITCH
OUTPUT SWITCH
FUNCTION SWITCH
BANG-BANG

DEAD SPACE
LIMITER

NEGATIVE CLIPPER
POSITIVE CLIPPER

Time Dependent Operations:

DELAY (lag)
IMPULSE
PULSE

RAMP

STEP
HYSTERESIS

Special Operatiops:

STCRE /ZERO -ORDER HOLD
MAXIMUM,/MINIMUM
QUANTIZER

FUNCTION GENERATOR

Continuous System Simulation Features




Function(s)

Transaction Input

. Receiver, Director,

Allocator, & Loader
Instruction Timing
Transfer Control
Looping

I/0 Instructions
Activate Program Module
Call or Perform Subroutine
Multiprogramming
Dispatcher

I/0 Request Processing
Distributor

Deallocator and Terminator

Location
AP

08

AP and 0S

AP and 0S

AP and 0S

AP and 083

AP and 0S

AP

AP relinquishes,
0S controls and
dispatches next
AP

03

0S

0s

Figure 4

Type(s) of
GP3S Block(s)

GENERATE

Many Blocks

ADVANCE
TRANSFER

LOOP

TRANSFER (SBR)
TRANSFER (SBR)
TRANSFER (SBR)

TRANSFER (SBR)

Many Blocks
Many Blocks

Many Blocks

Application Program (AP) and Operating System (0S) Functions

479



Partial List_of Equivalent

Original S3 GPSS
Instructions oo Blocks |
TRA LABEL TRANSFER , LABEL
TRA -P PERCENT, LABEL 2 TRANSFER FRACTION,
LABEL 1,
LABEL 2
READ (OR WRITE) TRANSFER SBR,(%%%%E),l
MOVE CHARACTERS ADVANCE TIME
MATH OPERATIONS ADVANCE TIME
COMPUT INSTRUCTIONS ADVANCE TIME
ETC .
ASSIGN PARAMETER, ITERATIONS
* LABEL
L,OOP ITERATIONS , LABEL
0P PARAMETER, LABEL
CALL ' SLM, DLY TRANSFER SBR, SIM, 1
CALL ALM, NODLY SPLIT 1,ALM
PLACE* AT,Q LINK Q,FIFO
SELECT#** AT,Q UNLINK Q,LABEL,1

* This instruction places the available transaction (AT) in a queue called Q.

*¥ This instruction selects a transaction (AT) from a queue called Q.

Figure 5

Equivalence of Some 83 Instructions and GPSS Blocks

480



Type of
Application
Program
Simulated

Load Module
(e.g. ALM)

Load Module
(e.g. SLM)

Subroutine
(e.g. SUB)

Type of
Execution
Simulated

Asynchronous

Synchronous

Sequential

Calling Program
Contains This
GPSS Block

SPLIT 1,ALM

Called Program
Ends With This
GPSS Block

TRANSFER ,TERM

Note: This ending assures that the
the copy transaction is destroyed
after module execution, resource
deallocatlion, and program termination.

TRANSFER SBR,SLM,1

Note: Parameter 1
contains the
TRANSFER Block
number.

TRANSFER SBR,SUB,1

Figure 6

481

Simulation of Forked Activity Programs and Subroutines

TRANSFER P,1,1

Note: This

routes the trans-
action back to
block following
TRANSFER SBR,SLM,1

Series of GPSS
blocks to implement
recursion by return
address list and
pointer.




COBOL

Source GPLUS
Statements Simulation
(Input to the Compiler which Blocks
Produces Input for SIGNAL) (Output from SIGNAL)

MOVE MAXDAYS TO PERIOD.

MOVE 99 TO TYPE. " ADVANCE 283

WRITE EXTOl. TRANSFER SBR,WRITE,1
ADVANCE 161

IF X GREATER THAN 6 GO TO TWO. TRANSFER .5, ,TWO

DIVIDE 1000 INTO SEC GIVING MILLI.

MOVE TIME TO LOG. ADVANCE 341
TWO.
ADD 1 TO YEAR GIVING NEXT YEAR., TWO ADVANCE 107
READ INPUT TRANSFER SBR,READ,1
Pigure 7

An Example of Source Language Translated to GPSS Blocks

* Processor, Memory, Channel, and Device Utilllzation
* Processor and Elapsed Time by Program

* Number of Real Time Transactions Processed

%  Number of Program Executlons

* Distribution of Activity Within Each Program .

* Number of Program Swaps

*  Job and Job Segment Throughput

* Job and Job Segment Queue Léngths and Waiting Time
Distributions for Each Operating System Queue

# I/0 Request Queue Lengths and Waiting Time Distributions

Figure 8
Types of GPLUS Output Statistics

482



