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Abstract

In the future, a dramatic increase is likely in
use of digital computers to make routine but very com-
plex decisions, particularly decisions involving quan-
tified uncertainty and large amounts of data. This
paper formulates a method to classify objects on the
basls of a series of imperfect measurements, the re-
sults of which may be either discrete or continuous.
Digital simulation is demonstrated to be a powerful
tool to effect quantitative trades among factors im-
portant in the implementation of the classification
problem. Basic ideas are illustrated using a contrived
example of inference of a satellite mission.

Introduction

As computer oriented mathematical techniques be~
come more routinely applied to the solution of engineer-
ing problems, implementation of systems to solve the
problem of classification will become more common. This
problem, as defined for this discussion, is the impor-
tant application of decision theory represented by
Figure 1.

Observed Statistical descriptions
object of characteristics
of each object class
i 4
Imperfect Decision Classification
measurements rule |3 of observed
! object
Figure 1.

The Classification Problem

Suppose a given set of object classes are each
characterized by a set of parameters. These parameters
do not take on unique values for each object class, but
are represented by conditional probability demsity
functions. The classification problem is then given a
set of imperfect measurements of the characteristic pa-
rameters of an object, to decide to which class the ob-
ject belongs.

A simple example of the classification problem is
the detection of slugs in a vending machine. There are
two object classes, slugs and legltimate coins. One
might choose, as a set of characteristic parameters,
weight, diameter, and presence of magnetic material.
Clearly, these parameters will be described by differ-
ent (prior) density functions for each object class,
Engineers have attempted to design machines which solve
this classification problem with a high degree of accu-
racy.

In this paper, we are concerned with the design of

complex systems to solve more complicated classifica-
tion problems. In implementing such a system, the
engineer generally has a choice of many parameters to
observe, what decision rule is to be followed, and with
what accuracy to perform the measurements. Also, eco-
nomic considerations ténd to restrict the choice of ob~
served parameters and measurement accuracy. Digital
simulation will be shown to be a powerful tool which
permits quantitative trades among factors important in
the implementation of solutions of the classification
problem.

Important practical applications of the classifi~-
cation problem include the classification of diseases
based on several symptoms, or the identification of the
mission of an artificial satellite based on certain of
its characteristics. In the field of disease classifi-
cation, Warner*, et al., has used a fixed set of tests
to clasgify congenital heart disease, and Gorry and
Barnett“ have advanced a method of sequential testing.
In neither case is measurement error considered, nor is
simulation employed to evaluate the accuracy of the sys-
tem.

To solidify the ideas developed in this paper, a
contrived example of the determination of the mission
of a man-made satellite will be presented,

Analysis

Egior Data

Suppose a situation exists where there are N
classes of objects, and M tests, the results of which
are to be used in classification. For each of the M
tests, there is one density function foe each of the N
object classes. This body of MeN density functionsis
designated by Py (s|Vj). For example, suppose that Test
1 is the measurement O0f length. If there are four pos-
sible classes, P; (sIVj) might be as shown in Figure 2.
In this figure, the letter s refers to a state, which is
a range of values. In this case, the range of each state
is five feet. For object class number one, the density
function is read as follows:

Pl(s=2|Vi) =,1; Pl(s=3lV1) =,63 Pl(s=4|V1) =3

In many problems, determination of acceptable prior
density functions is a difficult task. The density
function of the diameter of a true coin could be approx-
imated by measuring a large number of coins. The vari-
ance for the diameter of a slug is likely greater be-
cause of the large variety of slugs. In this case, some
judgement as to how a slug might be made is useful in
construction of the prior data. Finally, the determi-
nation of the density functions of a satellite vehicle
would have to depend almost entirely on engineering
judgment as to how it might be constructed. If there is
a way to observe the success and failure of the decision
process, these prior demsity functions may be modified
as more is learned gbout the nature of the various
classes. In this respect, a system could be devised
which has a capacity for learning.
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Length Prior Distribution
Decision Process

The results of each of M measurements are contained
in the vector r. Each measurement, regardless of its
dimension, fits into a predetermined range, called a
state. Therefore, for every xr there is a unique state
s, but not vice versa. If Vi refers to the jt® object
class, the following is a cofditional probability:

R(Vj1e) = REaTs) = PGITY (VP &
¥ T3 TG

where
P(Vj|§) = the probability of V; being present such that
the measurement r falls into state s.

P(s, Vj) = the probability of the measurements being in
state s, and of Vj being present.

P(s) is the total probability of the measurements fall-
ing into state s.

P(Vj) = the prior probability of class Vj being present.

These values are determined from prior knowledge of the
frequency of occurrence of the object classes. Having
calculated ‘this, the decision rule is to pick vehicle
class (i) if

P(Vi|_s_) > P(le_g) VvV j>1i (2a)
or,

P(IVB(Y) > P(§|Vj)P(Vj) V jxi (2b)
where

P(§|Vj) = the probability that the measurements £fall in-
to s when Vj is present.

Note that the denominator P(s) of Equation (1) does not
appear in Equation (2b) because P(s) has the same value
for all j.

The former is calculated as follows:

where Py (s;1Vs) is the probability that the state mea<
sured in the 1th test is s; when the class V; is pre-
sent. The product is taken under the assumption of
independence of tests. The decision rule adopted is a
special case of Bayes decision rule where the costs of
all wrong decisions are equal, and the cost of a cor-
rect decision is zero.

A discussion now is required to show how the values
are determined for the terms of Equation (3). For the
moment it will be assumed that there is no measurement
error. Suppose that the first test is length and that
the density functions are those shown in Figure 2. If
the measurement is ry = 18 ft., then it lies in state
s, = 4. If there are four possible classes, Equation
(%) is evaluated for j = 1, 2, 3 and 4. The first
term of each results from this length measurement.

From Figure 2,

]

0.3

I}

P, (s, V) P (s, V) = 0.

Pl(sl=ﬁ|Vh)

)

0.1 0.

Pl(sl=4|Vé)

It is obvious that P(s|V3) = P(s|V,) = 0, and that
only P(g{Vy) and P(g{V,) need be considered from this
point on. The next test supplies values for Pz(sz}Vl)
and P2(52|Vé). The procedure continues through all M
tests, then the decision is made by Equatiom (2b).

In discussing measurement error, we will replace
Equation (3) by the following:

P(glvj) = Pl(r1|vj)P2(r2'Vj)""EM(ﬁn'Vj) (5)

This is done to emphasize the fact that Ty, which is
the ith measurement, does not necessarily fall into
. the state in which the true dimension will £fall. 1In
order to make a decision, the terms Pi(rilV ) are
needed for Equation (5), but, unlike Pi(si|3.), these
cannot be obtained directly from the priox dénsity

functions.

As previously mentioned, a test result may be con-
tinuous such as length. On the other hand, a test may
be discrete. For example, the material in a slug may
be steel, brass, lead or plastic. In this case, a
measurement is an entire state, not a value within a
state. The performance of a measuring device for dis-
crete tests may be specified by a matrix of probabili-
ties P(r=%)s=k) having such terms as the probability
of measuring a slug as brass whem it is truly steel.
This matrix, designated by Ei, is shown in Figure 3.
Note that as measurement error approaches zero, Ej
becomes the identity matrix.

Meas., r=1 Meas. =2
True state s=1 P(r=1}s=1) P(x=2js=1) ....
True state s=2 P(r=11s=2) P(r=2|s=2) ....
. . . =E
i
Figure 3.
Discrete Error Specification
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The terms of Equation (4) corresponding to dis-
crete tests are given by the following total probabi-
lity:

KTi
Pi(ri|Vj) = P(ri|s=k)Pi(s=k|Vj) (6)
k=1
where KTi = number of states in test i. The first

term is contained in the matrix Ej, and the second
term is contained in the prior probability density
functions for the ith test.

The situation for continuous tests 1s not quite so
straight forward. While P(ri|s=k) was conveniently
available for discréte tests, two problems exist for
continuous tests. First, P(rgis=k) is actually zero
because rj represents a particular value, not a state.
To give it a value, the probability must be of r; fall-
ing into some range of values. A convenient range is
the state into which it falls., Secondly, if the true
state 1s state k, the true value is assumed equally
likely to be anywhere within that state. For that rea~
son, P(rj=4{s=k) will mean the average probability of
the measure falling into the state £ , containing the
measurement rj, as the true value ranges across state k.

In order to calculate this expected probagbility,
the nature of the continuous error must be specified.
It was found computationally convenient to specify this
error by a tolerance E, such that if the true value is
7, the measured value will fall anywhere between
¥ (1-E) and ¥ (14E) with equal probability.

true dimension = :f

4

/ ;
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Figure 4.

Continuous Error Specification

For a specific dimension 7, contained in state k,
the probability that the measure will fall into state R
is shown in Figure 4 to be 1/2EY times the range of
values in state 2 , given by §(+1 - %2 .

Rx R,'z . €]
24+ 1 R
P é k B e
P(L | FE K ST

Y can be anywhere in state k, so the expected proba~
bility that a measurement will fall into state £ ,
given that the true state is k, is the following:

Riet1 2
- R :
P(rs=J ls=k) =f A RH??’Rk ®
Bee

This integral must be carried out for all states k to
provide values for Equation (6). The various combina-
tions of integration limits in Equation (8) will not be

v

noted here.

Referring to Figure &, as E-~» 0, the only state
into which the measurement can fall is the state con-
taining the true dimension. After correctly evaluating
the boundary conditions,

lim  P(ry=4|s=k) =§( " )
E—»0 ’

This 1s analagous to the discrete error matrix
approaching the identity matrix. Note that when
P(ri=,218=k) =5k, ks then Equation (6) reduces to the
no error case.

Py (, jV) —————> P, (s4|V3) (10)
ins i
i error-—>0 1 4

Without the foregoing treatment of measurement error,
the error will cause some measurements to be fit in-
to wrong states, increasing classification error.

The method used takes advantage of the known measure-
ment error statistics to reduce misclassification.

In the limit when error causes a test to be complete-
ly inconclusive, the outcome of the test will have
no effect on the classification decision.

Simulation

At this point, the decision rule has been estab-
lished and the equations needed to handle observed data
have been developed. For the purpose of evaluating the
effectiveness of a system, large numbers of "designs"
of various classes are made by Monte Carlo on the basis
of the density functions corresponding to the class to
be simulated. Next, the design is "measured" by a ran-
dom number chosen as a function of the design dimension
and the known error statistics of each test. These
measurements are then fed into the classification pro-
cess, and the resulting decision is compared to the
class which was simulated. The results for a large num-
ber of runs are displayed by a matrix P where Pij
approaches the probability of deciding that the Jth
class is present when the ith class is in fact present.
This simulgtion process is illustrated in Figure 5.

When the tests employed are quite distinctive and the
errors of the measuring devices small, the matrix P will
be quite diagonal. It is often the case that a single
figure of merit is desired for an entire system in order
to make meaningful comparisons of various system imple-
mentations. In this case, a good one is the product of
the diagonal terms of P.

There are many uses for the results of simulation.
First of all, it shows how well a completely specified
system can be expected to perform. It is often the
case that the number of tests to be performed is less
than the total number that could be. Simulation using
various combinations of tests can lead to selection of
an optimal combination, Also, the accuracy with which
measurements are made may be a variable. In this case,
the simulation results provide data for trades among
t:otal number and combination of tests, and the accuracy
of the measurement of the tests.

Whenever a Monte Carlo simulation is made, it is
of interest to know how mary runs constitute a suffi-
cient number of runs. To get an approximate feel for
this, a specific example, which will be detailed in the
next section, was taken A particular class was simu-
lated thirty times at one hundred runs each. An approx-
imate application of the central limit theorem showed
that a simulation of one class using 1,000 runs will
result in Pij being within 0.012 of the true value with
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90% confidence.

Specify the class (i)
to be simulated

A

MN prior L5 Design class (1) by
density functions Monte Carlo choice of
M dimensions

<

Measurement error Simulate measurement
statistics -—> error

v

a priori probabilities - Perform classification
and MN prior density »ll according to decision
functions rule

¥

Record classification

Figure 5.

Simulation Procedure

Example

To illustrate the concepts in this paper, a simple
example has been contrived. TFor the purpose of the
example, all possible satellite missions are assumed to
fall into five classes (N=5):

. Orbital Weapon

Low Altitude Observation
Communications

. Meteorological

. General Scientific

Ut WM

The mission characteristics are inferred from various
sensors (M=10):

1. Length .
%2, Heat Shield Presence

3. Velocity Change Capability

4, Average Power Level
%5, Communications Mode
%6, Environmental Control Method

7. Perigee Altitude

8. Orbit Inclination

9. Argument of Perigee

10, Number of Similar Vehicles in Orbit

% discrete tests

The prior distributions for Length are shown in Figure
6. The remaining distributions are not shown due to
space limitations. Two observation systems are consid-
ered:

1. Co-orbital observation of satellite
2. Ground based observation only

All vehicle classes are assumed equally likely to
appear, so P(V:) = 1/5, j = 1,5. The discrete tests,
marked (%), haVe discrete error matrices E;, which
become more diagonal as error decreases (see Table 1).
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Length Distributions For The Example

Note first that the ground based sensors have no abili-
ty to measure heat shield presence or environmental con-
trol mode. Also, number of similar vehicles in orbit is
actually a discrete measure, but is approximated as a
continuous test due to the fact that the discrete error
matrix could be 50 x 50 or larger.

Remembering that Pij is the probability of deciding
class j is present when class i is, the P matrices re-
sulting from 500 simulations of each class for each
error level are as follows:

. ¢

P, o=nke 487 5 3 0 5
1

300 6 433 4 29 28

1 5 435 32 27

0 23 20 402 55

3

L 38 23 71 365

B, = 457 27 7 0 9
2= 500 417 11 29 34
47 36
32 31 376 60
42 28 76 347 |

~ = U1 w0
~J
ey
[=)
(%]



IEST COORBITAL GROUND

1. Length E =0,02 E =0.5
2. Heat Shield present [.8 .27 __ I ) .
absent .2 .8 2 i-5 .5 2
3. Velocity Change E =0.5 E =0.99
4. Average Power E =0.3 E =0.99
5. Communications Mode None L8 .05 .05 .05 .05] (6 .1.1.1.1]
Beacon ’ .05 .8 .05 .05 .05 1.6 .1.1..1
Telemetry .05 .05 .8 .05 .05} = Eg 1.1.6.1.1 = Eg
Command .05 ,05 .05 .8 .05 1.1.1.6.1
Video .05 .05 .05 .05 .8 | .1 .1.1 .1 .6]
6. Environmental None .7 .08..08 .07 .07 [2 .2 .2 .2 .2]
Control Passive Temperature Control .08 .7 .08 .07 .07 .2 .2 .2 .2 .2
Active Temperature Control .07 .08 .7 .08 .07 = Eg 2.2 .2 .2 .21 = E6
Heat Exchanger .07 .07 .08 .7 .08 2.2 .2 .2 2
Controlled Atmosphere L07 .07 .08 .08 .7 ;2 .2 .2 .2 .24
7. Perigee Altitude E = .01 E = .01
8. Orbital Inclination E =.01 E =.01
9. Argument of Perigee E = .01 E = ,01
10, Number of Similar E=.5 E = .75
Vehicles in Orbit
Table 1
Measurement Error Specification
Note that the accuracy of classification is greater for 1 ‘"Experience with Bayes Theorem for Computer Diagno-
the case of lesser error. There are many ways of eval- sis of Congenital Heart Disease!, Homer R, Warner,
uating these results, depending on the emphasis of Alan F. Toronto and L. George Veasy, Annals of the
false alarm, false dismissal, or correct detection, A New York Academy of Sciences 115, pp. 558~567, 1964.

single figure of merit is the diagonal product which is
the probability of correctly detecting one of each class. 2 "Experience with a Model of Sequential Diagnosis",
f G. Anthony Gorry and G. Octo Barnett, Computers and

DP; = 0.537 ‘ Biomedical Research, pp. 490-507, 1968,
DP2 = 0.403
Summagx

In the future, a dramatic increase is 1likely in
use of computers to make routine but very complex deci-
sions, particularly decisions involving quantified un-
certainty and large amounts of data. This paper has
formulated the classification problem in a form suit-
able for solution by digital computers. JFurthermore,
the'utility of digital simulation in implementing
systems which solve the classification problem is dem-
onstrated, ‘
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