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1 - INTRODUCTION

This study will try to develop a probability
function which can predict an important aspect of
a dynamic system's behavior : its ability to be
stable over a long period of time,

The data used by the study were taken to
represent systems in general, and it is hoped
that the results can be used by any discipline
dealing with systems, in accordance with General
‘System Theory's principles (von Bertalanffy,
pp. | - 10, 1956), even though it was intended
primarily for the behavioral sciences, where the
need for dynamic considerations of systems behavior
is much greater tham in the natural sciences.

2(a) =

A system can be defined as a vector differ-
ential or difference equation of the form (Hall,

DEFINITION OF A SYSTEM

pp. 18 - 28) :
. 1 = 1,2,0000s,n
1.¢a) dx. _ i l 3e e
—i &) 2,
'¢)) at
L) X, ,,=@G+D xi j=1,2,00000,m

In dealing with large systems we cannot trace
their behavior over time (trajectory) and it is
extremely difficult in many cases, if not impos-
sible, to kndw the state of their variables at the
equilibrium position of the system (von Bertalanffy,
pp. 20, 1968). However, it'is often possible to
discover if a system is stable (converges) or un-
stable (diverges) over time.

2(b) - DEFINITION OF STABILITY
A system is stable if :
lim Xi (t) - Xi| =0
as t 3 o 1= 1,2,000eeym

where Xi—(t) is the state of the system at period
t, and Xi is_the equilibrium state of the system,
that is f(xi) =0

3 -~ TESTING FOR SYSTEM STABILITY

There are several tests to determine the
stability of a given system. It is known that if
the real parts of the eigen values (\.) of the
matrix of coefficients A are negative in (la) or
smaller than one in (1b), then the system will be
stable.

In the case of non-linearity the same
stability conditions exists as if (1) is linear ;
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but, instead of global, we test for local stability.
This can be seen by linearizing a non~linear
function through the Taylor's series expansion, in
which case we can see that the stability is not
influence by the higher degree terms (Lotka, pp.

60, 1956),

Testing the stability of large systems by the
method of eigen values can become computationally
by itself an extremely difficult task. Since the
latter part of the nineteenth century (Routh 1877)
methods have been developed to determine a system's
stability without the need of finding its charac—
teristic roots, These methods applicable for
linear systems were developed by Routh - Hurwits
(Samuelson, pp. 430, 1967) and Nyquist (Ashby,
pp. 256, 1960), They are much simpler than the
testing of eigen values but they involve a lot of
computations too, and are based on the negativity
of the eigen values, Their main disadvantage is
that they do not disclose anything about classes
of systems, but rather test the stability of
specific systems,

1

The Lyapunov's "second method" can also be
used to test for stability, if the form of differ-
ential equation is known, and a function V(X),
fulfilling certain properties can be found (Kalman,
pp. 371 - 373, 1960), 1In specific problems,
however, "it may be quite hard to hit on a function
(V(X)) displaying the required properties" (Newman,
pp. 26, 1961).

In the field of Economics, qualitative
(pattern of signs, ~, 0, +) (Samuelson, 1967),
(Quirk, pp. 311 - 326, 1965) and dominal diagonal
conditions were considered which, when applicable,
it was assured by theorems that the system was
stable. Thus, classes of systems, like certain
types of markets, can be tested for stability in a
way which does not involve much computational
effort. An excellent discussion and summary of
these stability conditions is given in two papers
by Newman (pp. 1 - 8, 1959), (pp. 12 ~ 29, 1961).
4 =~ DIRECT CALCULATION OF PROBABILITY OF
STABILLITY

The qualitative and dominal diagonal have
certain advantages over the testing of eigen
values methods ; however, their applicability is
limited to systems whose properties are very well
known. Nor is there a method which can tell us
for example, classes of systems which can be stable
97%, 987% or even 99,997 of the time. These
classes will have to be labelled as unstable ;
even though very few of the individual systems
composing the class really are. Furthermore, there




is no method which treats stability as an explicit
function of time. :

Ashby (pp. 260, 1960) was the first to attempt
to determine the probability of stability as Z,
the system size, increases. He did this for a
limited number of uniform distributed matrices. He
found fhat the probability of stability decreases
at 1/2° rate (when the parameters are a = -10,
b = +10), where Z is the system size. Id which
case only a system of size one will be stable.

Since it is fel{ that an explicit function
should be known relating stability to both system
size and the properties of the system, this study
moves directly into calculating empirically the
probability of stability of systems of size 1,2,...
drawn at random from a certain type of distribution
with given parameters. In this way, the chances of
stability of systems of any size, distribution and
parameters can be determined. TFurthermore, it is
hoped that the knowledge of the probability of
stability can be used for optimizing system designs
an area demanding a high concentration of research
(Simon, pp. 55 ~ 56, 1969).

~ COEFFICIENT OF VARIATION

To control the isampling error, the sample size
of matrices generated, n, was chosen in each case
so that the coefficient of variation ¥ (¥ _ &p )
would be .05. Then, the n matrices P
representing a givern type of system were tested
and the percentage of stable matrices was found in
each case (see tablé 1).

5(b)

6 ~—~ EMPIRICAL DETﬁRMINATION OF STABILITY
FUNCTIONS i

a) g}gpggﬁ_gﬁ;szggggs ¢ The resulting per-
centages of each type of system (table 1) were
regressed as a function of system size Z and the
estimated values of thé parameters as well as the
functional form that best fit the data were found

(seé table 2).

The general form of the estimated equations

(2) P(S) = e a BZ

where p(s) is the probability of stability, Z the
system size and 8 gnd P are the estimated values of
the true theoretical values of a and b.

was

Thus, if we hdve a system of size Z of the
distribution and parameters as in (2) then
will give us the probability of stability of
this system. It is obvious that p(s) is at least
one, if Z is equal or smaller than a/b. 1In this
case, thé system will always be stable. If Z is
greater than a/b, then not only do we know that it
is unstable, but we also know what is the exact
probability. (This probability will refer to a
large number of systems of the same characteristies).
Furthermore, assuming we can extrapolate, the pro-
bability of systems of any size can be found, thus
removing the extremely difficult computational
task of testing for the stability of large systems.

Same

p(s)

(2) can be treated as a p.d.f. whenever the
values Z can take permit it. Such a treatment can
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facilitate the use of (2) in analytical manipul-
ations. (2) is a p.d.f. because :

oo
a ~bz
3 dz = 1
a+ log b
b

the c.d.f. of (2) is

1 - e P2 a+1ogeb <7 & o0
4’ for
b b
0 otherwise

b) Uniform systems : We should note that (2)

because they deal with systems of specific dis-
tributions and parameters (see table 2). However
if all the uniform data are combined and regressed,
then the functional form and the parameters of a
generalized fupction can be found. The resulting

equation, (5) expresses the probability function

of any kind of uniform system where Z], Zys 23
differentiate the probabilities of
different kinds (parameters) of uniform system.

(5) p(su) = ,1860 ~-.1092Z +.2607Z -.093822 +.05623
(2.2)  (~19.5) (=2.4) (-21.7) (4.9

where Z is the order of the matrix

Z1 is the r?tio of diagonal over the range

of non diagonal elements

22 is the mean of diagonal elements

Z3 is the mean of the non diagonal elements
(5) has an R2 of .93

and an F-test of 204.7

It can be seen from (5) that the coefficient
of Z, is positive which means that the p(s ) will
increase as the ratio of Z, increases. This in
accord with dominal diagonal theorems which are
directly quantified in this way. The coefficient
of Z, is negative which again agrees with diagonal
theofems because as Z, decreases, other things
remaining equal, then the matxix becomes more
diagonal and p(su) increases. As is expected, the
sign of Z; is the opposite of Z, and p(su) will
decrease ~as Z3 increases.

(5), like (2), can be treated as a probabil-
ity function and the chances that it is at least
one can be found, for certain values of Z. That is :

-.1860 +.2670Z] —.093822 +.056SZ3 -1

(6) z&
.1092

in this case we will have to treat Z ., Z, and Z

as known, which is true if we are dealing with

some specific system or classes of systems. Thus,
we do not need to know the difference or differ-
ential equation of the system in order to deter—
mine the system's stability. But only 2, Z and
Zq which are easily found. As with (2), the"values



of Z greater than (6) will determine the probabil-
ity of stability of all systems.

0D p(sa) = .3401 -.10612Z +.l737Zl--079422 +.045423
(4.9) (-14.9) (2.9 (-16.2) (5.4

the R? of (7) is .85

and the F-test is 117.1

where Z, Z., Z, and 23 are defined the same as in
(5). A system, then Will be stable if :

.3401 +.1737Z, ~ .079422 + .045423 -1

1

@ zz
. 1061

cxpanding systems 1

The functions developed so far deal with new
systems ; that is the probability of stability of
a brand new system of size Z is sought. However,
in real life situations this is not always the
case. In both living and organizational systems
(this is a distinctly different case than when a
new system is examined) the growth is successive.
Thus we have a system of size Z ~ K which even~
tually can grow to be of size Z, It is obvious
that the Z - K size system will be stable and the
probability that the expanding Z - K to Z size will
be required where X = 1,2,3,.... (the p(Z/2 - K
is stable). To obtain data, stable systems of size
say 2 x 2, were expanded to 3 x 3, 4 x 4.... or
stable systems of 3 x 3 were expanded to 4 x 4,
5 x5.... and the probability of stability of the
expanding systems found (see table 3 and 4).
As with new systems the results were regressed
and the functional form and parameters of the
probability of stability found. The number of
different types of systems generated was kept only
to two because of the tremendous amount of com—
putations required (about 4 computer hours of a
360/65 to obtain the data of table 3 and 4).
However, it is obvious that one can collect data
for any desired number of system types. As with
the new systems, generalized equations of expand-
ing systems can be found, (This was not done in
this study because not enough data were available).

The two equations obtained were for uniform
distributions. The first one of all elements of
distribution can take values between — 10 and
+ 10 (a = ~10, b = + 10),

The estimated equation is :

(9) p(s,/ p(s )=1) = exp (1.73 - 1.242 -.1152,)

2 (5.0) (-21.3) (-15.8)
with R = 88 and F-test = 262,9
where Z, is the sum of the eigen values and
p(s_/p(s_) = 1 is the probability of stability of
a ubiforl system with a = ~10, b = + 10, given

that the original system before the expansion is
stable.

The second equation occurs when the distrib-
ution is again uniform but with diagonal values
ranging between zero and minus ten, and the non-
diagonal between minus ten and plus ten. Then,
the estimated equation is :
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(10) P(Su/p(sn) =1) =e xp (1.51 -.75Z -.049Z

2 (6.9)
= 86 and F-test = 190

2
(-19.1) (10.1)
with R

It is interesting to compare the coefficients
of (9) and (i0). We can see that the coefficient
of Z is greater in (10) which means that the
(ps /p(sn) = 1) will decrease much faster as the
sysgem size 2 increases,”in (9) than in (10)., In
addition the coefficient of Z, is larger in (10)
than in (9), but since Z, is negative (for stable
systems) then its effect will be contrary to that
of Z, that is, as the negativity of the diagonal
increases (Z, decreases) this will have a greater
effect on the system described by (9). This
observation can be a useful one for a system
designer.

It can be seen that the probabilities in (9
and (10) other things being equal, are higher than
those in (2) since a stable system's sum of eigen
values will always be less than zero. We can also
see that p(s /p(s_) = 1) will be higher, the
smaller the Sum “of eigen values.

(9) and (10), as (2) and (7) can be locked as
p.d.f. or c.p.d.

On the average Z, will be XZ where Ais the
mean eigen value thus, (9) or (10) become :

(1) pls,/p(s ) = 1) = e 7+ D2
and the value of Z which makes the system stable is
Zg& a
b;+ A b4
and since A is negative (for stable systems) then

Z will be greater than in the case of new systems.

7 - CONCLUSIONS

The probability functions estimated are highly
significant (high F-tests) with the independent
variables explaining about ninety percent of the
variation of the pﬁobability of stability. It is
obvious that the R” and F-test can be increased if
the coefficient of variation of the generated
systems is reduced below the five percent level
used by this study. This is simply a computational
matter. Furthermore, there were no restricting
assumptions concerning the type of the system, its
parameters, its functional relation, or its
difference or differential form. Thus, the find-
ings enable us to estimate a probability function
applicable to systems in general capable of the
following :

a - to determine if a system or class of systems is
stable or unstable

> - to know what is the probability for an indiv-
idual member, or a class of systems of being
stable

¢ ~ to express stability explicitly as a function
of the system size Z

d - to test the stability or know the probability
(by extrapolation) of very large systems



to test the stability of a system whose

difference or diffierential equation is not
known, as long as. the mean and the range of
diagonal and non~diagonal elements is known

to test the stability of non-stationary

(whose matrix of coefficients A changes over
time) systems as long as the changes of co-
efficients of A has some known pattern or

the mean and the ranges of the elements can
be determined. Such systems can be considered
to behave exactly as new systems of a given
class and their stability can be tested.

to distinguish between completely new systems
or those already :in existence in terms of
their probabilities of stability which is
substantially higher in the latter category

finally, the availability of a p.d.f. or
c.p.d. (if the values of Z are within the
required limits) can be of importance since
it is easier to lise in analytical manipul-
ations.
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TABLE 1}

Raw Data of Probabilities of Stability (as function of System size Z)

Distrib. i!ijj ; :ig SYSTEM SIZE Z
O 4 3 5 6 7 :8 9 :10 11 12

1 | Uniforn ~10 to +10 | -10 to +10 | .50 |.2590|.1062 | .0415 | .0062 |.0030 | .0012 |.0004
2 | Uniform 0 to -10 0 to -10 1.0 {.50 |.3009 |.1182 |.0325 |.0131 | .0040 |.0020
3 | Uniform -10 o +10 | 0 to -10 1.0 {.75 |.469 |.3227 |.170 |.08%0 | .0351 |.on7
4 | uniform ~10 to +10 | -2 to =12 1. |.83 |.56 |.e8 |.2733 |.1683 | .089 |.032 |.00m
5 | Uniform 0 to -10 -1 to ~11 . |.60 {.31 |.1367 | .0950 |.0360 | .0110 |.0029 |.c008
6 | Uniform 0 to -10 -4 to -14 1. |.82 |.68 |.65 |.4667 |.2667 | .2250 | .1000|.0854
7 | Uniform 0 to =10 -3¢0 -13 1. l.esmi].e0 |[.s525 .32 {.i625 [ .12 |.045 [.014 | .002
8 | Uniform 0 to -10 -6 to -16 1. 1.0 |.see7|.85 {.78 |.70 | .58 |.43 .27 | .09 | .025| .003
9 | vnifors. 0 to -10 -2 to ~12 1. |.64 |.49 | .3067 |.1867 |.1050 | .0410 | .02
10 | tniform 0 to ~10 -7 to ~17 1.0 [1.0 |10 |1.0 |.8333|.7667 | 673 | .575 .45 | .31 | 145 | 087
11| Normal o ‘,’0 -;‘_:]g 1.0 | .80 |.4867.3578 | .1731 |.0673 | .0356 | .0133
12 | Normal p=0 w=0

o= 1dor | o= 1,30r .50 |.333].0885/ .0351 [.0124 |.0015 | .o0cs | .0003

10 19

13 | Normal u=0 W= =33 1 99991 . 6500 .2035 | .0863 | .0263 | .0065 | .0014 | .0003

o«= 1.0 a= 1.0 . B - -
14| Nomal .t‘_: “’0‘ 'l:.:(x)o‘ 1.0 | .45 |.1858| .399 |.0263 {.o113 | .0034] .0010
15| Poisson A ATl 1. |.50 [.1239] 0313 ] L0031 {00 | .00 | .00
16 | Uniform 0 to -10 0to-20 | 1.0 {10 {10 Lto 1.8 |10 | i0 |.95 [.e2s] 27| .08 | .one
i/ | Uniform ~10 to +10 | -1 to =11 1.0 | .80 | .56 | .467|.2967 ) .1630| .092 | .03
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TABLE 2
Regression Results (All systems)
. . aij aij : . _ 2
Distrib. i i= : 3 B F-test F‘

1 Uniform‘ ~10 to +10 -10 to +10 1.023 -1.11 1298 .99
2 Uniform' =10 to +10 0 to <10 1.057 -.65 134.9 .95
3 Uniform 0 to =10 0 to -10 1.074 -.98 595.4 .99
4 Uniform 0 to ~10 -2 to -12 1.021 ~.58 175.6 .96
5 Uniform 0 to =10 -1 to ~11 1.073 -.86 166.2 .96
6 Uniform 0 to -10 -4 to -14 .988 ~-.33 48.8 .88
7 Uniform: 0 to -10 -3 to ~13 1.022 -.47 104.0 .94
8  Uniform 0 to -10 -6 to ~16 .951 -.13 49.8 .89
9 Uniform 10 to -10 -2 to -12 1.029 -.52 93.2 .93
10 Uniform 0 to -10 =7 to =17 . 946 -.08 22.5 .78

11 Normal u=0 p =0 _
&= L3 or| ‘e=1,30r 105 1.2 379.3 .98

10 10

12 Normal u=20 p ==3.3 -
€= 1.0 = 1.0 1.159 1.27 529.3 .99

13 Normal u=20 1 =0 -
]6. 2% n 1o| 1.03 .98 409.4 .98

14 Poissorn A=235or -
50 l.a_ -5 or 1.76 3.6 42.8 .87

- =50

15 Normal u=0 =0 -

=10 ‘F - 10\ 1.063 . 68 219.8 .97
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TABLE 3

Raw data (Probabilities) for Expanding Systems, Unifo¥m Distributien,
Parameters, Non diagonal a = -)0, b = +]0, Diagonal a =-10, b =0
'Szlan\é Prab:?ility S:? ggz‘:— Probgtf»ili:y gtfxm :
ize: Stability eigen values @ spize @ Stability ¢ eigen values H

1 2 .80 1 36 4 .62 27.96
2 3 «54 1 37 5 41 27.96
3 4 .40 1 38 6 .21 27.96
4 5 .25 1 39 7 A1 27.96
5 6 .13 1 40 8 .03 27.96
6 7 »05 1 41 5 .28 11.00
7 8 .01 1 42 ] .14 t1.00
8 3 N1 4.19 43 7 .05 11.00
9 4 .25 4.19 44 8 .02 11.00
10 5 .13 4.19 45 5 .64 22.70
H 6 .06 4.19 46 6 .33 22.70
12 7 .02 4.19 47 7 .13 22.70
13 8 .01 419 8 8 .05 22.70
14 3 .71 10.24 49 5 .36 32.10
15 4 45 10.24 50 [ A7 32.t10
16 5 .19 10.24 51 7 .07 32.10
17 6 oAl 10.24 52 8 .02 32.10
18 7 .05 10.24 53 6 .40 16.54
19 8 01 10.24 54 7 .13 16.54
20 3 +66 16.60 55 8 .04 16,54
21 4 .38 16.60 56 6 <26 24.3)
22 5 17 16.60 57 7 .08 24.31
23 6 .10 16.60 58 8 .02 24,31
24 7 .05 16.60 59 6 +54 43.12
25 8 .02 16.60 60 7 .23 43.12
26 4 .36 8.1 61 8 .10 43.12
27 5 .14 8.1 62 7 .29 22.18
28 6 .07 8.11 63 8 .07 22.18

29 7 .02 8.1] 64 7 .33 37.78 |

30 8 .01 8.11 65 8 «10 37.78:
k1 4 .62 18-2.1 66 7 +36 54,32
32 5 41 18.21 67 8 A4 54.32
3 6 .16 18.21 68 8 .23 28.35
34 7 <07 18.21 69 8 .60 42.10
35 8 .02 18.2i1 70 8 2.28 56.40
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TABLE 4

manmams

Raw Data (Probabilities) for Expanding Systems, Uniform Distribution, Parameters

(both diagonal and non diagonal elements) a = -10, b = +10

:1Sys=-: Probability Sum H :Sys— : Probability : Sum H

ttem @ of z of : stem ¢ of : of :

isize:  Stability : eigen values B isize :  Stability t eigen values t
1 2 +2700 1 36 4 .33 20.79
2 3 . 1062 1 37 5 212 20.79
3 4 L0415 1 38 6 .0336 20,79

3

4 5 .0094 1 39 7 .0048 20.79
.; 6 .0029 1 40 8 .0018 20.79
6 7 20012 1 41 5 L0422 8.50
7 -8 .0004 1 42 6 +0040 8.50
, 8 3 +1375 1.99 43 7 .0012. 8.50
!' 9 & .0550 1.99 44 8 . 0002 8.50
10 5 .0156 1.99 45 5 .2333 18.20
‘ 11 6 .0032 1.99 46 6 .0528 18.20
: 12 7 . 0009 1.99 47 7 .0108 18.20
13 8 . 0002 1.99 48 8 .0016 18.20
’ 14 3 .2125 8.38 49 5 .30 33.66
I -1 4 <065 8.38 50 6 072 33.66
;16 5 .0178 8.38 51 7 .024 33.66
. ¥ 6 . 0048 8.38 52 8 0042 33.66
t8 7 .0012 8.38 53 6 .0792 15.12
19 8 .0003 8.38 54 7 .0128 IS.l%
20 3 .50 13.43 55 8 .0018 15.12
21 4 .19 13.43 56 6 .168 29.44
22 5 <0439 13.43 57 7 .0268 29.44
23 6 .0176 13.43 58 8 .0026 29.44
24 7 .0028 13.43 59 6 41976 42.36
25 8 .0006 13.43 60 7 048 42.36
26 4 <145 2.69 61 8 .0088 42.36
27 5 L0311 2.69 62 7 L0196 11.65
28 . ] <0048 2.69 63 8 .0022 11.65
29 7 .0014 2.69 64 7 .078 25.12
30 8 . 0004 2,69 65 8 .0086 25.12
31 4 <2844 11.68 66 7 L2776 43.14
32 5 -071) 11.68 67 8 L0492 43,14
33 6 -0208 11.68 68 8 .01 24.15
34 7 - 0044 l‘l .68 69 8 .16 37.32
35 8 -0006 11.68 70 8 0874 44.94
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