USE OF PERFORMANCE ANALYSIS STATISTICS IN COMPUTER
SYSTEM SIMULATION*

by

P. R. Katonak
Savannah River Laboratory
E. I. du Pont de Nemours § Company
Aiken, South Carolina 29801

ABSTRACT

A general purpose job stream simulation
model has been developed for routine use in
evaluating hardware configurations and perform-
ance tuning a large scale multiprocessor com-
puting system operating in a multiprogramming
mode. The model is designed to simulate a vari-
able workload of jobs statistically generated
from attributes of the actual workload for any
time period. Major functional modules include
job-step generation, job classing, scheduling and
step initiation, core allocation, cpu operation,
and I/0 activity. Hardware attributes (such as,
available core and number of DASD control units),
operating considerations (such as, number and
priority class structure of initiators), and
workload characteristics can readily be varied at
model initialization time.

INTRODUCTION

Simulation has provided a method for
effectively using performance analysis statistics
obtained from accounting, hardware, and trace
monitors, as well as experience gained through
the use of a benchmark test stream, to analyze
and project computer system performance and hard-
ware requirements. In this approach, detailed
timing data derived from the hardware and trace
monitors are used as the basis for cycle timings
of the operating system and devices within the
body of the computer system model. Both multi-
programming (MVT) and multiprocessing are simu-
lated with this model. The workload processed
‘by the model is derived from accounting monitor
statistics. The benchmark test stream was used
as the input workload in initial MVT job
scheduling models and was valuable in validating
their accuracy.

This paper will be concerned with the use of
accounting monitor statistics as the basis for
probabilistic generation of the model workload.

A general description of the overall model with
the logic used in various modules is included in
the Appendix. Additional descriptions of initial
applications involving the use of the benchmark
test stream can be found in References 1 and 2.

* The information contained in this article was
developed during the course of work under
Contract AT(07-2)-1 with the U. S. Atomic Energy
Commission.

317

PERFORMANCE ANALYSIS PROGRAM

A continuous performance analysis program
has been established in conjunction with the
System/360-65 Multiprocessor computer facility at
Savannah River Laboratory. This program provides
the information base and analytical methods re-
quired to:

e Measure efficiency of operating system, user
programs, and operational policies.

e Locate problem areas in operating systems or
hardware.

® Assist in determining operational strategies.

e Detect changes in overall workload or demand
for services.

o Determine equipment changes that most
economically fulfill increased demands.

e Provide data for general information, special
request management or government reports,
equipment feasibility and justification pro-
posals, and post-installation reports.

Data for the performance analysis program
are collected from a variety of sources. Systems
activity information is continuously accumulated
by an accounting monitor routine developed at SRL.
This monitor accumulates approximately 40 fields
of data relating to every aspect of system per-
formance activity which can readily be monitored
for every step of each job processed through the
system., The accounting monitor provides a com-
plete data base from which statistics on CPU,
core, and I/0 activity can be summarized for any
time period. A second internal monitor is
utilized to accumulate statistics regarding the
utilization of individual direct access storage
drives over selected time periods.

A hardware monitor is periodically used for
direct measurement of component utilization. This
device can simultaneously monitor a number of
system points (channels, control units, devices,
or the CPU) providing wait or busy status data for
each point. Control panel wiring permits analysis
of combinational conditions (i.e., CPU wait and
channel busy). This unit provides supplemental
timing and utilization information that is not
available from the accounting monitor.

Trace monitors which are background programs
designed to continually gather highly detailed
operating statistics have been developed. Infor-
mation obtained through the trace analysis covers
areas such as data set utilization, usage of

r

—_

operating system routines, and time to service
I/0 requests and is useful in determining con-
tention between and utilization of system
resources (operating system routines, I/0 and
auxiliary storage devices, data channels, etc.),
and inefficiencies in specific programs. This
type of information is not readily available
through use of either accounting -or hardware
monitors.

A benchmark test stream consisting of a
series of actual jobs with overall attributes
matching workload has also been developed. This
test stream consists of 37 jobs which require
approximately 60 minutes of S/360-65 time when
run serially, The benchmark has been used for
determining operational strategies for an MVT
operation, and in evaluating effect of system and
hardware changes on operational throughput.

METHODS OF SPECIFYING THE WORKLOAD
IN COMPUTER SYSTEM MODELS

The use which can be made of a computer
system simulation model is highly dependent. upon
the manner in which the workload being received
and processed by this model is defined. A variety
of approaches have been taken for designating this
workload in computer system simulation and mathe-
matical modeling studies. One, which minimizes
presimulation analysis of the actual workload,
specifies the workload in terms of job inter-
arrival rates plus service times.3 An alternate
approach which probably involves the greatest
amount of detailed workload data utilizes trace
monitor output as the basis for the defined work-
load.® The packaged computer system simulation
programs such as CASE and SCERT define the work-
load in terms of file descriptions and type of
operations.

None of the above approaches was suitabie for
use in the computer system model designed for use
in analyzing hardware requirements and operational
strategies at Savannah River Laboratory (SRL).

The monthly workload at SRL consists of several
thousand nonproduction scientific jobs written
primarily in FORTRAN and several hundred
repetitive scientific and business production jobs
written in both FORTRAN and COBOL, and is overall
CPU bound. Because of the preponderance of non-
production jobs and the continual changes in both
volume and characteristics of these jobs, it was
highly desirable to develop a model whereby the
defined workload could be stated in terms of the
workload cturrently being processed or projected

on the actual computer system. Specifications of
the workload in terms of interarrival rates and
sexvice times, although easy to define, did not
provide an adequate indication of the variance in
CPU time, I/0 requirements, and core size between
the various jobs processed. Use of the trace moni-
tor data to define the workload was not considered
to be practical because of problems in selecting
representative programs from the overall workload
for tracing, and the vast amount of additional
detail which would be required within the model to

318

utilize the trace data. The packaged simulation
workload definition method, whereby files and
operations are specified for each job processed,
was not considered because of the wide variety
of jobs being processed and the temporary nature
of the bulk of the jobs making up the workload.

In addition to the variation in SRL workload
characteristics on a month-to-month basis, the
manner in which jobs are received and processed
indicates a considerable difference in job-mix
between operating shifts. For example, the bulk
of the FORTRAN compile and GO jobs are received
on the day shift and processed on a 60 minute or
less turnaround basis. These jobs have below
average core and €CPU time requirements and are
essentially I/0 bound. The 4 p.m. to 12 midnight
shift job-mix is made up of overflow jobs from
day shift and a few routine CPU bound production
jobs and thus has a different overall profile
from the day shift. The 12 midnight to 8 a.m.
shift workload is primarily devoted to long
running CPU bound production jobs and, therefore,
has a third profile. The relative job character-
istics for the three shifts are illustrated in
Figure 1. As a result, each shift must be
considered independently in making studies con-
cerning operating strategies or hardware require-
ments. Therefore each shift workload must be
defined by its own unique set of attributes in
the simulation model, and thus a simplified
method of workload definition is an absolute
necessity. To meet this objective, the routine
accounting monitor analysis programs were modi-
fied to provide the basic workload statistics
required by the computer simulation model.

2.5 [A - B[] - oc.

st
2.0 |Mean Step Size ()] 4 ko gee -
151 4 L

2

1.0

Al 123
Shift

Relative Value

123
SHIFT

1
12 3
SHIFT

FIG. 1 RELATIVE DIFFERENCE IN MEAN STEP SIZE,
CPU TIME, AND I/O TIME BETWEEN SHIFT 1
(12-8), SHIFT 2 (DAYS) AND SHIFT 3 (4-12)
FOR TYPICAL MONTHS' WORKLOAD

JOB PROFILE STATISTICS

The primary attributes selected to define
the workload include step core size, CPU time,
and I/0 time., This data provides the basis for
simulation studies relating to system core re-
quirements, CPU utilization, and I/O contention
under varying operating conditions. These three
areas have been of prime interest to date in the
SRL $/360-65 configuration.

Figure 2 includes three simple frequency
distributions of step characteristics for a
typical day shift operation directly summarized

from the accounting monitor analysis. Figure 2A,
which illustrates the proportion of steps within
each 60K step size interval, indicates that 75%
of all steps on this shift are either 60-120K
bytes or 180-240K bytes. Figure 2B, which in-
dicates the percentage of total day shift steps
which fall into.various CPU time intervals, shows
that 80% of the day shift steps utilize the CPU
for less than 10 seconds. Figure 2C summarizes
steps by % I/0 interval and indicates that 60%

of these steps are 80% or greater I/0. The term
"% 1/0," which is used in a number of charts,

is the ratio of a steps estimated I/0 time to

the total estimated elapsed time (actual CPU time
+ estimated I/0 wait time) for that step. (I/0
time, unlike core size and CPU time, is not
directly measured by the accounting monitor be-
cause of the problems involved in differentiating
between a step's 1I/0 time and its involuntary
wait time in a multiprogramming environment.

Step I/0 time is therefore estimated from the

I/0 channel program counts (EXCP's) which are
accumulated for each step by the accounting
monitor. The relationship between I/0 time and
EXCP count was derived through correlation of
step wait time and EXCP counts for several
hundred serially processed jobs.

N) | |
60 180 300 420 0-1 1- 10~ 100~

10 100 1000
A. STEP SIZE (K) B.

STEP CPU TIME (SEC)

C. STEP % 1/0

FIG. 2 SIMPLE FREQUENCY DISTRIBUTION SHOWING
STEPS WITH VARIOUS SIZE, CPU TIME AND
I/0 FOR TYPICAL DAY SHIFT WORKLOAD

[
K]
9

%

In addition to the simple frequency distri-
butions of the percent of steps within various
core sizes, CPU time, and % I/0 ranges, it is also

possible to relate these attributes to one
another. Figure 3A shows the % of total CPU time
for the day shift that is consumed by steps with-
in various core size intervals. Figure 3B
illustrates the % of elapsed time (I/0 + CPU
time) which is consumed by steps in each % I/0
interval. These figures provide a significantly
different impression from that obtained from the
simple distributions in Figure 2. Although 45%
of the steps fall within the 60-120K size
interval (Figure 2A), these steps only account
for 15% of the total CPU time (Figure 3A).
Secondly, the 11% of the steps requiring 30% or
less I/0 (Figure 2C) account for 32% of the total
elapsed time (Figure 3B).

2
u 60 = 30 - —
= 3
g a0 4 Raf
5 =
2 2 4 2wpk
»e -
3 _ Al YL A -
60 180 W 420 I 3 5 70 90
A. STEP SIZE {K) B. STEP % 1/0
FIG. 3 DISTRIBUTIONS RELATING CPU TIME TO STEP

SIZE AND ELAPSED TIME (SERIAL I/0 + CPU
TIME) TO % I/0 FOR TYPICAL DAY SHIFT
WORKLOAD

Unfortunately, random selection of step
attributes based upon the simple frequency dis-
tributions as shown in Figure 2 will not provide
attribute relationships matching those shown in
Figure 3 for two reasons: CPU time is a function
of selected step size, and 1/0 time is a function
of selected CPU time in our job mix. The re-
lationship between mean CPU time and step size
for the basic data in Figures 2 and 3 is shown in
Figure 4. It is obvious that independent assign-
ment of step size and CPU time from Figures 2A
and 2B would not result in the direct relation-
ship between CPU time and step size as illus-
trated in the latter figure.

200 | [
)]
2150 | 1 -
~
o
QU
w
5 100 -
© 13

50 7‘7

60 180 300 420
Step Size (K)

FIG. 4 MEAN CPU TIME FOR STEPS OF VARIOUS SIZES

The distribution of CPU times also has been
found to vary within each core size interval.
The cumulative distribution of steps by CPU time
range for three core size intervals are shown in
Figures 5A to 5C. Based upon these differences,
it is apparent that separate frequency distri-
butions relating % occurrences to CPU time must
be used for each core size interval to properly
relate these attributes. The method in which
this is done within the model will be discussed
in the following section.

T T T T T T T T

| c. 360-420K
Steps

=]
t=3

~
o

o
(=]

Cumulative % Occurrences

A, 60-120K B. 180-240K
2 Steps L Steps B |
1) 1 1 I 1 1 1 1
0-1 - 10- 100- 01 1- 10- 100- 0-1 1- 10- 100~
10 100 1000 10 100 1000 10 100 1000

CPU Seconds Per Step

FIG. 5 CUMULATIVE DISTRIBUTION OF CPU TIME FOR
VARIOUS STEP SIZE GROUPS

Although a relationship between I/0 time and
core size can also be found, a more significant
correlation exists between I/0 time and CPU time.
For example, it can be seen in Figure 6 that step
CPU time is inversely related to the step % I/0.
Assignment of I/0 time independent of CPU time
would not result in a job-mix having this re-
lationship.

100 [[1 [1T 1T 1
80 -
[an]
~
=60 | .
Y
<
bt
. 40 | |
()
[~
20 |- _
1 [| L1 11
01 2 3510605 1060
|- CPU Sec/Step - Min/Step -|
FIG. 6 AVERAGE % I/O FOR STEPS OF VARIQUS CPU

TIME REQUIREMENTS FOR TYPICAL DAY SHIFT
WORKLOAD

Similar to the variation in CPU time for
various core size intervals, as shown in Figure 5,
the distribution of steps with various I/O re-
quirements fluctuates by CPU time group. Several
examples illustrating distribution of steps in
each % I/0 interval are shown in Figure 7. The
actual estimated I/0 time for the step can be

320

calculated from the assigned CPU time and % I/O.

A B. [
0-1 CPU Sec Steps 10-60 CPU Sec Steps 5-10 CPU Min Steps

@
(=1
T

=
=)
T
1
T

F
o
T

ny
=]

Per Cent of Steps in Time Group

-

0 80 90100

020

0 10 20 30 40 50 60 70 80 90 100 0
Per Cent 1/0

30 40 50 60 70 100

FIG. 7 PERCENT OF STEPS (WITHIN SAME CPU TIME
RANGE) IN EACH PERCENT I/0 INTERVAL

USE OF PROBABILITY DISTRIBUTIONS WITHIN
WORKLOAD GENERATION MODULE

The various probability distributions per-
taining to job and step characteristics are
specified in function tables for use in the
workload generation module of the computer
simulation model. A complete workload de-
scription consists of 24 function tables relating
to step size, CPU time, and % I/0, and two
tables relating to job interarrival times and
number of steps per job. A list of the types
of function tables is given below:

Description of Functions No. of Tables

Distribution of Job Interarrival

Times 1
Distribution of Steps per Job 1
% of Steps in each Core Size

Interval 1
Distribution of Step Sizes within

each Interval 7
Distribution of CPU Time in each

Core Size Interval 7
Distribution of % I/0 for each CPU

Time Interval 8

Figure 8 illustrates the points in which
accounting monitor analysis function tables are
employed in the workload generation module. A
number of required control blocks within this
module are not shown in order to simplify the
flowchart. The source and use of each function
entity is described as follows:

GENERATE JOB TRANSACTION: The actual clock
time each computer job enters the system is
stored in that job's accounting monitor
record. A probability distribution function
relating the % of occurrences to the seconds
between successive jobs can be defined for
the time period to be simulated. This
function is used to generate jobs at approxi-
mately the actual interarrival time (IAT)
rate. Although-the example indicates the use
of only one IAT distribution function during
the entire simulation period, multiple
generate blocks with independent functions

could be used if warranted by actual arrival
rate fluctuations.

SPLIT INTO STEPS: The distribution of steps

per job is defined in a function table. The

SPLIT block creates copies of the job trans-

action based upon the step function and these
new transactions are identified as job-steps.
The job transaction is then temporarily held

in a USER CHAIN while the step attributes are
selected and assigned to each job-step trans-
action.

ASSIGN SIZE GROUP: Using the "% of steps in
each core size interval' function, a core size
group or interval number is assigned to each
step (i.e., group number 1 for core size range
between 60-120K to group number 7 for 420-480K
steps). This number represents the core size
interval which the step is in and serves as a
pointer to appropriate function tables used in
subsequent core size and CPU time assignment
blocks.

ASSIGN CORE SIZE: Seven functions define the
actual distribution of expected core size for
steps within each group. Using the core size
group number as the argument, the step is
assigned a core value obtained from the
appropriate distribution of step size function
as determined from the size group pointer.

ASSIGN CPU SECONDS: Separate functions also

define the probability of different CPU times
for steps within each size group. Using the

core size group number as a pointer, step CPU
seconds are selected from the appropriate CPU
time function table.

ASSIGN % 1/0: A separate function relating
probability of occurrences for each % I/0 is
defined for each CPU time interval. Using the
previously assigned CPU time as a pointer,
step % I/0 is selected from the appropriate

% 1/0 function table. Step serial elapsed
time is equal to CPU Sec/(1-%I/0/100), and I/O
time is equal to elapsed time minus CPU time.

those averages with the smallest number of
samples.

Generate Module

Function from Accounting Monitor Analysis

30

Generate A1l dobs
Job Transaction —_—
10

0 5 1020 60 12000 600 ak
Seconds Between Jobs
Split fnto 33
Steps 20}
50 10

Job step w] A stens

ATY Jobs

123456 >

The remainder of the generate module summarizes
CPU time, I/0 time, and maximum core sizes for

all steps within each job. This data is passed to

the job transaction after all step transactions
are created for the job.

Validation of the probability distribution
method was performed by comparing a variety of

statistics concerning the simulated workload with
accounting monitor analysis data from the actual

workload. Several of these comparisons are
illustrated in Figure 9. Simulation data was
generated for an average day's workload for one

8-hour-day shift operation. Actual data is taken
from analysis of the computer workload for the day
shift for an entire month. As indicated, while a
minor variation exists in the distributions, the

general structures are identical. Comparisons of

significant averages for the same time period

(Table 1) indicates general agreement in overall

statistics with difference being greatest for

20 n Steps/Job
Link to hssign ™ 10 -
USER Chain Size Group a0
6 180 300 420 0k
— 1234567 e 1
X Core Size b Groyj - Steps
Assign 10 B!
Core Size
40 60 70 80 50 100 10 1D
! £ Core Reg'd
I 30 [| 60-120k Stens | tfore R g
fal 4
Assign 10
CPU Secs - = b
) 30
¢ 1 23 51031X0> 20 | 5-10 CPU Sec Steps
l €y Zar/Sten %0
A‘?{?g 9 04 6030
o

FIG. 8 USE OF ACTUAL WORKLOAD STATISTICS TO
CREATE SIMULATED WORKLOAD

Distribution of Total Elapsed Time

10 20 30 40 50 60 70 80 90

60 180 300 420
Step Size (K) % 1/0

Distribution of CPU Time

60
50
40
30
20
10

60
50
40
30
20
10

60 180 300 420 10 20 30 40 50 60 70 80 90
Step Size (K) % 1/0

FIG. 9 COMPARISON OF ACTUAL VERSUS SIMULATED
WORKLOAD CHARACTERISTICS (SHADED AREA
REPRESENTS DIFFERENCE)

TABLE 1 COMPARISON OF SELECTED AVERAGES

Mean Value % Total
Attribute Workload* Simulation** Steps***
Step Size 152K 151K
Time/Job
CPU sec 48.9 48.9
1/0 sec 125.0 125.0
% 1/0 61 61
Elapsed Time, sec
60-119K Steps 29.6 30.0 45
120-179K Steps 70.4 42.1 19
180-239K Steps 72.0 83.3 31
240-299K Steps 117.2 143.0 3
300-359K Steps 102.8 162.0 2

* Average for l-month day shift operation.

** Average for 8-hour day shift operation; workload
generated from l-month day shift statistics.

**%% total steps by size range identical for workload
and simulation.

VALIDATION AND USE OF THE SIMULATION -MODEL

Validity of the entire simulation model has
been tested through the use of the basic test
stream. Initially the model (see Appendix) was
designed without consideration for I/0 channels,
control units, and devices. In this phase, I/0
was handled either on a no contention (all I/0
for every step was available when required) or a
full contention (only one job step could seize
the I/0 facility at a time) basis.

Five configurations of S/360-65 single and
multiprocessor systems were evaluated with the
simulation model using test stream job character-
istics for the model workload. . The actual test
stream was then actually run on each of the
configurations. A comparison of observed and
simulation results is shown in Figure 10. The
1/0 module was later expanded to include existing
channel, DASD control unit and DASD device

activity. Simulation results for this model ran
within 5% of the observed results shown in
Figure 10. ‘

2.0 - Simulated
=338 L , No I/0 Contention
o 1
L 1.6 | !

- - Observed

1.4 |- -

2 DLl
S4.2 L - ,: Simulated
%’ . S '/ , Full 1/0 Contention
£ 1.0 /,l : !
= 0.8 [o !
o o !
Z 0.6 |- ' Ty :
,:; t 1 I 1
=2 0.4 | [1
2 P :
0.2 - H : : 1 :
o Pt !
65T ¢ {MP-IH MP-J
1654
1
65IH

Relative Throughput - No Contention

FIG. 10 RELATIVE THROUGHPUT OF VARIOUS S/360-65
COMPUTER SYSTEMS FOR CONSTANT WORKLOAD

The primary use of the model to date has
been to study future hardware requirements
necessary to meet projected workloads. Avail-
ability of the model has permitted estimation of
the relative throughput of various size and speed
systems for different workload projections. In
addition, the model has permitted an effort to
be made to analyze the effect of utilizing
additional DASD or higher speed control units or
storage devices in different combinations to
determine the most reasonable hardware investment
strategy. For example Figure 11 illustrates the
simulated relative system power for two types of
theoretical workloads and three combinations of
I/0 equipment. In both cases, I/0 channel con-
tention was assumed negligible. As illustrated,
the configuration with a high speed drum appears
to provide greater throughput over a system with
only direct access storage -(DASD) units when the
workload is CPU bound than when the workload is
50% CPU time and 50% 1/0 time.

1/0 Capacity

-

322

CPU Bound Workload 50% 1/0 Workload

No I/0 Contention

| _No_1/0 Contention

A. 4 DASD + Drum
_____________ -
B. 6 DASD 2
‘‘‘‘‘‘ S| aas
[C. 4 DasD 2
.C
1.0 1.0 1.2 1.3 1.4 1.0 1.2 1.4 1.6

Relative Throughput Relative Throughput

FIG. 11 RELATIVE SIMULATED THROUGHPUT FOR
SYSTEMS WITH VARIOUS I/0 CONFIGURATION,
FULL CONTENTION CONSIDERED RELATIVE
POWER 1.0)

In the area of operational strategy, studies
have been made concerning job classing
structures, initiator priority settings, and core
allocation methods.

SUMMARY

This model provides a very basic approach to
simulating a computer system and its associated
workload based upon information which is routinely
accumulated as part of the standard computer
system performance analysis program. A number of
areas within the model require further refinement.
These include incorporating more realistic methods
of distributing Operating System CPU and I/0 over-
head, which is currently spread evenly between
each CPU or I/O burst, and déevelopment of more
detailed I/0 modules. Being modular in design,
the existing framework will permit such modifi-
cations to be made without requiring a complete
revision of the entire program:

ACKNOWLEDGMENT

Work done by W. R. Hartshorn,
L. F. Zimmerman, and J. L. Kilpatrick of the
SRL Computer Operations Division in development
of the accounting monitor and related analysis
programs has provided the data base which made
this simulation approach possible. The assistance
of F. C. Fortune who developed the CMAP routine
and participated in the model design stage was
invaluable in providing the foundation for
subsequent development. The helpful critique of
this paper by T. E. Bell of The Rand Corporation
was also appreciated.

REFERENCES
1. Katonak, P. R. and Fortune, F. C., Sr. 'Role
of System Simulation in a Continuous Computer
Performance Analysis Program." Ninth Annual
Conference of Southeastern Region ACM, St.
Petersburg Beach, Florida (1970).
2. Katonak, P. R. "Performance Analysis of the

Multiprocessor/65 through Simulation." SHARE

XXXV, Montreal, Canada (1970).

3. Hoffman, E. G. "Studying Multiprogramming
Systems with Queuing Theory." Datamation,
13:6, 47 (1967).

4. Cherg, P. S. "Trace-Driven System Modeling."
IBM Systems Journal, 8, 280 (1969).

5. Pomerantz, A. G. 'Predict Your Systems

Fortune: Use Simulations Crystal Ball.™
Computer Decisions, 2(6) (1970).

APPENDIX I

DESCRIPTION OF BASIC JOB SCHEDULING MODEL

The basic job scheduling model simulates a
workload consisting of a predefined combination of
jobs and job-steps with varying core sizes, CPU,
and I/0 requirements through a S/360-65 computer
system in a multiprocessing and/or multi-
programming mode of operation. The basic model
consists of approximately 400 cards of which
approximately half are used for function, save-
value, and table definitions. The CPU running
time for simulating a given time period will vary
proportionally with the I/0 burst time defined by
the model user. When the actual measured mean
I/0 cycle time (30 ms per burst) is used, the
simulation CPU time on the $/360-65 will be
approximately 20% of the actual CPU running time
for the same set of jobs. If the simulation I/0
cycle time is increased by a factor of four, CPU
running time will drop to 5% of the actual CPU
time for the period being simulated. The model
runs in 140K bytes. Less than one man year has
been spent in the simulation modeling effort by
computer operating systems personnel assigned to
this project.

As shown in Figure 1, the model consists of
seven separate modules. The simulation is written
in GPSSL but calls one FORTRAN subroutine via a
HELP block. Individual modules can be expanded
or modified without altering other modules, as
long as the appropriate savevalues and transaction
parameter values are always processed in a
standard manner. The basic transaction, except
for two cases, represents either a job or job-step.
Both types of transaction carry the job number
identification as one of the parameter values.
addition, a separate parameter is used to dis-
tinguish between each step in a multiple step job
and the job master transaction. The two cases
where a transaction represents something other than
a job or step are for system initialization and
simulation run timing purposes and are created by
GENERATION blocks not shown on Figure 1.

In

The basic function of each of the modules
shown in Figure 1 is as follows:

1. Generate

The generate module creates jobs and job-step
transactions representing the workload being
simulated. A description of parameter contents
for these job and job-step transactions is shown

323

in Figure 2. Three alternative methods have

been used to date to represent the simulated
workload. These include (1) predefining job

and step attributes in function tables and using
the ASSIGN block to transfer the attributes to
appropriate job and step transaction parameters,
(2) creating an input JOBTAPE of job and step
transactions directly from the accounting monitor
record for a given time period, and (3) gener-
ating a series of transactions from probability
distribution tables created by accounting momnitor
analysis of an actual workload. The probability
distribution technique is discussed in detail

in the body of this paper. The job-step trans-
action is linked to a user chain at the end of
the generation module.

1. Generate Jobs & Steps

2. Classify Jobs

(4 Class User Chains)

. Start Job Processing

(3 Initiators with
Classes as Assigned)

4. Obtain Core

(Mait for CPU)

5. GCompute

6. Input/Output

7. Terminate

Steps
Job

FIG. 1 BASIC JOB SCHEDULING MODEL (MULTIPRO-
GRAMMING WITH A VARIABLE NUMBER OF TASKS
(MVT))
Transaction No.}| Job Type! % 170t CPU-1/0 Cycles?| CPU Seconds®
1/0 Seconds? CPU Burst MS? Class? Initiator?
Priority ? Core Req'd! Core Start* Core End* Core Return
170 Cont'1® |[1/0 Cycle Time! | Print Lines® Code"
Step No.? Job No.?

FIG. 2 JOB AND JOB-STEP TRANSACTION DESCRIPTION
(DIGIT INDICATES MODULE CREATING DATA)

2. Classify

Each job transaction is classified according
to the algorithm being used or under consideration
with the system. The purpose of the classifi-
cation scheme is to control the mix of jobs being
processed at any one time from a wide variety of
available jobs and to optimize CPU, core, and I/0

utilization. Classification schemes can be based
upon job core requirements, % I/0, CPU time,
elapsed time, amount of output or a combination
of these or other factors. Using GPSS, classifi-

cation is accomplished by using the TEST block to.

evaluate appropriate job transactioh parameters.

An example of the simulation logic for a
classification module based on core size, serial
processing time, and output volume is shown in
Figure 3. The assigned job class is stored in a
transaction parameter for reference in later
steps. Job transactions are linked to a USER
CHAIN (user chain blocks for four classes A, B,
C, and D are represented by respectively labeled
blocks in Figure 1) associated with the assigned
class.

"Job"
Transaction
from Module 1

Assign

Class = p [—————User Chain D

Assign
Class = C
Assign Assign
Class = A Class = 8
User Chain A User Chain B User Chain C

FIG. 3 JOB CLASSIFICATION LOGIC BASED ON TIME,
LINES, AND CORE

3. Start
The START module is divided into two
sections. The first, which operates only at the

beginning of a simulation, activates each
initiator with the highest predefined priority
class job available in the various job class
user chains. For example, the START module
(Figure 1) would attempt to UNLINK a class B job
for the first initiator. In the event there
were no class B jobs available, START would
attempt to find a "D'" or as a last resort, a "C"
class job. In the event that none of the classes
were available, the initiator would stay idle
until a new job of one of the matching classes
entered the system. After an attempt is made to
attach a job to each initiator, the transaction
which operates Phase I of the START module
terminates and subsequent job initiation is con-
trolled in the TERMINATE module.

GPSS logic for the START module (Phase I)
is shown in Figure 4. As illustrated by the
initiator class matrix, a MATRIX SAVEVALUE is

324

predefined with the classes as assigned to each
initiator. (An equivalent numeric code must

be used in the actual matrix.) This table

can be changed to evaluate the effect of
alternative classing or initiator setting schemes
on system throughput for a given workload and
configuration.

=
1

INITIATOR CLASS MATRIX

Imtiator No.

3
IIEIIIIIHII Class 1 72(B) 3(C) 1(A)
oumni Prionty{z 4(p) 1(a) 3{(c)
Level ~3 '3(c) 4(D) -

Row = 1

Col. = Col. + 1

Avail. n
u.c. (Row, Col)
?

Unlink Job
U.C. {Row, Col.)

Terminate
Trans.

Row Processed
?

N

FIG., 4 START MODULE OPERATION (PHASE I)
The Predefined Initiator Class Matrix
Points to Appropriate Class User Chains
of Available Jobs. The Unlinked Job
Transaction Passes to Phase II of the
Start Module.

The second phase of the start module
controls the interaction between job and job-
step transactions. After a job is unlinked from
the class user chain and assigned to an initiator,
the job transaction UNLINKS the next matching
sequential job-step transaction from the step
user chain., The assigned initiator number is
placed in a parameter in both the job and job-
step transactions. The job transaction is then
relinked to the appropriate class user chain and
the job-step transaction progresses to the next
module.

4. Core

The core requirement for each step is
specified in a parameter in terms of K (1024)
bytes. This core must be provided in continguous
blocks for each step, and the starting address
for an assigned core block may vary for multiple
steps within the same job. To simplify pro-
gramming, a FORTRAN subroutine called CMAP was
written for controlling core allocation within
the simulation. The total amount of system core
available for user programs is established in the
simulation initialization phase through the use
of a SAVEVALUE. This savevalue is passed to CMAP
which establishes the upper limit of core avail-
able for user programs.

The job-step transaction parameter con-
taining the amount of core required and a code
indicating whether the core is being requested
or returned is passed to CMAP. This routine,
which keeps track of the absolute locations of
the core being used, assigns required core if
available, passes back a nonavailable parameter
code when the core is requested but not available,
or removes the core blocks from active use status
when the step is completed and core is returned.
Job-step transactions are temporarily placed on a
USER CHAIN when adequate core is unavailable.

5. Compute

The compute module loops each job-step
transaction through the CPU(s) for the number of
cycles required to complete the CPU seconds
specified, The basic model time increment is one
millisecond. The number of CPU-I/0 cycles is de-
rived by dividing the computer I/0 time for
each step by the average I/0 cycle time which
is predefined in a SAVEVALUE. The average CPU
burst time is subsequently derived by dividing
predefined job-step CPU seconds by the number of
calculated CPU-1/0 cycles. The resulting CPU
burst time is then adjusted to include Operating
System CPU overhead which is obtained from the
accounting monitor statistics.” The variance
between CPU burst times which has been observed
through the use of trace analysis is recognized
through the use of an exponential function
modifier to the CPU ADVANCE time. Separate CPU
modules have been written for single and multi-
processor systems.

6. Input/Output

The degree to which I/0 is simulated can
vary greatly. This, of course, is dependent upon
the area of interest and importance for a
particular study. The degree of detail included
in various I/0 modules ranges from none, where
1/0 requests are handled under either no 1/0
contention or full I/0 contention conditions
between requests, to the case where activity for
I1/0 channels, DASD control units, and disk drives
are included. A configuration of a multi-
processor model -with ‘expanded I/0 facilities is
given in Figure 5.

The simple approach (no contention/full
contention) provides useful estimates of the
effect of CPU power and core size on system
capacity. The extended approach is useful in
studying the effect of I/0 capacity or data set
distribution on throughput for a given workload
and central processing system. The latter module
requires additional simulation input data such as
the distribution of data set usage among various
control units and devices. This information can
be derived through accounting monitor data
analysis and incorporated into the model through
the use of function tables,

Modules have also been developed which
ignore device and channel activity. These
modules, which reduce the simulation running time,

CPU CPU
Core
Channels |
[— annels _—
—
& Devices

Contro]

& Devices
Control
& Devices

FIG. 5 COMPONENTS INCLUDED IN MULTIPROCESSOR
MODEL WITH I/0

are valid for cases where device and channel
contention is negligible. As indicated under
compute, the I/0 cycle time is predefined by the
user. The average actual cycle time for our
job-mix using 2314 Direct Access Storage Devices
is approximating 30 ms per I/0 burst, as

measured through detailed trace analysis. It

has been determined that artificially inflated
cycle times can be used in the model without
affecting comparative simulation results. This
is of importance because the simulation

running time is directly proportional to the
specified I/0 cycle time. The average I/0 cycle
time used within the model is internally adjusted
to reflect relative access rates of devices

other than IBM 2314's, when the I/0 configuration
includes such devices. The measured operating
system 1/0 overload as measured by the accounting
monitor is evenly distributed over each I/0
burst.

7. Terminate

The function of the TERMINATE module,
besides terminating steps which have completed
required CPU and I/0 cycles, is to maintain
continuity of operation within the system. As

previously discussed, the first phase of START

activates each initiator after a few jobs enter
the system. The terminate module is designed

to keep initiators active, if possible, by using
the terminating jobs to pull the next available
job into the system. The initiator class matrix
used in START is referenced by TERMINATE to
unlink the proper class jobs. This logic is
shown in Figure 6.

Job-Step
Transaction
from Module 6

|

Return
Core

Job Transact.

| Step

{ Terminate)

Hold Job
in User Chainx

* Unlinked by Next

New Job Generated

Unlink Job

ANl

Steps

Processed
?

Release
Initiator

Job

Avail. for
Initiator
?

“Unlink Highest
Priority Job

T

01d
Job

(Terminate)

FIG. 6 TERMINATE MODULE

1. 1IBM, "General Purpose Simulation System/360
Users Manual,'" Form H20-0326.

REFERENCE

Hold in
68Er BRatn

4
Job

Unlink
Next Step

I
:Step

Y

Start
(Phase 1I)

¥

326

