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Summary

A major consideration in the original
design and in the expansion of any computer-—
communication network is the provision of a
network which will be relatively invulnerable
to failures of its components. This paper
considers the reliability analysis of such
networks. Two indices of reliability for a
network are introduced. Methods for the cal-
culation of these indices are illustrated by
carrying out a detailed reliability analysis
of the ARPA Computer Network. This analysis
includes sensitivity calculations to protect
against inaccuracies of measured system para-
meters and the evaluation of possible improve-
ments in reliability through modification of
network configuration.

Introduct ion

The ARPA network is a store-and-forward
computer network designed to intercomect many
dissimilar computers located throughout the
country. Each computer interfaces with the
network by means of an Interface Message Pro-
cessor (IMP). These IMPs are connected by fully
duplex communication lines of typically 50 kilo-
bit/second capacity. The reliability of such
networks and their availability to users is the
subject of this paper.

For analysis purposes, the ARPA network
can be represented as a graph with lines cor-
responding to communication links and nodes
corresponding to the Interface Message Proces-
sors. In earlier work™ methods were described
to choose network designs providing good re-
sponse time at low cost. A minimum level of
reliability was guaranteed by requiring that
there exist at least two node disjoint paths
between each pair of IMPs. Figure 1.l repre-
sents a version of the ARPA network which is
representative of the planned design at the
end of 1971. This network consists of 23 nodes
and 28 links and is used throughout the paper
as an example.

In Section 2 we define two measures of
network reliability. 1In Section 3 we assume
nodes are perfectly reliable and we analyse
the network with respect to the first measure.
In Section 4 we allow both node and link fail-
ures and determine reliability according to the
second criterion. In addition, modifications
of the network which increase reliability are
explored.

*This work was supported by the Advanced Research
Projects Agency of the Department of Defense
(Contract No. DAHC 15-70-C-0120).
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Two Network Reliability Criteria

Nodes and links can be in two states,
failed or operative. Two nodes in the network
can communicate if they both are operative and
there exists a path of operable nodes and links
between them. A simple and natural characteri-
zation of a failed or operative network is:
Criterion 1: A network is operative if every
pair of operable nodes can communicate; other—
wise it is failed. This is equivalent to: the
network operates if all operating nodes are in
one component; (a component is a maximal set of
nodes in which each pair can communicate).

Criterion 1 is not completely satisfactory
because it does not indicate the "degree" of
disruption a failed network has experienced.
For example, the failure of the single node 1
in the network shown in Figure 2.1 entirely
prevents communication between the remaining
nodes. In Figure 2.2 the failure of node 1
only prevents one operable node from communi-
cating with the others.

Criterion 2: The fraction of communicating
node pairs of a network is the ratio of the
distinct pairs which can communicate to the
total number of distinct node pairs.

Suppose nodes and links fail with known
probabilities. Each node and link may have a
different failure probability. However, we
require that every link and node failure be an
independent random variable. We seek to calcu-
late either the probability that the network is
failed or the expected number of node pairs
cannot communicate.

Our model represents two situations; in
the first, a catastrophic event such as an
earthquake or hurricane may destroy network
elements. Then, if elements fail with known
probabilities, we seek the expected number of
node pairs that can communicate after the event.
In the second situation, links and nodes may
continually fail and be repaired. We then wish
to know either the time average of the number
of node pairs communicating or the fraction of
the time the network is connected. For this
interpretation each element failure probability
is the fraction of time it is not operational.

Network Connectivity Probability

The IMPs in the ARPA system are very .
rugged, highly reliable units and preliminary
information implies they can be made more re-
liable than their connecting lines. As a first

approximation, we therefore assume the nodes
are perfectly reliable. Initially, we assume




that all links have the same failure probabi-
lities.

If p represents the probability of a link
failure, the probability, h(p), of the net
failing is

h(p) = c(x) pNBk gk
k=0

(1)

where g=1-p, NB is the number of links in the
net, and C(k) is the number of disconnected
subnets with k operable links. Thus, the ori-
ginal probabilistic problem "reduces" to the
combinatorial problem of determining the ¢ (k).
Several of the C(k) can be specified immediately.
If the net has NN nodes, at least NN-1 links
are required to connect all nodes. Thus C (k)
= (ﬁ?) for k<NN -~ 1. Moreover, if it takes at
least ¢ failed links to disconnect the net,
c(NB-k) = 0 for k =0, 1, ..., c=1l. There are
now NB-NN-c+2 unknown C(k). Since the ARPA
net is designed to minimize cost, typically
NB is not much larger than NN and c=2. Thus,
for the example in Figure 1.1, the number of
unknown terms is 28-23-2+2 = 5, There are 3
ways to find these terms: enumerating subnets
with k links and counting the failed ones,
sampling among subnets with k links and esti-—
mating c(k), or calculation of bounds on the
missing terms. A more complete discussion of
this is givéen in Reference 4. The essential
feature is that when p is small (the situation
for the ARPA net) only networks with small
numbers of simultaneous failures are likely
to occur. 1In (1), therefore the unknown C (k)
with the largest k are most important. Conse-—
quently, a good approach is to enumerate the first
few Cc(k) and estimate or sample the remaining
. ones. We illustrate this procedure on the

ARPA net of Figure l.1l. Table 3.1 lists the
number of subnets for all k and the number of
k link subnets which are not connected for all
k except k = 23 and k = 24.

The two unknown terms, c(23) and c(24),
can be accounted for in two ways. The first
uses the fact that if the removal of k links
disconnects the net, the removal of any set of
k+1 links. containing these k links also dis-
connects the net. The details of the resulting
estimation procedure are given in Appendix A.
The resulting bounds on C(23) and c(24) are
given in Table 3.2. The terms can also be ob~-
tained by sampling. For small p, C(24) makes
the greatest contribution to the probability
of the network failing, and we expend the most
effort to estimate it. We utilize proportional
stratified random sampling. Suppose we are in-
terested in the range 0£p <.l. For p = .05,
the probability of a network having 23 opera-
tional links is (35)(.05)5(.95)23 = .009439
while the probability of a network having 24
operational links is (%2)(.05)4(.95)2 =.037365.
If we are allowed a total of 1000 samples, we
allocate these to the 23 and 24 link nets in
proportion to their probability of occurence.

Thus, we sample 24 link nets (1000) (.037365)/
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{.009439 +,037365) = 79832= 798 times and 23 lirk rets,
(1000) (.009439)/ (.009439 + . 037365) =201L.67= 202 times.
The resulting estimates and their variances are shown
in Table 3.3. 1In Table 3.4, upper and lower
bounds for network failure probability for

P between 0 and .1 in increments of .0l

and from .1 to .9 in increments of .l are
given. Estimates of their values and the
sample standard deviations are also shown.

In general, the estimation procedure considers
all terms not known a priori. In our example,
these are C(26), C(25), C(24) and Cc(23). To
be specific, suppose we wish to sample 1000
networks. For p = .05, the probability that

a network with 26 links will occur is .24903;
with 25 links, .11359; with 24 links, .03736;:
and with 23 links, .00944. We divide our 1000
samples among these 5 types of networks in pro-
portion to their probability of occurring.
This leads (approximately) to 608 samples of
nets with 25 links and so on. Since there are
only 378 networks with 26 links, it is most
efficient to calculate C(26)by enumerating all
378 subnets. This allows 622 = 1000 -~ 378
samples to be allocated to networks with 23
through 25 operative links. Using proportional
allocation, we obtain 440 samples for C(25),
145 for C¢(24) and 37 for C(23). The results
are also displayed in Tables 3.3 and 3.4. 1In
Table 3.5 the stratified simulation with a
sample of size 1000 is compared with conven-
tional simulation with the same sample size
done by assigning a random number to each link
and considering the link failed or operative
depending on whether the random number is less
than or greater than the link failure proba-
bility. As is evident, the stratified simula-
tion is far more efficient than the conventional
approach over the range of practical link
failure probabilities.

Figure 3.1 illustrates the relationship
between the upper and lower bounds given in
the tables and the estimates of connectivity
probability obtained by the stratified simu~
lation.

Average Fraction of Non-Communicating Node Pairs

To f£ind the expected number of communicat-
ing node pairs, we sample directly from the
family of all subnets of the original network
rather than use stratified sampling. This
method, while less efficient, is easier to
use in more general situations such as the
case in which nodes can fail. The method
operates by generating a random number for
each node and link. If the random number is
less than the failure probability, the corres-—
ponding element is removed; otherwise it is
operative. We use the procedure described in
Appendix C to yield the expected number of
pairs not communicating for a range of link
and node failure probabilities with about the
same computational effort as for one set of
values of link and node failure probabilities.

the results of a simu-
28 link net in Figure L1

For the first case,
lation on the 23 node,



using equal probabilities for node and link
failures and a sample of size 1000, are shown
in Figure 4.1l. Also shown are several results
that illustrate the flexibility of the approach.
These simulations tested ideas for increasing
network reliability. In the first, the link
connecting UTAH to NCAR was replaced by a link
from NCAR to NASA thus creating an additional
node disjoint path between the East and West
Coasts. However, the reliability improvement
as measured by the simulation was negligible
and the two curves could not be shown separ-
ately in Figure 4.l1. Next, the long serial
chain from BBN to HARVARD to BURROUGHS to ETAC
to MITRE to CM to CASE was examined. This
chain is vulnerable since any two node or link
failures in it disconnects the network. To
relieve this situation, a link was added from
LINCOLN to BURROUGHS. This generated a sub-
stantial improvement as shown in the figure.
The third approach considered the installation
of hardware at each IMP so that if an IMP
failed, traffic could bypass it by being routed
around it in one direction connecting two of
the incident links. Any remaining links are
effectively blocked. The directions of the
bypasses chosen are shown in Figure 2.4.2. The
result was a reduction in the expected fraction
of node pairs not communicating almost to the
level of the case of no-node failures. Howewr,
for low levels of unreliability, (p=.03) the
improvement was not considered to be worth the
expense of the hardware and software modifica-
tions that would be required.

Two additional simulations considered
link failure and node failure separately.
These simulations give an indication of the
extent that any modification of the network
design can lower the expected fraction of
pairs communicating. If a node fails, at
least 22 pairs cannot communicate (all nodes
paired with the failed node) independent of
the network structure. Thus, good network
design cannot improve beyond the effect di-
rectly due to node failures, which for the
ARPA net is the major factor affecting reli-
ability.

The situation where link and node failure
probabilities are not necessarily equal was
also investigated. Preliminary data was avail-
able on the downtime for a subset of the com—
munication lines in the ARPA network. The
reliability of a link in the ARPA net was hy-
pothesized to be a linear plus a constant term
function of the link's length. Linear regres-—
sion was used to fit a function to the avail-
able data. The least squares linear regression
function was .00293 X + .904. This function
gives the percent downtime as a function of
the direct distance X in miles between nodes.
A highly conservative failure probability of
.03 was assigned to the nodes. The average
failure probability over all the nodes and
links was .0241. 1In Figure 4.3 the results
of the simulation are displayed. Other points
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plotted wexre obtained by assigning a common
value for each element failure probability
(nodes and links) equal to the average element
failure probability for the previous simulation.
From the closeness of the results we conclude
that for design purposes the assumption that
links fail with equal probability is an excel-
lent approximation.

We can also use Criterion 1 for networks
with failing nodes and links. In Figure 4.4,
the probability that the network is disconnected
is compared for three situations. In the Ffirst
two cases, nodes and links are assigned the
same failure probability. First, the network
is considered disconnected if any node pair
cannot communicate. (That is, if any node has
failed, the network is considered disconnected.)
Second, the network is considered disconnected
only if a pair of operable nodes cannot com-—
municate. Finally, for comparison purposes,
we give the probability of disconnection when
nodes are perfectly reliable.

Appendix A: Bounds for c(k)

If removing a set of k links disconnects
a net, then removing any set containing it
also disconnects the net. Similarly, if a
subset of links forms a connected subnet, then
any set containing the first is also connected.
Using only these facts, if one knows the num-
bexr, c(k), of disconnected k link subnets, one
can give lower bounds for C(k’') for k'< Xk and
upper bounds for c(k"), k"> k.

Bounds can be obtained using Kruskal's
Theorem. An abstract complex is a finite set
of points together with a class of subsets with
the subset closure property:; that is, if a sub-
set belongs to the classg, then so do all its
subsets. The r-canonical representation of
any non-negative integer n is (ny, ..., nj)
where

n .
n= () + b+ s (3D

(1)
and n, is as large as possible so that(;k)SIL

n,._q is as large‘as possible so that (?f) +
(n
r
An r—-set is a subset with r elements. For rs§
r*, £(n; v, r') is the greatest number of r'-
sets in any complex having precisely n r-sets.
If r>r', £f(n' r, r') is the smallest number
of r'-sets in any complex having precisely n
r-sets.

r-1) ¢ n and so on until equality is achieved.
-1

Theorem (Kruskal). If n = (ﬁf) F eee q5 is
canonical, then f(n; xr, ,') = QE)+ (?F:i) +

ni 2
cee (r'-r+l) )
with the conventions that (8) =0, () =0
for m<0 or k<0, or m<k.




Kruskal's theorem gives us the following
inequalities

ck*y2£(ck); k, k') for k2k'. (3)
ck')S f(c(k): k, k') for ks k'. (4)

Thus, for each C(k) that we can calculate (or
bound), we can get bounds on the remaining
¢(k'). In the ARPA net, ¢ is small and links
have small failure probabilities. In such
cases, we can exactly calculate the first few
terms C(NB-c), C(NB-c-1l), ..., and then derive
lower bounds for the remaining co-efficients.
This yields a good lower estimate for h(p) for
p small. Good upper bounds are more difficult
to determine. C(NN-1) equals ( l) minus the
number of trees and can be calculated by
formula; upper bounds for k N-1 then result
from (4). Unfortunately, the terms which are
most important for small p are the ones for
which the estimates from (4) are least accurate.
Further details can be found in Reference 4.

Appendix B
Determining Components of Networks

consider a network G={I}.4) with node set
N and link set 4 in which only some of the
nodes or links are operable. We wish to £ind
the number of components of the network. Each
node will be assigned a label indicating which
component it is in. The algorithm is as fol-
lows where k: = k¥ + 1 means k is replaced by
k+1. :

tep 0: Start w1th,4° # and assign each node
a separate label. Set k = 0. Go to Step 1.
Step 1: If all operable links are in;Qk stop.
Otherwise add an operable link ay to,q to
form f{k+l’ suppose a, = (mg,ny). Examlne
the labels of mp and ny. If they are the same
or if either my or ny is inoperable repeat
Step 1 with k: = k+1l. If not, go to Step 2.
Step 2: Change all the node labels which are
the same as the label of my (including my's
label) to the label of ny. Set k: = k+l and
go to Step 1.

When the algorithm terminates, each com-
ponent is listed. It is important for future
applications of the algorithm that we may in-
troduce the Operable links in Step 1 in any
oxrder we please.

It is convenient to maintain several
other statistics of interest during the cal-
culation. These include the number of compon-
ents, the number of nodes in each component and the
nunmber of node pairs which are in the same component.
This is carried out as follows. Initially, the
number of components is NN, the number of pairs
communicating, NP, is 0, and each component
contains 1 node. Each time we reach Step 2,
we combine two components, with say t1 and t,
nodes into a new component with i+t nodes.
Also, we now have tj X t, more node pairs which

can communicate. Therefore, we set NP=NP+tl;5-
The number of components decreases by 1.

Appendix»C: Functional Simulation

Suppose for a network with NN nodes and
NB links the probability of node i failing is
pi and the probability of link j failing is
PNw+j- We start with no nodes or links and
generate NN+NB random numbers, divide the ith
by p; for i = 1, ..., NN+NB, and sort the re-
sulting numbers in decreasing order. This
yields a non-increasing séquence ry, Lor sees
rny+nee We then add the node or links corres-
ponding to rj; then the node or link corres-
ponding to r,, and so to obtain NP, NP, ...,
NPyn+ng When NP; is the number of pairs com-
municating after the ith link or node has been
added. Then for s2rj, the sampls value is
0; for r2 sz ry, the sample value is NPy; for
ro2 s2 rs, the sample value is NP,; and so on.
Adding a link in this process corresponds to
one step of the algorithm described in Appen-~
dix B. Adding a node corresponds to checking
to see if any of the operable links incident to
the added node can be added. The entire pro-
cedure for determing the NP for all s is essen-
tially the same as applying the algorithm for
determining connectivity once to the overall
network. For s=1 the node and link failure
probabilities are the nominal ones l.p, l.p,,
eees Lebpys -e-r 1. Pgpynpe  FOT s=1/2 we ob-
tain the expected number of pairs communicating
for node and link failure probabilities (l/2)pr
(1/2Ypg, ««r (L/2)Pypr -+-+ L/2, Pywinge Thus
the method gives a sensitivity analysis when
each element failure probability is varied pro-
portional to s. For a more extended discussion,
see Reference 4.

*
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TABLE 3.1

EXACTLY KNOWN C (k) FOR
23 _NODE 28 IINK ARPA NET

Numbexr Numbexr
of links of links Number of Method of
Operative Failed Number of Nets Failed Nets Determination
0 28 1 1 a
1 27 28 28 0
2 26 378 378
3 25 3276 3276
4 24 20475 20475
5 23 98280 98280
6 22 376740 376740
7 21 1184040 1184040
8 20 3108105 3108105
9 19 6906900 6906900
10 18 13123110 13123110
11 17 21474180 21474180
12 16 30421755 30421755
13 15 37442160 37442160
14 14 40116600 40116600
15 13 37442160 37442160
16 12 30421755 30421755
17 11 21474180 21474180
18 10 13123110 13123110
19 9 6906900 5906900
20 8 3108105 3108105
21 7 1184040 1184040 a
22 6 376740 349618 b
23 5 98280 ?
24 4 20475 ?
25 3 3276 827 c
26 2 378 30 c
27 1 28 0 d
28 0 1 0 d
Notes: not enough links to connect 23 nodes

enumerated

a:

b: number of trees calculated by formula3

c

d less failed links than minimum cut set
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IABLE 3.2
BOUNDS FOR C (k)

Links Links Lower Boundl Lower Bound2 Upper Bound®
Operating . Failed 1 Exact Term 2 Exact Terms
22 6 112861 192737 349618
23 5 23645 42484 94404
24 4 3754 7067 19506
25 3 423 827 3105
4
26 2 130}
Notes: 1: Bounds obtained by projection using the
value C(26) as known.
2: Bounds obtained by projection using the
values € (26) and C(25) as known. .
3: Bounds obtained using the number of trees
as known.
4: Boxes indicate exact values obtained by
enumeration or formula.
TABLE 3.3
RESULTS OF SAMPLING STRATA
# ILinks ' Number i [ i 72 i i‘Bst. No. of
Failed : of Nets !nNsamp ' A e - o 'Disc. Nets
1 ! ' |
1 l ' ! i :
3 ! 3276 I 440 1 .22954 ' .976 1 .987 . 751.97
| 1 I ! ' i
| L | - : 1 [
4 ‘ 20475 | 145 I ,45517  8.14 : 2.85 ¢t 9319.60
f 1 V
! { I : ! ]
| H i
5 1 98280 ' 37 : .64864 44.27 | 6.65 , 63748.33
1 ! , ' ! '
1 ' { ! ! ',
4 ) 20475 Y798 , 48120 1 1.605 ! 1.267 1+ 9852.57
1 >
1 J ! ! : :
' i f 1 1
5 : 98280 . 202. i .717821, 8.64 | 2.9406 , 70547.44
] i i J !
: i ] : :
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TABLE 3.4

PROBABILITY FOR NETWORK BEING DISCONNECTED

AS A FUNCTION OF THE PROBABILITY OF IINK FAILURE

Link
Froba— Lower Lower Estimated Standard Estimate4 Standard
ility Boundl  Bound? Upper Bound!' By Sampling Deviation Iy sampling Deviation
.01 .00267 .00301 .00311 .00297 . 00005 .00303 .0
.02 .00957 .01188 .01321 .01178 . 00032 .01221 . 00003
.03 .01945 .02607 .03154 .02625 .00089 .02749 .00014
.04 .03159 . 04485 .05888 .04613 .00174 .04865 .00036
.05 . 04568 . 06754 .09523 .07109 .00285 .07532 . 00072
.06 .06177 .09361 .13985 . 10075 .00417 .10704 .00121
.07 .08160 .12264 .19141 .13466 .00566 .14325 .00181
.08 .10123 .15436 .24824 .17230 . 00729 .18330 .00250
.09 .12539 .18858 .30848 .21312 .00899 .22652 .00324
.1 .15298 .22511 .37035 .25654 .01392 .27220 .00517
o2 .57609 .64892 .84098 .70384 .01603 .72298 .00648
.3 .90281 .92194 .97578 .93931 .00530 .94493 .00214
.4 .98984 .99184 .99755 .99382 . 00063 .99445 . 00025
.5 .99954 .99963 .99987 . 99971 . 00002 .99974 . 00001
.6 . 99999 .99999 . 99999 .99999 .0 .99999 .0
Notes: 1l: Projections were used for 3, 4, and. 5 link.s :?ailing.
2: Projections were used for 4 and 5 llnks.f::ullng.
3. Estimates used for 3, 4, and 5 links ::Ealllng.
4: Estimates used for 4 and 5 links failing.
TABLE 3.5.
COMPARISON OF TWO DIFFERENT SIMULATION METHODS
Sample Size 1000
. ' Probability of Disconnected Net Standard Deviation
Link Failure gtratified straightforward
Probability Sampling Sampling Stratified Straightforward
.01 . 00297 . 004 5.15 x 10_5 1.99 x 10_3
.02 .01178 .012 3.28 x 1074 3.44 x 1073
.03 .02625 .027 8.96 x 1074 5.12 x 10~3
.04 .04613 .042 1.74 x 1073 6.34 x 10~3
.05 .07109 .070 2.85 x 10-3 8.06 x 10~3
.06 .10075 . 097 4.17 x 10-3 9.35 % lO—3
.07 .13466 .135 5.66 x 10_3 1.08 % 10"2
.08 .17230 .178 7.29 x 10_3 1.20 x lO_2
.09 .21312 .224 8.99 x 10-3 1.31 x 10-2
.1 .25654 .276 1.07 x 1072 1.41 x 1072
.2 .70384 . 743 ' 1.60 x 1072 1.38 x 10-2
.3 .93931 .954 5.30 x 10-3 6.62 x 107>
A .99382 . 995 6.32 x 1074 2.23 x 10-3
.5 .99971 . 999 2.89 x 105 1. X 10_3
.6 .99999 1.000 4.23 x 1077 0
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