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Introduction

Sensitivity analysis is the investigation of the
stability of the optimal solution to a linear program-
ming problem.

max ¢’x = 2
subj. to Ax = b
x>0 1)

Suppose that A is an mxn matrix with rank equal
to‘m and that an mxm submatrix, B, is the optimal ba-
sis. Let further Sg be the index set of the column
vectors forming B. It is well known that the neces-
sary and sufficient conditions for B to be optimal are
the conditions of primal and dual feasibility, i.e.

B~ >0
ol
cBB aj
where cé is the row vector of objective function -co-
efficients for jeS, and a. is the j~th column of A.
As long as these conditiohs are maintained the basis
is stable~-that is, insensitive to variations in the
coefficients. The ranges within which these varia-

tions may occur can be computed-~ceteris paribus--—
for any particular component of ¢”, b and a, by well
known formulae.l,2 J

I.

II. (2a)

2 cj: (j =1, 2, ..., )

Suppose now that a linear programming problem is
to be ;olved where some or all of the components in
the vectors c¢”, b, and a: are subject to random varia-
tions. This is the case of stochastic programming
problems. Here the index set SB of the optimal basis
will likely depend upon the particular realization of
a set of random variables and consequently it will
not remain the same all the time. One can redefine
the stability of the basis for this case, however, in
terms of the probability that S, remains unchanged.
More precisely, if the optimal Easis is unique or non-
degenerate, the stability of a basis B can be measured
by the probability:

Pr(8™1b > 0; czBA - ¢ > 0) (2b)
If this probability is equal to one, the optimal ba-
sis is considered stable, although the optimum of the
objective function is still a random variable under
the given assumptions.

Programming under the presence of random influ-
ence in the parameters is considered through differ-
ent principles in the literature. Typical is the
principle to minimize or maximize an expected value
under certain conditions involving random variables
and probabilities.~>?»* Though these methods solving
the given problem are of high theoretical and practi-
cal value, it should be emphasized that their appli-
catfon is limited to such cases where the problem is
repeated a great many times under similar circumstan-~
ces because of the practical meaning of the expected
value.

Methods have been developed to derive the prob-
ability distribution and expected value of the opti-
mum of a stochastic linear programming problem under
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the assumption that the random variation in the para-
meters keeps a certain basis optimal with a high pro-
bability. There enters the problem of determination
of the stability of a basis. Apparently, without a
highly stable basis, the solution of the linear pro-
gramming problem carried out with the expectations of
the parameters may have questionable value for certain
decisions.

The problems are considered under special assump-
tions, namely, in the cases where 1) b is a random
vector, 2) c is a random vector, and 3) any one of the
a:'s is a random vector. By duality, the problem of
olle random row in the linear programming problem goes
back to the third case. Even in these relatively sim-
ple cases the numerical part of the problem implies
serious difficulties, such as numerical integration of
a function over a convex polyhedron. However, simula-
tion techniques can provide a solution in many practi-
cal problems. With our particular assumptions, certain
simplifications can be attained in simulating the ran-
dom vectors and estimating the stability of any given
basis very efficiently, as will be pointed out. Having
an estimated value for the stability, the method sug-
gested in [5] or [6] can be applied for the solution
of the distribution problem, or the limitations of
programming with expected values can be spelled out.

The approach outlined here also can be viewed as
the extensions of the deterministic form of sensitivi-
ty analysis of linear programs to a stochastic form
of sensitivity analysis. After the linear programming
problem is solved, random vectors, exhibiting the sup-
posed random variations in the coefficients are simu-
lated and the effect of these variations on the opti-
mum is evaluated without resolving the original prob-
lems. A major part of the paper deals with the tech-
niques of performing these evaluations computationally
most efficiently via simplified checks on transformed
random vectors. The method provides complete sensi-
tivity analysis if the random coefficients occur only
in ¢” or b. If the elements of A are also random, the
analysis can be applied only to selected random columns
of A, one at a time, in the tradition of deterministic
post—optimality methods.

Optimality Conditions with Transformed Random Vectoxrs**

For the sake of simplicity we shall assume that
every subset of the vectors in (1) is a system of lin-
early independent vectors. A subset of m vectors forms
a matrix B which is a feasible basis if

B-1lp = x
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The complete set of vectors in (1), with j =1, ...,n,
can thus be represented in partitioned form:
A = [B:R].

According to the well known optimality condition
of linear programs, a basis is optimal if (3) holds
simultaneously with the following inequalities:

-p-1
cgBay 2 ¢y, for all j¢SB %)
where cj 1s an m-vector of objective function coeffi-
cients c4; jeS;. In matrix form this expression cor-
responds” to the vector inequality;
cgB IR > cf ©)
where cg is a vector of <4 coefficients such that

3¢sg.

We shall now consider random disturbances in b,
c” and ay; by assuming that random vectors A Sc and
643 with E(S8y) = E(6.) = E(84) = O expectations and
known covariance matrices E(gbdb’) = Ay, E(6,8.7) = A,
and E(6 Gj’) = Aj are added to the respective parame-
ter vec%ors undet study. The subscripted matrix nota-
tions Ay, Ay, and As will be used to indicate the co-
variance matrices o% the random vectors (b+§y), (c+8.)
and (a +6j) thus formed, but notational distinction
among ghe corresponding § vectors will be applied
only if necessary. The notation B, will be used if
jeSg and (as;+8:) is the rth column of the basis. If
c” = [cgicg] then 6 = [65i63]1.

The stability of B will be investigated in terms
of the following four probability measures:

pr [B~L(b+sp) > 0]

Pr [(cytop) “B7IR > (cptop)”]
Pr [Blb 2 0; czBTIR > c3]

Pr [egBl (agt 6y) > e ], 3#Sy

In each case the assumption will be made that the
covariance matrix A sufficiently determines the random
behavior of § and it is known. It is clear from the
above listed inequalities that the condition of basis
stability depends on certain transformed values of the
random vector §. Consequently the purpose of the fol-
lowing sections is to find the appropriate transfor-
mations which will produce a new random vector n with
E(n) = 0 and with covariance matrix I such that n will
exhibit equivalent properties to those listed under
a., b., c. and d. in satisfying the inequalities.

a. Condition a. is the condition of primal
feasibility, and it can be rewritten as

Pr [xg + B7lsp > 0] (6)
Let ng = B~15,. Then E(np) = 0 and
Iy = E(nyonf) = E(B-16p8p8°71) =
= g~la 71 Q)
Consequently, the vector inequality in the bracket:
Pr [xp + n, 2 0] (8)

will reproduce condition a. if the covariance matrix
of nb is Zb.

b. This is the condition of dual feasibility to
random variation in the objective coefficient vector
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¢”. The random vector (c+6c)’ can be partitioned into
basic and nombasic parts in this case, i.e.
(ct8e)” = [cﬁ:cﬁ] + [6’:5&] (9)

Consequently, we will define A, = E[(c+6c)(c+6c)‘] in
partitioned form as

8pp : Agr

Ag 10
Agg ® A

Introducing Q = B-IR we may rewrite condition b. as

Pr {[czQ - cz] + (6,0 - 671 > 0} an
and introduce the random vector
ng = IGBQ - GR] (12)
which ‘has zero expectation and covariance matrix:
I, = ELIQ8, - 810870 - 8513
= QppQ - Q ABR - ARBQ + ARR (13)
Consequently, the expression
Pr {[egQ - cgl + “(:2. 0} (14

will satisfy the inequality condition in b., since
E(n.) = 0 with E(nc-n;) = I,

c. The inequality condition pertinent to this
and the following case can be investigated through the
concept of a basis change whereby the rth column of B,
say b, is replaced by the random vector (br+6r). If
we denote the rth row of B~1 by B;, according to the
well known transformation formula we obtain

B-1s_g~
Brl=pl-_ "7 (15)

1+ Bgs,

It is evident that a random change from B to B, may
effect both the primal and dual feasibility.

c.l. First we shall reformulate the first part
of condition c. with the help of formula (15), and
obtain the inequality

-1 .
B GrBrb

B lp - >0

(16)
1 + By,

For feasible solutions we must have xy > 0 and we shall
start with the assumption that x,. > 0 where x, is the
rth component of xg. From (16) it follows that

Bidx

-_ a7
1+ B8,

x_ >

L 20,8 =1,2,....m

X

must be satisfied and if i # r and X, > 0 (for the
time being)

1/ +858) 20, (18)
that is
—B;Sr <1 (19

Therefore, (17) and (19) are equivalent to the follow-
ing expressions

(1)

x; + [Brxy - Bix, 16 > 0, for i # ¢



(idi) 1+88,>0, fori=r (20)
Two new notations appear to simplify the computational
asEects of expression (20). Let us define a matrix

Bg and a vector x, as modification of B™* and xp such

that the rth row i.e. By and x, are changed into

(1) 87 = [0,0,...,0]
(ii) X, = 1 (21)
while all the other elements remain unchanged. With

this substitution in (20) the feasibility condition
subject to random variations in the rth column of the
basis can be summarized as follows:
- -1

X * [XOBr - % B ]Gr >0 (22)
The expression in the bracket is an (mxm) matrix of
known constants which we shall denote by P and which
transforms the random vector Sr into another vector
Np» i.e.

np = Bé,
where E(ny,) = 0 and E(np-nﬁ) = L = PAP’". With this
result expression (16) is simpligied into the follow-
ing equivalent form:

(23)

X, +n, >0 (24)

P
We must keep in mind here that (24) is only the condi-
tion of primal feasibility and for the case under
study the optimality condition implies that both this
and condition ¢.2. are simultaneously satisfied.

c.2. The condition of dual feasibility with the
random vector b, in the basis can be given as

céB"lérsgaj

c];B-laj - ————>>cj, i#5p (25)
L+ BL6,
We shall introduce the notations w” = céB"l and
zy = w‘aj and conclude that
Béajw‘ﬁr
(z5 - ¢5) ———2 (26)
1+ 876,

is an equivalént inequality which can be transformed
by utilizing (18) in the following forms

Bla.
T
(1) L+ [Bf - — w16, 20
(zj-cj) '
J¢SB’ (Zj_cj) >0
(ii) “Brajwis,. > 0 ; j¢Sg, (zj—cj) =0 (27)
Consider now vectors u and v such that
(i) uy = 1, vy = Braj/(zj—cj)
for all j;éSB if (zj~cj) > 0
(ii) uy = 0, vy = Bfaj
for all J¢SB if (zj—cj) =0
With these notations (27) can be written as
u + [uBf - vww’]é, > 0 (28)

Denoting the (n-m) ¥ m matrix in the bracket by T, we
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may define the random vector np as

g = TGr
with E(nT) = 0 and E(nT°ni) = L7 = TAr-T’. Consequent—
1y, the expression

u+np >0 (29)

stating the condition of dual feasibility is equivalent
to (25). Naturally, both sets of inequalities--the
ones in (24) and in (29)--must be satisfied simultane-
ously at optimality. Hence condition c. is equivalent
to the following transformed expression

Pr (xo + np >0; u+ g >0) 30
The connection between the two formulae becomes more
specific if we allow for degenerate solution and will
permit x_. = 0 with condition c.l. 1In this case the
sign of 1/(1 + B78, does not effect primal feasibility
but it enters in expression (26) and will require the
converse inequality to hold. This implies that when-
ever x, = 0 and the rth inequality in (22) is violated,
the converse of inequality (28) should be satisfied
in order to maintain optimality.

d. The effect of introducing a random vector
(aj+6j) in place of a. for j#S,, can be investigated
by~ the following inequality condition:

(zj - Cj) + w Sj.i 0 (31D

Here 8. is a random vector with O expectation and A.
covari%nce matrix; however, w'6. is no longer a ran&om
vector but only a random variable denoted by nj with
E(nj) = 0 and variance w’A:w. Consequently, for

2
o
any nonbasic vector (aj+%j) thleollowing inequality

preserves the basis:

(25 = ¢) + ng 20 (32)

The above transformations not omnly simplify the
form of inequality relative to the random vectors but
also modify the dimensions of the n vectors to our
advantage as compared with the dimensions of the random
parameter vectors in the cases of b. and d. Assuming
that A is an (mxn) matrix with m < n, in the first
case the n dimensional (¢ +8.) vector is replaced by
the (n-m) dimensiomal n, wector, while in the second
case the m dimensional (a: + 6j) vector is replaced
by a single random variable.

Monte Carlo Estimation of Basis Stability

The techniques of estimating the probability that
a given set of inequalities (as listed under conditions
a., b., ¢c. and d. in the previous section) will be
satisfied with a given basis is essentially the samp-
ling techniques of estimating the probability of bi-
nary events. Each independent realization of a random
parameter vector can be regarded as a sample with two
possible outcomes: the basis either remains optimal
or not. The previous section has shown that this ques-
tion can be answered in terms of checking the perti-
nent inequalities directly against certain transformed
random vectors. Hence the problem of estimation is
reduced to two technical questions: (1) How many
samples are needed and (2) How to generate random
vectors. Both questions are covered in various places
of the literature of simulation techniques; therefore,
only a short summary of the necessary steps will be
given here.

(1) There is a close relation between the sample
size, n, and the precision of the estimated measure of



probability for binary events. If y is the number of
events when optimality was maintained out of n samples
generated, the estimated measure of stability is

p=y/n (33)
with the standard deviation

op = (p(1~p)/n)1/2 (34)
If the relative precision is defined as

a = (y-np)/mp (35)

and it is to be attainmed with Py probability within
the ikoﬁ confidence interval, the sample size which
meets the specifications is
n = (k/a)2(1-p)/p (36)
The usual values of Py and k are ,95 and 1.96 respec~-
tively while o may be selected to be equal to .0l or
smaller especially if high value of § is expected.
The given figures already correspond to a sample size
of several hundred and as a rule each additional deci-
mal point in precision will require a hundredfold in-
crease in sample size. This property emphasizes the
necessity for simplifying the computations of gener-
ating random vectors as much as possible.

(2) It is observable in the derivation of the n
vectors in the previous section that even in cases
where A is diagomal, I is going to contain off-diagon-
al, i.e. covariance terms. For this reason and in ox-
der to cover the more general--and realistic--cases
when the parameter variations are already correlated
we shall assume that the n vectors are random vectors
from a multivariate normal population. The generation
of such vectors by computer involves three essential
steps. First, the generation of pseudo-random numbers
on the (0,1) interval. This procedure is well known
and documented in the literature in several versions
out of which a combination of the multiplicative and
mixed congruential methods can be recommended.”
Second, the generation of independent normal variables
(with zero mean, unit variance) which can be performed
again in several known ways according to the litera-
ture.’,8 Certain subsets of these independent normal
variables may form conceptually random vectors, de-
noted here by e with zero expectation and variance-
covariance matrix, E(e-e”) = I.

The third step is to transform the generated ¢
vectors into n vectors. This is done with the help
of so—called "square root" method.? We shall assume

that

n = Ce 37)
and therefore we require that

% = CC” (38)

If C is chosen to be a lower triamgular matrix, it can
be uniquely determined from Z. Let 03] denote the
general element of I, then we have the following re-
cursive formuli:

cil = 011/(011)1/2 l<i<n
ci1 = (o33 - 3pk 22 L<dicn
o= (0s. = Z97L ol ec, ..
cij = (035 ~ 57 Cik cjk)/CJJl <j<i<n
cjj=0 l1<j<n (39)
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Once the elements of C are determined--—and this is
necessary only once per simulation run--the components
ni are generated from g4 as

- i P
ng = Zj=l cijej i=1, «.uy (40)
where r is the dimension of the random vector n. This

computation must be repeated n times to arrive at the
desired probability estimate of basis stability.

Conclusions

The techniques described in the previous sections
represent the only computational method available for
the estimation of basis stability for stochastic lin-
ear programs to date. The method utilizes the concept
of random vector transformations in order to obtain
maximum efficiency in the computer program and conse-
quently, it is limited to the simulation of multivar-
iate normal vectors. It is assumed, in other words,
that the covariance matrix--or at least the main diag-
onal variances—--of the random coefficient vectors are
known.

One very likely use of this technique is a testing
process whereby the stability of a given solution is
estimated in order to see whether confidence intervals
can or canmnot be calculated according to [5] or [6].
Another utilization of the discussed methods may give
rise to the introduction of routine stochastic sensi-
tivity analysis software as an optional feature of
regular linear programming codes.
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