APPLICATION OF SIMULATION TO DETAIL DESIGN OF A
. TELEPHONE DIRECTORY ASSISTANCE SYSTEM COMPUTER

NUMBER 68

Johrt A,

Noecker

Bell Telephone Laboratories

P. 0. Box 2020, Room 1B-346

New Brunswick, New Jersey 08903
Telephone 201-463-6640

INTRODUCTION

Directory Assistance operators provide tele-
phone number information to telephone customers
who dial 411, 555-1212, or any other code which
may be used in their local calling area. Approxi-
mately 25,000 operator positions are required to
provide this service in the Bell System, Opera-—
tors search for the requested telephone numbers
in frequéntly updated directories.

A Directory Assistance System Computer
(DAS/C) is being considered as a solution to
the problem of meeting rapidly increasing demands
for this service. DAS/C is a real time informa-
tion retrieval system designed nominally to serve
500 terminals from a data base of 2 million
telephone number listings with an average response
time of 1/2 second, and capable of being con—
figured at less than 1/2 nominal size and greater
than twice nominal size. The large potential
value of this mechanization demands great care
in design of the computer system and also sup-
ports extensive use of simulation in detailed
design of that system.

This paper presents results of several DAS/C
system design studies and shows how simulation is
used to support these studies at the detail level
while simultaneously monitoring the overall design
to assure meeting the system objectives.

DAS/C SYSTEM OVERVIEW

A basic DAS/C entity (Figure 1) consists of
one Information Retrieval Center (IRC), sixteen
data links to eight Directory Assistance Bureaus
(DAB), and on the order of 100 voice lines con-
necting a number of central offices to one DAB.

The DAB design includes the personnel sys-—
tem, the Directory Assistance operator job,
and a hardware system for controlling the termi~
nals used by the operators. The design of the
IRC involves hardware-software design questioms.
Here two major computer functions are involved;
inquiry and update. The inquiry function is
required to service Directory Assistance operator
requests for particular telephone numbers. The
update function is required to effect the listing
changes required as a result of the customer
requests for installations changes or terminations
of telephone service. The basic inquiry function—
al design is based on work by H. I. Rothrock.l

246

The Directory Assistance operator's job is to
receive the customer's request, search for the
requested telephone number, and respond to the
customer with the requested number or non~
existence thereof. The computer performs only
a partial search and presents a number of tele-
phone number listings to the operator for final
selection of the requested number. To initiate
the computer search the operator selects search
arguments from the details (surname, street
name, next name, etc.) volunteered by the cus-
tomer and normally submits three characters of
each selected detail to the computer. The com-
puter retrieves all customer listings matching
the operator's search arguments and presents the
first CRT page of these listings for selection.
If more than one page is retrieved, the operator
can see additional listings by submitting a page
flip request to the computer.

Directory Assistance is characterized in
the Bell System by extensive data describing
Directory Assistance operator positions in terms
of groupings, number and size of directories,
types of requests serviced, human performance,
and other details. Considerable data are also
available to characterize the files and in par-
ticular the frequency distribution of the number
of listings retrieved to service customer requests.
An experimental system is being used to study
the interaction of operators with a computer
system as they serve live Directory Assistance
traffic.

This paper is concerned with the systems
analysis associated with the IRC inquiry func-
tion. The analyses of the IRC update function
and the operator's job is currently
under way and may be reported in the future.

A WORD ON APPROACH

Design questions are defined with an
objective to establish the significance of
controllable variables and unconttrollable
variables within the performance range of
interest to the DAS/C project. Controllable
variables (file block size, buffer pool size,
spare space in the block) are those which the
system designer or system operator has alterna-
tives to choose from in controlling system
performance. Uncontrollable variables (file

growth rate, call load, some operator behavior)
are those that are difficult or impossible to
affect.

A continual effort is made to avoid abstract
or all-encompassing design problem definitions
because of difficulties encountered relating
results to design and operations practices.

The approach used to avoid abstract problem
definitions begins with an assignment of portions
of the maximum allowed average response time to
each of the major functions; e.g., program execu-
tion, disk accessing (See Figure 2). Experience
with early simulations leads to the assignments
shown. With a breakdown of the system into func-
tions and with these maximum response time
"assignments, a function design question can be
pursued in an understandable and manageable way.
As each function design progresses, its per-
formance characteristics are continually tested
in a total system model. A version of the total
system model was presented at the Third Conference
on Applications of Simulation.2

This functional approach to design also
facilitates modeling. A total system model can
be maintained which is concerned with major
effects of each function at a level of detail
most suitable for modeling efficiency. At the
same time separate function models can be con-
cerned with a level of detail commensurate with
the needs of the function design decision. This
balance between modeling efficiency and level of
detail is very difficult if not impossible in an
all encompassing model. Many times the greatest
difficulty resides in human inability to simul-
taneously comprehend all the ramifications of a
large model or system.

Each design study is pursued to a completion
defined, as follows: that set of alternatives,
and ranges in variables of these alternatives,
imagined at this point in design to encompass
most of the likely design choices to be made
through system implementation. For example, the
communication line control study deals with five
control methods ranging from a simple direction
switching method to one incorporating priority
and pre-emption. Each method is analyzed for
communication line utilization ranging from
0 to 90 percent. Though this "completion" is
not perfect, "complete" design problem study
in this sense provides a good base for a fuller
study or reorientation at a later stage of system
development.

The results of subsystem design studies are
considered in the complete environment of the
design decision to be made, For example, program
modularity studies suggest the elimination of
priority and pre-emption. To avoid the use of
priority and pre-emption requires waits for
periods of several milliseconds before preserving
interrupt information. The risk of overwriting
an interrupt with another interrupt in that time
period is too great. The analysis serves only
to discourage use of processing priority and

Ere-emytion of program execution except where it
s logically required.

247

DESIGN STUDIES
A summary of systems analysis results is
given near the end of the memorandum. The

detailed reviews are given now.

Communication Line Control

DAS/C communication involves half duplex
50 kilobit data transmission between the Informa=-
tion Retrieval Center and the eight Directory
Assistance Centers. The choice of a 50 kilobit
line is made to facilitate transmission of mes-
sages up to 1500 bytes long from the Information
Retrieval Center to the Directory Assistance
Center and the operator's terminal within the
response time limitation. The input message is
between 10 and 30 bytes long. The designer is
led quite naturally, because of the large dif-
ference between the length of the input and
the output messages, to the use of priority
for the input message in order to avoid relatively
long delays. This design study involves the
performance of two nonpriority and three
priority communication control methods:

1. Single Server

2. TFirst-Wait-First-Served

3. Input Priority

4, Input Pre-emption ~ Resume
5. Input Pre-emption - Restart

The single server method involves switching
the direction of transmission whenever the queue
for the active direction is exhausted. The
first-wait-first-served discipline provides
for servicing of messages in the order of
arrival without regard to the transmission
direction. Giving priority to the input message
means that output messages wait until the input
queue is empty before being serviced. The input
queue is checked at the end of each output mes-—
sage transmission. Pre-emption - resume
involves priority for the input message. With
this method, however, the arrival of an input
message causes a pre—emption of transmission of
an output message. After the input queue is
empty the output transmission resumes at the
point of interruption. The pre-empt - restart
method is the same as the pre-empt - resume
method with the exception that output restarts
from the beginning when the input queue is empty.

Separate GPSS simulation models were
developed for each of the five communication line
control methods. Each model comsists of about
50-100 GPSS blocks and represents only the
significant queueing features of the communica-
tion subsystem. These models were exercised
for refinement of the control method and then
finally to develop the data points for the graphs
shown in Figure 3.

Figure 3 shows for each method the total
communication time as a function of message load.
On this chart if a horizontal line is drawn at
the 200 millisecond response time assignment
taken from Figure 2, the capag¢ity of the communi-
cation line is specified for each method of con-
trol by the intersection of the respeci:ive
response time curve with the 200 millisecond
line. It can be seen that, with the exception
of the pre-empt - restart method, all methods are
relatively close together in performance and well
above the nominal design load of each DAC (2.5
requests per second).

Viewing only this chart, Figure 3, one is
led to a choice of the pre-empt - resume method.
However, control program complexity should be
considered. The bar chart of Figure 4 shows
the relative control program complexity versus
relative performance of each method. The
vertical heights of the bars indicating complex—
ity are rough estimates. If the estimates are
accurate, a choice of a simple control method
involves a relatively small sacrifice of pexr-
formance with the advantage of less programming
complexity. Further study of the programming
complexity will probably be required before a
control method is chosen.

Main Storage Requirements and Buffer Allocatiomns

Work areas required in main storage can
be classified four ways: 1) data pertinent to
one operator request, 2) data pertaining to
a single call, 3) data associated with an opera-
tor or operator positions, and 4) data used
to control the computer system. Work area
requirements of the last two classifications
are usually fixed in size and assignment over
periods of an hour 'or more. Of céurse, it is
desirable to keep data in these fixed areas to
a minimum. Thus data is placed in the first two
classes as much as possible, and dynamic alloca-
tion of work areas is used in order to comserve
space. Dynamic allocation is particularly
valuable because 500 operators average less
than 7 requests in the computer system simulta-
neously (21 requests/sec * 0.3 sec average pro-
cessing time).

Four dynamically allocated work (buffer)
areas are defined in the Directory Assistance
System/Computer:

1. Second level index retrieval

2, Listings retrieval

3. Page information

4. Communications output

Four allocation methods were considered
along with several minor variatioms. At
one extreme buffer elements are statically
assigned in pairs to each file channel and
communication line. This method requires 90,000
to 100,000 bytes for buffers., At the other

248

extreme elements are allocated when required in
the size required but from a common pool. This
method requires the least space for buffer; 14,000
bytes.

The common pool allocation method uses
main storage space most efficiently but the
allocation programs are very complex. Complexity
is reduced greatly if all allocations from a
pool are for the same size buffer element. Over-
head processing time is reduced linearly as the
number of allocations are reduced, The third
allocation method involves two pools; one for
index and listings and the other for page forma-
tion and output communications. Use of the
index work area does not overlap, in time, use
of the listings work area so one allocation .
can serve both uses. This also applies to the
page formation and output communications areas.,
This method requires 15,000 bytes of main storage
space. Finally for the fourth allocation method
all buffer space required to service a request
is allocated at the beginning of the request
processing. This method, though quite similar
in programming complexity, reduces the overhead
50 percent over the third method. The buffer
space requirement is 30,000 bytes.

A final decision on buffer allocation
method requires a more rigorous consideration
of allocation programs. This may, in turn,
call for additional performance analysis work.

All experiments associated with main storage
requirements and buffer allocation were carried
out on the total system model. It is interesting
to note that buffer pools act as multiple server
queueing systems. Thus the maximum request load
for a finite queue situation is almost coincident
with the request load limit set by the maximum
function response time (Figure 2).

Listing File Blocking

The listing (name, address, and telephone
number) file on the disk packs is grouped into
blocks of listings. Within a block of listings
the listings are grranged in a continuous string
with spare space provided at the end of the block
to allow imsertion of mew listings. Two block
sizes are considered in this study: a full block
of 60 listing spaces and a half block of 30 list-
ing spaces. Since, for a typical file, 95 percent
of the retrievals involve less than 24 listings,
the half track block seems desirable.

Choice of a full track block will require a
minimum additional 10,000 bytes of main storage
and as much as 36,000 bytes depending on the buf-
fer allocation method chosen. The most likely
amount of additional main storage required is
20,000 bytes. TUse of a full track block would,
however, result in a 1 million byte savings of
fixed head file device space. Main storage
costs are approximately 100 times the fixed
head file device costs (1 cent per thousand
bytes).

Spare space allocation in the disk pack list-
ing blocks has been shown in a separate study to
be an effective control of the frequency of file
reorganization. Since overflow can be very
detrimental to retrieval performance, it is
assumed for this study that a reorganization takes
place each day an overflow occurs during updating
of the file. A sensitivity study (Figure 5)
compares the effects of file growth rate, file
size in listings, and spare space, on the time
between reorganizations for a file using a full
track block. From Figure 5 it can be seen that
a three listing range of spare space (8 to 11)
can offset the effects of either file size or
growth rate over ranges anticipated in the
Bell System. For this discussion spare space
in a full track block is set at 9. This provides
an average reorganization interval of 20 working
days under the most likely conditions of imple-
mentation of DAS/C.

A similar study of the half-track block
size shows a requirement of seven spare spaces
. for a 21-day average reorganization interval.
Thus, a track blocked in full track blocks can
hold 51 listings but if it is blocked in half-
track blocks the track capacity is 46 listings.
In the typical file this difference results in
a requirement for 80 million bytes additional
disk pack storage space to allow for half-track
blocking, at about $250,000 purchase.

. These studies of file reorganization
intervals and spare space assume an even dis-
tribution of update activity throughout the
file. The effects of high concentrations of
activity in small areas of the file should be
studied. The effect of a higher activity rate,
a shorter interval, is offset by a smaller
effective file size (area of high concentration).
Only complete elimination of overflow areas
are given consideration in this study. The
effects of a small overflow area (say less thamn
100 listings) should be considered. The re-
organization interval might be increased but
so also might the inquiry response time be
increased with the occasional additional access
to the overflow area.

The disk pack requirements appear dominant
in this design decision. However, other aspects
of the choices must be considered before a
decision can be made.

The total system model was used to deter—
mine the amount of storage required in core
for each of the various listing file blocking
sizes, - In addition, a PL-I simulation model
was used along with an analytical approximation
of the reorganization interval in order to
determine the effects of file growth rate,
file size in listings, and spare space on the
time between reorganizations of a file. The
approximation was used to explore the effects
of the mean interval between reorganizations
and the PL-I model was used to develop a dis-
tribution of reorganization intervals about the
mean.

249

Listing Retrieval and Search Strategy

The computer search for telephone number
listings begins with indexing and retrieval of
listings from disk using a basic six character
key., To form the basic key, characters are
taken from the most productive details (finding
name, street name, next name, etc,) submitted
by the Directory Assistance Operator. After
listings have been retrieved into core a search
is performed on any additional details submitted
by the operator. If indexing on the basic six
character key results in a requirement for a
retrieval of multiple blocks of listings, one
alternate plan is to retrieve all blocks at
one time (Figure 6, left). If additional details
are available, a search is performed on all the
retrieved listings. The matching listings are
then formed into pages and processing continues
to move these pages to the page queueing and
the first page to the communications control pro-
grams.

Another alternative to this approach in
multiblock retrievals is to retrieve one block of
listings at a time and, if additional details are
available, search that block of listings
(Figure 6, right). At the end of the search
the matching listings are moved out of the
search area into a page formation area before
another block is retrieved into core for search-
ing.

Some side design problems were encountered
in the preparation of the simulations for these
two approaches, For example it was discovered
that five or six tracks might be retrieved and
searched to form a single page. On the other
hand, it may be necessary to form as many as
three pages in main storage out of a search of
two tracks.

The main effects on the system are seen in
the file buffer requirements and disk channel
occupancy. The disk channel occupancy is increased
approximately 15 percent as a result of going to
retrievals of a block at a time, (from .50 to
.58, (.58/4 channels = 147 utilization each
channel)). Changing from retrieval of all blocks
of listings to retrieval of one block at a
time results in a reduction of 10,000 bytes of
file buffer space needs. The response time
change is less than 10 percent and all other
utilizations in the system stay the same. With
the increased channel load, however, the disk
access function will reach its maximum allowed
response time (Figure 2) at a lower system load.

Early in the simulation effort it was
discovered that very long searches seriously
degrade performance. This precipitated a
realization of the effect of the associated
page flipping activity on the operator call
service time. Therefore the search was limited
during early simulation activity to 200 listings,
i.,e,, if keyed input results in a retrieval
longer than 200 listings, the listings are not
displayed, Additional details are requested by

the operator and another search key is given or
the customer is told that we are unable to help
without more information. This listing limit was
tested to see how an increase to 1,000 listings
affects performance. The increase to 1,000 list-
ings is desirable in order to reduce the "not
founds" and the operator requests to the customer
for additional information.

Raising the search limit to 1,000 listings
added 10 to 12 percent to the average response
time and 5,000 to 8,000 bytes to the file buffer
needs. The fixed head file device occupancy
increased from 0.65 to 0.75 and the disk channel
occupany increase is negligible.

Later in the design effort it became appar-—
ent that the listing limit is not practical
if more than 2 details (basic key) are given
since it is not possible to know how many list-
ings match the request until all the listings
are retrieved and searched. Thus two limits were
established; 1) three tracks (180 to 210 list-
ings) if two details are given, and 2) ten tracks
retrieved and searched if three details are
given. The effects of this change on DAS/C
performance and component occupancies were all
negligible.

The total system model was used to deter-
mine the main effects on the system for the two
alternative strategies. A separate simulation
which operated only on the nine distributions
of number of listings retrieved for various
file configurations was used to develop the
experimental parameter values to be used in the
total system model.

Program Modularity, Priority, and Pre—emption

The DAS/C load is characterized by a few
types of requests (tasks), all with similar
processing program execution times. Most of
these request types are of the same priority.
This contrasts with the load on most large
computer systems which serve tasks with process-—
ing requirements of wide variation in length and
urgency. Programs with small requirements are
‘threatened with long waits for completion of
programs with large requirements. To alleviate
this threat, programs with large requirements
are sometimes broken into modules to allow
smaller programs access to the computer within
reasonable intervals. Priority and more recently
pre~emption are used extensively to keep delays
for small programs commensurate with their
processing requirements. However, use of
modularity, priority, and pre-emption in DAS/C
warrants study to determine the effects on
performance of this system with similar process-—
ing requirements.

In this study program modularity is inves-
tigated first for a continuous line of program
execution, i.e., uninterrupted by I/0. Breaking
the program into nine equal modules increases
the response time (program execution elapsed
time) 16 percent when the processor utilization

250

is 30 percent. At 60 percent processor utiliza-
tion the response time increases 32 percent when
this modularity is introduced, and the response
time increases 62 percent at 90 percent processor
utilization. Introduction of a descending
priority scheme changes these increases to

32 percent, 90 percent, and 328 percent respec—
tively. Descending priority is used commonly

as, for example, in processing of a communica-
tions interrupt through various operating control
system routines to finally give control to the
execution of application programs as depicted

in Figure 7. Figure 7 shows 7 processing modules
at three priorities; 90, 80, and 20. In this
scheme all tramsactions arriving at the first
module will be processed to the "Activate
Program'" module before execution of that module
for any preceding tramsaction.

Priority and pre—emption is quite often
necessary in order to insure preservation of
the interrupt information. A multiplexor I/0
processor, for example, will set up line ad-
dresses and interrupt status in its registers
and then raise an interrupt line to the computer.
A good design minimizes chances of losing this
first interrupt if, for example, a second cause
for an interrupt arrives before information
for the first interrupt is preserved in the
computer. Priority and pre—~emption is usually
required to assure that at least enough of the
common interrupt processor is executed to stack
the interrupt and its information in a queue.

The designer is then faced with a decision
to return to the pre-empted program or continue
with administrative work on the pre-empting
transaction to place it in a queue for the pre-
empted program. For example, in Figure 7 let
us assume transaction 1 had partially processed
the presearch module when the interrupt associ-
ated with tramsaction 2 arrived at the common
interrupt handler module thereby causing a pre-
emption of transaction 1 processing. The
decision must be made after processing of trans-
action 2 in the common interrupt handler is
complete and the transactions resides in queue
for the interrupt processing module, The
simulations indicate a strong advantage to
continuing with the presearch processing until
it is completed for transaction 1 before pro-
ceeding with transaction 2. If the pre-empted
program execution time is eight to ten times
greater than the time to execute the pre-empting
transaction, the effect on total response~time
is minimal. However, if the situation is re-
versed, i.e., pre-empting ten times greater than
pre-empted, the total response-time is increased
nearly 100 percent at 60 percent processor
utilization and about 300 percent at 90 percent
processor utilization.

Initial studies were made on the effects
of module size in a modularized string of
processing. Equal size, increasing size, -and
decreasing size strings were studied and the
effects were relatively insignificant.

Initial studies were also made on the effects
of I/0 (file accessing) between strings of process-—
ing. It appears that I/O operations exceeding
processing strings in time by a factor of ten
or more cause the processing strings to behave
independently from a queuing standpoint.

To summarize, at this point in our studies
it appears that modularity, priority, and pre-
emption in a continuous line of program execution
is undesirable. If pre~emption is required, it
is desirable to pre-empt for as short a time as
possible. If modularity is used choice of
module size is relatively ineffective., If an I/0
operation occurs the strings of processing on
either side of the I/0 operation can be treated
independently. However, the designer must watch
for possible interaction effects.

The effects of program modularity, priority,
and pre-emption were studied with several small
simulations representing in general the variations
that can be used in configuration of program
modules and how these configurations interact
with file activity. Upon completion of the work
with the separate models two or three of the
best program configurations were applied to the
total system model.

DESIGN STUDIES SUMMARY

Before proceeding to a look at the future,
it seems desirable to attempt a summary of
results. At this point the design studies
probably appear to be a collection of independent
activities. Actually they serve to advance
the design of the inquiry subsystem and in this
way they are closely related. The results of
the studies are presented here in one paragraph
to give a sense of overall system design.

The communications line-control study sug-
gests use of a simple first-in/first-out queuing
method or a line direction switching control
method. A best choice for file block size
appears to be a full track (approximately
60 listing spaces). Listing retrieval and
searching should be done a block at a time.
Dynamic main storage allocation should occur
only once per operator request and in sufficient
quantity to provide for all buffering needs
to process the request. And finally, modularity,
priority, and pre-emption are discouraged for
use in continuous strings of program execution
during processing of operator requests.

FUTURE SYSTEMS ANALYSIS

Systems analysis may continue on a lower
key with computer system design problems and
may expand in areas of the operator's job and the
complete network of Directory Assistance. Work
on. the operator's job might well lead to a rede—
sign of the computer system. Work on computer
system design problems should give reasonable
consideration to this possibility as it has in
the past.

251

Computer system design problems presently
under consideration are the page queuing func-
tions and the update functions. Anticipation
of problems to be considered is frustrated by
the infinity of problems available and not know-
ing which will appear relevant at each point
of the design process. This requires flexibility
and a capability to complete a design study within
a few weeks after the problem appears relevant.
The approach described here, which uses small
models to represent only significant aspects of
the function involved in the design study,
facilitates the flexibility required to respond
quickly to design questions. At the same time
overall system performance can be assured with
the total system model and adjustments can be
made in the function maximum response time
(Figure 2) if necessary.

Work on the operator's job should involve
a comparison of DAS/C, several alternative
systems, and the present Directory Assistance
operator job to determine the effects of each
alternative on Directory Assistance in the
Bell System.

Work on the complete DAS network will
probably begin with renewed use of a market
analysis program which was developed to help
characterize the population of Directory Assis~
tance offices and relate these characteristics
to the design characteristics of the several
Directory Assistance systems. This work views
the subsystems (switching equipment, DAB's,
and IRC) as black boxes described functionally.
For example, the Directory Assistance Bureau
is viewed as a voice to data concentrator.

ACKNOWLEDGMENTS

Mr. W. A. Hall of the Program Development
and Training Department and Mr. Y. B. Eng of
the DAS/C Design Department, both at Bell
Laboratories, prepared all simulation models
associated with these design studies. Specifi-
cally, Mr. Hall prepared models used to study
listing file blocking and reorganization,
listing retrieval and search methods, and main
storage allocation methods. He also modified
the total system model as required .to check
the overall effects of design decisions.

Mr. Eng developed models for studies of com~
munications line control, file reorganization,
and program modularity. He also developed a
first version simulation of the DAB cluster
Controller. Our several close associates in
the DAS/C Design, the Operating Control System,
and the Systems Analysis Departments must be
acknowledged for their important and helpful
encouragement and support.

BIBLIOGRAPHY

1. H. I. Rothrock, 'Computer Assisted Directory
Search,"”" PHD Thesis, University of
Pennsylvania, May 1968, Avail: University
Microfilm Order No. 69-164.

2. W. A. Hall, "A General Simulation Model of an
On-Line Telephone Directory Assistance
Retrieval System, "Proceedings of the Third
Conference on Applications of Simulation,"
December, 1969.

DIRECTORY ASSISTANCE SYSTEM COMPUTER
BASIC ENTITY
FIGURE 1

Voice C.0,
Trunks

Directory
~d Assistance
Bureau

Directory
@ Assistance
/

Directory /
Assistance

Bureau Bureau
K} \ /4
/
\ \ : iy
\ Y4
\\ i Y&
\ 7
AN ¥4
N\ /7 o) (c0)
\ | / 7
\ 1 /
ALY | / /
\ \ /I /
ANRY 7 7
AN ;7
ALY + 7
ANKN /
AN v
\ \ I,
_ A / I
/
Information
T e e e Retrieval ~ ©——————"————— o e e
e e e e o e e e e e e o et Bureau e ———
Data Lines
——d g > v = : < \\ —
7) 1 AN N
s N,
s 7 1 NN
7 p) AN
v i \
Vv t ! AN N,

252 7

Directory Assistance System/Computer
Response Time Assignments
Figure 2

Allocation of Response Time ...

500 msec
Processing 50 msec
Fixed Head 100 msec
Accesses
Disk Accesses 150 msec
Communications 200 msec

DIRECTORY ASSISTANCE SYSTEM/COMPUTER

COMMUNICATIONS CONTROL-LOAD PERFORMANCE CURVES

FIGURE 3

Sec.

Pre-empt-Restart
Sinéle Server

First Wait First Served
Input Priority Over
Out

Pre-empt-Resume

o <@ =

\
7

\ 8

Avg Transmission Plus Queueing Time For Both Input And Qutput

(3
/ I
lIII
TR
~1 Lot
.1] 1
1 Y|
| i 111
1 1 g1 1
P N TR | O T
0 2 4 6 8 10

Request Per Second

DIRECTORY ASSISTANCE SYSTEM/COMPUTER
COMMUNICATIONS CONTROL
PROGRAM COMPLEXITY vs PERFORMANCE
FIGURE 4

Relative
Control
Complexity

fnput Preempts
(Restart)
Input Preempts
(Resuma)
Input Priority —'
First Wait First Served 1

Single Sorver1

Greater Capacity At Given Resp Time

Relative Performance

Directory Assistance System/Computer
Figure 5
File Inter-reorganization Time
Sensitiuity Study

Meon Inter-reorganization Time (Days)

40 |—m= mmListings

w1 mGrowth
wmmmFree spaces 60 listings/trh. 0.083 additions/trk.

Free Spaces ¢ 4 6 8 10 12
Lisungs 250K 500K 750K 1.0M 1.25M _
Growth -4 0 4 8 12

0.1 Mean Daily Additions/Track

"
1.5Meg

DIRECTORY ASSISTANCE SYSTEM/COMPUTER DIRECTORY ASSISTANCE SYSTEM/COMPUTER
PROGRAM MODULARITY, PRIORITY, AND PREEVMPTION LISTING RETRIEVAL AND SEARCH STRATEGY
FIGURE 7 FIGURE 6

Initial Inquiry Request -

Index On Index On
6 Char. Key 6 Char, Key
Yo First Block To First Block
Common
PR 90 Interrupt I
Handler
Retrieve Retrieve Qne
| @ Transaction 2 Al Blocks al[?::nosf
Of Listings s
interrupt
PR 80 Processing
Module
PR 80 Storage Search Listings
Allocation Search All
Listings
Move Matching
PR 80 Schedule ';:;"isre.r:
y
Farm Pages
PR 20 Activate
Program
EN
Input Edit
PR 20 & Validate
Translate Code
Conynue Continue
P X .
R20 Presearch @ Transaction 1

254

