JOB SHOP SCHEDULING SIMULATIONS

FOR INTERACTIVE USE IN COMPUTER GRAPHICS

John W. O'Leary
Menber of Research Staff
Western Electric Research Center

P. 0. Box 900, Princeton, New Jersey

08540

Abstract

A discussion of an interactive computer graphics system used for job shop scheduling
problems, with emphasis on the structure of the job shop simulator schedule generator.
Three different language implementations are discussed in light of the special

requirements of this application.

INTRODUCTION

Job Shop Scheduling remains a difficult area for
analytical analysis. The combinatorial nature of the
magnitude of alternative feasible schedules and
conflicting measures of performance involved in the
scheduling function make optimal solutions impossible
for interesting job shops.

Due to the lack of closed mathematical solutions,
simulation programs have provided convenient vehicles
for development of heuristic scheduling. This paper
discusses a job shop simulation program used to
generate schedules which are displayed immediately on
a computer graphics cathode resy tube in the form of
a Gantt chart. Interactive communication then pro-
ceeds with the scheduler able to command the simu-
lator to generate different schedules and receive
manual changes. This allows schedulers to interject
their own decision making into the scheduling process.
Since it is felt that this use of interactive graphics
can be of significent help in scheduling,* it is of
interest to describe the structure of the special
nature of the job shop simulator that is required
for this project. Further, it is of interest to
evaluate three important languages (FORTRAN,
SIMSCRIPT II, GPSS/360) against specific criteria
that arise due to certain unique tasks that are
required of a programming language applied to this
project.

This paper discusses the Graphic Job Shop
Scheduling Project (GJSSP) and describes the charac—
teristics of the schedule generator simulation pro-
gram. The important differences in how each of the
language implementations treat the job shop are
mentioned in terms of certain criteria and their
respective measures of performance. It should be
mentioned that in each of the three language imple—
mentations NO attempt was made to optimize perform-
ance. That is, the techniques used in programming
were such as to develop the model as quickly as possi-
ble, and once the program was debugged, no further
sophistication was introduced. The assumption used
is that typically most Operations Research Analysts
are interested in quickly passing through the pro-
gramming step of model building, and thus, they are
willing to sacrifice computer time for speedier

project completion. Further, the reader will have to
assume an equivalent level of programming pre-experi-
ence in each language. These assumptions should not
effect the discussion of the simulation shop model of
GJSSP or its computer implementation.

GJSSP_DESCRIPTION

The Graphic Job Shop Scheduling Project is imple-
mented on a IBM 360/50 which communicates with a
Digital Equipment PDP-9 computer that drives the
graphics display. The project is shown schematically
in chart 1.

360/50
Containing the Simulation Program
Under Study in This Paper

Communication
Links

PDP-9-G-~2
Cathode Ray Tube
| JOB 1} [LJoB 2 |
o1 M

Time

| Analyst |

Machines

CHART 1

The following steps are typical of a successful run
of the GJSSP. The goal represented in these steps is
to schedule a given shop.

1. The Simulation Program is called from & Disk
Library upon submission of a deck to the 360/50.
Contained in the deck are cards that define the
shop to be studied. These cards contain job and
machine numbers, technological ordering of opera-
tions on machines, processing times and character-
istics of the job such as due date, lateness cost,
priority and shop arrival time.

#* "pAllegedly, human schedulers operating on some form of Gantt chart can employ various

heuristic adjusting procedures... ."

With the advent of graphical input-output devices

for computers, it is now conceivable that a meaningful experiment of this nature may be

performed.l Also see 3, L,

2. The job is executed in low speed core. (IBM unit
2361, LCS 1000K storage). Although compute bound
execution is about four times slower, the job is
allowed to stay resident in low speed core during
the whole time of interactive use. The program
runs with high priority, but during zero demand
of GJSSP, 360 execution of other programs is not
effected.

3. TUpon completion of execution, a vector is created
that contains the information about the generated
schedule (the initial schedule is always generated
by the first come first serve rule).

‘

The form of this vector is specified by the
Graphics Program which displays the vector as a Gantt
chart. The form requires that for each operation of
a job (each bar of a Gantt chart) four pieces of data:

1. Machine number

2. Job nuuber

3. Starting time of operation
4. ZLength of operation

Thig vector must be all integer. Thus, the user
must translate the integer time unit to real time.
Bach time the simulation program on the 360/50
schedules an operation, the four pieces of data are
recorded, and at the end of the run, the vector is
sorted by ascending machine number, passed to a
communications subroutine and then is transmitted to
the PDP-9 and the Gantt chart is displayed.

4. Prespecified statistics sbout the schedule are
calculated by the 360/50 program and passes as
a vector to the PDP-9 and displayed with
gppropriate titles. A convention could be that
element 1 of the statistics vector is mean flow
time, element 2 is variance, element 3 is late-
ness, ete. Also, if the user has defined re~
sources, the consumption by time period of each
resource is stored.

This completes the first part of the simulation
program's responsibility. The second responsibility
is a result of the interaction of the user and the
Gantt chart display. An interaction seniario could
include:

1. The user wishes to try one of the built-in
scheduling options. He uses the graphies light
pen to send a command to the 360/350 computer to
reschedule the shop using the specified rule.
Thus, the 360/50 program has to start fresh on
the job shop data and generate the new schedule,
statistics, and resource consumption data.¥¥*
Picture 1 (all pictures taken from the graphics
tube showing actual runs. Pictures are in the
back of the paper,) shows a Gantt chart with the
menu of scheduling options.

2. After seeing schedules generated by the simulation
program, the user may wish to decide on one to
manipulate himself in order to improve it, or to
introduce programmable constraints into the
schedule. GJSSP gives the user several commands
to enable him to move Gantt chart bars around to

¥¥ Note that all specified results are presented. to the user.
typically schedule to optimize a weighted function.

odify schedules and interject his own decision
meking into the scheduling process. Picture 2
shows the Gantt chart with manual changes. Upon
completion of the user's modifications, a command
is sent to the 360/50 to receive the Gantt chart
vector. The simulation program has two responsi-
bilities here. It must check the logic of the
user's Gantt chart. Does the new schedule violate
any of the pre-specified technological orderings?
If a constraint has been violated, a dummy Gantt
chart is sent back to the graphics computer and an
error message is displayed. If no errors are en-
countered, the simulation program calculates the
statistical values of the new schedule and trans-
mits them to the graphics computer.

3. More complex shops include the consumption of

. scarce resources as a problem area. The amount of
any resource consumed at time t is a function of
the jobs that are on machines at time t. Differ-
ent schedules give different resource consumption
patterns. The problem of scarce resource consump-
tion brings with it a new set of criteria such as
minimizing the variance of utilization of the re-
source. A generated schedule that gives an
acceptable Gantt chart may show a poor resource
consumption chart. Different schedules are then
tried with the job shop program generating
schedule and resource vectors, computing statistics
and checking for logic while the user views Gantt
and resource charts and sends commands. After a
suitable schedule is found, hard copies of all dis-

plays can be printed on a Calcomp or saved on DEC
' tape.

[

4

, This scenario accurately describes a simple use of
GJSSP. The rest of this paper will first describe the
interesting aspects of the 360/50 simulation program,
and how each of the three programming languages deal
with each aspect. The remainder of the paper discusses
additions that are required to the initial simulation
program to give GISSP more power. Thus, each of the
programming implementations will be discussed in light
of difficulties encountered in modification and exten-
sion of each implementation. The conclusion mentions
some of the design goals and application areas of
GJSSP.

INITIAL PROGRAM IMPLEMENTATION OF GJSSP

The following is a discussion of the problem areas
in implementation of GJSSP and how each language treats
the areas.

‘ The important problem areas are:

1. World View of Language Applied to GJSSP.
: World View is defined by Gordon? as the set
i of concepts used for describing the system.

-3 Timing mechanism (especially the problem of
simultaneous events).

" 3. Re-run technique (ability to generste another
schedule on command from graphics consqle
and output to the graphics console).

"L4. Running time.

Non-graphics systems
However, the power of interactive

graphics allows the user to view statistics and graphs of criteria, rather than cover this

data with weighted functions.
values.

GJSSP lets the user trade off in the n space of criteria

1. The world view of SIMSCRIPT II structures the job

shop by defining machines and jobs as permanent
., entities. Jobs are defined as permanent for this

application since they are not randomly generated.
A specific shop with gilven machines and jobs is
dealt within GJSSP. Since SIMSCRIPT IT programs
are structured in the PREAMBLE and since
SIMSCRIPT II programs are self-documenting, the
relevant characteristics of the implementation are
shown by a few lines of code. .

EVERY MACHINE OWNS A QUEUE AND HAS A STATUS

EVERY JOB OWNS A PERMANENT SEQUENCE AND BELONGS TO

A QUEUE AND HAS A DUE DATE AND A PRIORITY

TEMPORARY ENTITIES

EVERY OPERATION BELONGS TO A SEQUENCE AND HAS A

PROCESS TIME AND A ROUTE AND A RESOURCE

EVENT NOTICES INCLUDE END OF PROCESS

The structure of the SIMSCRIPT program is clear.
Jobs own sets called SEQUENCE which contain OPERATIONS
which in turn have attributes of ROUTE (machine
number), PROCESS TIME and RESOURCE. The only event in
the system is an end of process. Upon completion of
an end of process, the job is sent to the queue of
the machine denoted by the attribubes of the next
operation contained in the sequence of the job.
the operation is removed and destroyed. When all
operations in the sequence of the job are gone, (the
set is empty) the job leaves the shop and statistics
are generated. When a Job goes to the gqueue of its
next machine, a function is called to determine the
job's priority of the job from conditions of the shop
or the attributes of the Jjob depending on which
scheduling rule is used.

Then

The significant advantage of SIMSCRIPT II's world
view applied to this problem is that the program is
coded, and in fact, looks like the sbove paragraph of
verbal description. User defined structures like
entities, attributes, sets and events require no
forcing of the structure of the job shop. The PREAMBLE
statements define and provide the structure of the re-
maining program.

The world view of GJSSP requires that the job shop
fit the structure of the language. Transactions are
defined as Jjobs, while facilities and queues are
respectively machines and waiting lines for machines.
The transaction jobs are GENERATED at time and move
through the job shop in the following way:

ROUTE ASSIGN 3,FN*1
TRANSFER FN,201

SHOP QUEUE P3
SEIZE P3
ADVANCE FN*5

RELEASE P3

As in the SIMSCRIPT II implementation, the shop
structure is straightforward. Parameter 1 contains
the job number of the transaction. FN¥1 references
the function that contains the sequences of machine
numbers for that job. One function per job with a list
of machine numbers with a zero at the end performs this
task. The transfer block sends the transaction to a
routine that assigns a PRIORITY which is used to rank
the QUEUE. Upon SEIZING the machine, the job is AD-
VANCED by a time unit function determined by parameter
5 which is the job number plus 100 (if 100 jobs are to
be provided for).

Test blocks are used to determine if the job goes
to a zero value machine and if it does, statistics are
recorded in save-values and the job leaves the shop.
Due dates and resources are all conbained in functions.

The job shop structure fits well into the world
view of GPSS. Conceptually, jobs as transactions are
easily viewed as particles flowing through a shop
containing queuves and facilities.

The world view of the FORTRAN implementation deals
with several matrices and vectors that are used to
structure the Jjob shop. An event vector (one element
for each machine) contains the absolute time of an end
of process. The vector is searched for the minimum
time and that element of the vector is the machine of
the next event. A matrix with the rows machine num-
bers contains job numbers of jobs waiting for the
machine. Bach time a job arrives or leaves the
machine, the machine row containing job numbers is
shifted. Jobs are placed in the row by a sort routine
that sorts according to the scheduling option used.
Processing time is determined by a job number by
machine number matrix and sequence by a job number by
operation number matrix. Operation numbers are kept
on a vector where each element i contains the number
of operations completed for job i.

The program contains no list processing structure
for the event or queue arrays. It is a pure logic test
program. If you decide to program in FORTRAN, why try
to spend the time with list processing sophistications.
For example, this program uses bubble sorts which is
easier to program than pointer and list sorts.

This implementation of the job shop contains no
helpful self-documentation. Complex subscript nesting
and multiple DO loops completely lose the job shop
structure and thus make the model hard to rationally
follow and to debug.

The touted abilities of high level simulation
languages in presenting suitable world views to
facilitate model building are apparent in comparison
with FORTRAN. SIMSCRIPT IT requires the model
builder to be more creative than the user of GPSS's
prestructured format, but offers no special difficul-
ties in this application.

2. The timing mechanism for determining events is a
problem area that caused the greatest implementa-
tion difficulty. The problem arises due to simul-~
taneous events. For example, when a job leaves
a machine, the next job should not be scheduled
until other jobs that may be sent to that machine
at the current clock time arrive. The FORTRAN
program uses interval time advance. All jobs that
finish processing at time X are sent to their next
machines before time X+1. All timing information
in GJSSP must be an integer since the graphics
program is in terms of arbitrarily selected time
units and references to partial times are not
allowed. This means the simpler interval method
of simulation can be chosen for the FORTRAN pro-
gram.

A PRIORITY, BUFFER Block of GPSS is suitable to
overcome this problem since all instructions in the
current event chain are allowed to ‘take place before
queue sorting. SIMSCRIPT IT requires a more compli-
cated approach, but the language has the capabilities.
The implementetion looks ahead in the event list and
tests 1f there are more events at the current clock
time. If there atre, control is returned from the
event routine until all concurrent events have happened.
Then scheduling of new events proceed. This example
points out one of the significant powers of SIMSCRIPT
II. The event list is accessible to the programmer and
that leads to many possibilities for development of
dynamic and look ahead scheduling rules.

3. Re-run technique and communications.

The implementation must have the capability of
communicating with and doing several tasks on demand
from the graphies console. Communication for. the
SIMSCRIPT II program assembles into a vector four
pieces of data (job and machine number, start and pro-
cess time which define a Gantt chart bar) each time a
job leaves a machine. After 'all scheduling has taken
place (the event list is empty) control goes to the
line after STARTSIMULATION. The vectors of Gantt
chart bar information are assembled and grouped by
machine number and the communications routine is
called. Upon returning from the graphics console, two
possibilities oceur. The user may Just want a logic
check on sequence and a statistical report, in which
case, the vector of Gantt chart bar data is assembled
by jobs by creating operations and filing them back
into the sequence set. For each job, this sequence
is checked against an initially stored sequence, and
errors are reported. Statistics are compiled in all
cases by scheduling an event routine.

The second task is a reschedule. In this case,
program control goes to the beginning of the SIMSCRIPT
IT program and fills the sequence set from a permanent
set containing operations. The number of the new
scheduling option to be used is picked up and used for
branching in the sorting function. The FORTRAN pro-
gram accomplishes these tasks in much the same way.
The operation vector is initialized to 1 and program
control goes to the beginning of the main section.

The jobs waiting for machine matrix is zeroced as is
the clock and the simulation continues.

The GPSS implementation is the most cumbersome.
Each job, when scheduled, updates a matrix savevalue
that contains the relevant Gantt chart information.
The last scheduled job (transsction) (other trans-
actions that leave the shop are put into a user chain)
goes through a HELP block that is used for communica-
tions. After communication, the transaction UNLINKS
the other jobs; all operation number parameters are
initialized to 1; and the jobs are sent to the shop
structure routine. The problem with the implementa-
tion is the sorting and the logic of the unlinking
transaction.

Since a transaction is used for testing and swapping
a bubble sort over the communication savevalue matrix
involves looping the transaction N x (N-1) times where
N is equal to the number of Gantt chart bars. This is
time consuming. Further, since the transaction
represents & job to be scheduled if another run is
desired, the identity of the job must be untouched and
logic has to be programmed to insure that the job re-
turns to be rescheduled again.

4., Running time is an important criteris for GJISSP.
The system is designed interactively and response
time is of major interest. Since the program
runs in LCS, execution time can be slow. Con-
sider a request to generate 200 schedules using
random priorities, and display the schedule that
gives the minimum mean flow time. Recall that
such a request is initiated from the graphics
console. High speed execution time (360/50) for
the implementations. is as follows:

1.06 minutes
6.22 minutes
1.82 minutes

FORTRAN
GPSS/ 360
SIMSCRIPT II plus

Actuel response time (since the actual job is exe~
cuted in low speed core) is about 4 times as long.
Compiling time and core usage are not important for

216

this application.

Comparison of the three implementations reveals that
the Fortran program is a logic or engineering program.
It shows nothing of the job shop structure. However,
the simplification in timing and the ease of re-run
made the initial programming as easy as the SIMSCRIPT
IT implementation. SIMSCRIPT shows the job shop
structure very well, has competitive execution time,
and has the best input/output procedures. GPSS was the
easiest program, however, it has the worst input/output
and execution time.

DISCUSSION OF EXTENTIONS TO THE IMPLEMENTATIONS

The initial implementation of GJISSP was in FORTRAN
because the communication conventions are widely known.
However, the FORTRAN program became unwieldy due to the
complexity and the lack of rationality of the logic.
Each time the program was looked at to modify it to in~
clude new scheduling rules or more extensive statisti-
cal reporting, the complexity of nested DO loops and
subscripts made reprogramming difficult. This points
out the problems involved in changing programs when
the world view of the language doesn't fit the appli-
cation. GPSS was removed from considerabtion because
of its lack of power in performing some of the sophis~
ticated scheduling rules, statistical reporting, and
cumbersome input. For example, a branch and bound
scheduling procedure will be implemented. Although
there are no existing branch and bound or linear pro-
grams in SIMSCRIPT there is no reason why a powerful
language like SIMSCRIPT cannot be used. Since unlike
GPSS, SIMSCRIPT II is not only a simulation langusge,
but also a programming language, the conclusion in
selecting SIMSCRIPT is that the flexible world view it
offers fits the job shop structure better than the
structure of FORTRAN. Further, its full range of
power makes it more desirable than GPSS.

While it is possible to give precise man hour times
involved in certain reprogramming tasks, figures are
always open to question. It is of more interest to
examine s typical implementation of a new scheduling
rule in SIMSCRIPT II. Consider some of the suggestions
in "Job Shop Scheduling by Means of Simulation and an
Optimum--Seeking Search"2, Dr. Emery, University of
Pennsylvania. Dr. Emery discusses a two stage priority
determination rule to be used to assign jobs to a
currently availeble machine. Stage one computes six
data points on competing jobs and removes them from
further considerastion if they don't meet threshold or
tolerance intervals. Jobs that pass all six screens
get a stage two weighted priority function computed,
and the job is selected that has the highest value.

Stage-One screening includes:

. external priority class

. C/T rule

. time in current queue

. work remaining/process time of current operation
. Pprocessing time of current operation

. size of queve gt jobs next machine

AN FEwn P

Dr. Emery's paper gives a comprehensive discussion
of the screening technique. A FORTRAN implementation
would include vectors for each criterion, and presuma~
bly be somewhat hard to program, debug, and interpret
if one had started with an existing program and desired
to modify it to include Dr. Fmery's work. A SIMSCRIPT
IT implementation would be easily done and self-docu~
menting. Generally, a SIMSCRIPT II implementation for
the GISSP would take the following form.

external priority is read in initially as
an attribute of the entity JOB.

¢/T rule would be another attribute of JOB.
It's value would be computed whenever an end
of process event is reached (recall the logic
of the program is that upon end of process
the job just completed goes to its next
machine queuve, while the machine just
finished selects the next job to be processed.

The C/T rule is defined as

wait time - (due date - remaining processing time)
walt time
current processing time

All the terms except for wait time are available as
attributes. Wait time is defined as the total pro-
cessing for each of the jobs on gueuwes of machines
that the job goes to. This value could be found by
the following SIMSCRIPT II statements:

FOR EACH OPERATION IN SEQUENCE (JOB N)
FOR EACH JOB IN QUEUE (ROUTE OPERATION)
ADD PROCESS TIME (OPERATION) TO WAIT TIME (JOB N)

Wait time (job) would be used to calculate the C/T
rule value which would be stored in another attribute
of Jjob.

3. Time in the current queue is found by record-
ing Time V initially in an attribute, then
at each end of process event, calculate the
difference between the attribute and the
current Time V.
4,5. Work remaining is found by looping over
the remaining operations filed in the
sequence set of the job, and summing each
process time.
6. Work at the next queue is found in the same
way as the wait time of the C/T rule.

The SIMSCRIPT II implementation would only allow
the above attributes to be calculated when the user
has specified Dr. Emery's procedure to be used to
schedule. When his rule is used, the attributes of
jobs on a machine queue are calculated and the job
that meets all the thresholds and tolerances and has
the highest weighted priority is removed from the queue
set of the machine. Incidentally, the constants of
thresholds, tolerances and weights can be entered
directly from the graphics console. This would allow
the user to do his own sensitivity analysis interac-
tively. This extension of the implementation is very
easy and clear in SIMSCRIPT II. Our FORTRAN version
took much longer to program and debug, but man-hour
programming time comparisons of languaeges is a risky
business. It is sufficient to state that the additional
programming in SIMSCRIPT IT is easy because the flexi-
ble world view of the preamble statements and the con-
cept of the language fits the structure of the job shop,
whereas the additional FORTRAN programming to add
Dr. Emery's work to the existing implementation was
much harder because of the complexity of the logic.
SIMSCRIPT offered no problem in handling the complex
priority rule and other logic.

217

CONCLUSION

Other work3’h has shown the feasibility of graphics
scheduling. GJSSP is quite different than these
papers3s4% (IBM 2250 Graphics) since the graphic
commands and visuvals are modified, and the simulator
and scheduling package communications implementations
use different methods. However, from other work, it
is safe to assume the relevance of graphics (and thus,
GJSSP) in the scheduling function. Since GJSSP is a
research project, no specific application was in view.
The implementation is general enough to include pro-
ject scheduling with resource consumption, flow shops
with parallel processing or other practical problems.

The object of this work is to introduce computer
graphics scheduling and rélate the characteristics of
a programming language to serve as a job shop simula-
tor. Since GJISSP is a powerful scheduling technique,
and since it is constantly open to growth in terms of
adding sophisticated scheduling rules, the implementa~
tion must be done in a powerful, flexible programming
language.

REFERENCES

Conway , Maxwell, Miller, Theory of Schedullng,
Add1s1on—Wesley, 1967.

Emery, J. C., Job Shop Scheduling by Means of
Simulation and an Optimum-seeking Search.
Proceedings of the Third Conference on Applications
of Simulation, 1969.

Jones, Hughes, Enguold, A Comparative Study of
Management Decision-making from Computer-terminals.
Proceedings, 1970 Spring Joint Computer Conference,
AFIPS Press, 1970

Bell, T. E., Graphical Analysis Procedures for
Simulation and Scheduling, UCLA Ph.D Thesis, 1968.

5. Gordon, G. System Simulation Prentice~Hall, 1969.

Acknowledgements to my colleagues working in Graphies,
R. Sedgewick, J. McDonald.

SPECIFY DESIRED SCHEDLR ING ALBORITHM

PICTURE 1: Gentt Chart With Menu of Scheduling Options

R R

SPECIFY TIME UHIT -- LIGHTPEN “ACCEPT» WHEN SATISFIED

PICTURE 2: Gantt Chart With Manual Change Commands

PICTURE 3: Resource Chart (Vertical Axis is Manpower Used)

All pictures taken from Graphics Tube from actual interactive runs.

Machine numbers on vertical axis, horizontal axis is time.

218 !

