CELIA - A CELLULAR LINEAR ITERATIVE ARRAY SIMULATOR

R. W.

by

Baker and G.

T. Herman

Department of Computer Science
State University of New York at Buffalo

ABSTRACT

CELIA is a program for simulating linear
arrays of cells, each one operating under
the same set of rules. The action of a cell

is influenced by both its neighbors. Thus
CELIA ¢can be used for the simulation of
linear iterative networks of identical
modules.,

_ The authors' main application, = however,
is in the field of biology, where the

program can be used to test hypotheses about
the developmental rules for organisms. For
this reason, the division of one cell into
several is allowed., If developmental rules
based on the hypotheses are fed in as data
to the program, it will give as output the
case history of any desired number of
developments, as well as statistical data
concerning the development. These then can
be checked against experimental results and
thus the validity of the hypotheses can be
established. For well validated hypotheses
the program can also be used as a predictor.

demonstrated by an
developmental

The program is
application concerning the
rules for blue-green algae.

1. MOTIVATION

In recent years a great deal of effort
has been expanded on the part of bicdlogists,
computer scientists and electrical engineers
in studying the behavior of iterative arrays
of identical modules or cells. (Apart from
a very large number of papers, there are at
least three books entirely devoted to this
topic. 2+3) A cell is assumed to have
finitely many possible states, and it will

change its state depending on the states of
some of its neighbors. All cells in an
array are assumed to be synchronized, i.e.,
they change their states simultaneously.
Models of this kind Thave provided
the biologist with a plausible
framework within which problems of
development d self- roduction can
be discussed 23%'4'8'9'1€%%2'19 For the
electrical engineer networks composed of

identical modules are attractive because
they are economical to manufacture,
change and repair.!loThe parallel hature
of the model makes it suitable for

64

investigation of parallel processing both at
the programming and at the microprogramming
level.3:13 1n fact, it has been argued!3
that cellular logic arrays should serve .as
basis to much of computer hardware design.
Problems of synchronization, like the firing
squad synchronization problem! , are of
interest to both biologists and computer

scientists.
In all this work it has often become
necessary to simulate the behavior of an

iterative array. M,
mention this Factlr3si1

from others that some computer simulations
have been done to produce some of the
examples by which theorems are demonstrated.
It is clear that simulation of one iterative
array must be basically similar to the
simulation of another one, and hence much of
the simulation effort described above must
have been duplicated. There is a case
therefore, for writing a computer program
which contains the essence of an iterative
array simulation and can be used for
simulating a large variety of iterative
arrays with a minimal effort on the part of
the user. Since many biological phenomena
can be translated into the language of
iterative arrays, such a program also helps
in simulating biological situations which
until now have been investigated by other
means.

papers explicitly
an it is ocbvious

Let us now list a nunber of situations
in which a cellular iterative array
simulator is wuseful. It is the last of
these which we consider the most
significant,

(a) To find out the way a cellular
iterative array will develop is a
very tedious job without the help
of a computer, In fact, in all but
the simplest cases time would put a
stop to a pencil and paper attempt
to follow such a development. Yet,
this is often very important. For
instance, assume we have observed a
certain pattern of development in
an organism and we wish to give
developmental rules which would
explain this pattern of
development. In most cases, this
is a trial and error process.
Another situation where such
experimenting with developments is
extremely useful is when we have

(b)

(o)

(a)

conjectured a theorem about
development:, but we do not yet see
how to prove it. The observation
of a large number of developmental
sequences might give us a clue why
our theorem holds or provide us
with a counter example if it does
not. Complicated theorems (and
many of the theorems in this area
are proved using long and tedious
constructions) can be checked, by
observing on examples that we did
not miss some small points in our
proof. (Such a check led to a
revision of an original proof in
.) In trying to understand the
proofs of others, following those
proofs on some examples can be an
enormous help. As the most extreme
case of this wuse of simulation,
Balzer! has proved the validity of
his solution to the firing squad
problem by simulating the first 99
cases and then using induction for
the rest.

Given an iterative array of logical
circuits , we may be interested in
whether or not it eventually gets
into an equilibrium state or a
cycle. This can easily be decided
by simulating the array on a
simulator which has a cycle-
detecting capability. In such
cases the regularity of a network
can also be decided.

Once a model of some biological
phenomenon 1is fully tested, our
simulator can be used as a
predictor, This way we can get a
good idea of the development of
some organism under new
circumstances, or test the behavior
of a circuit under certain input
conditions.

The most sophisticated, as well as
most significant, use we have found
for our simulator is the testing of
biological hypotheses. For
example, a biologist may be
interested in the circumstances
under which a particular kind of
cell appears in an organism. After
some observations he may formulate
a hypothesis regarding the
generation of this kind of cell.
The prcblem is, how to test the
validity of such an hypothesis.
One particular method is to
incorporate the hypothesis into a
simulation program, run this
program long enough to collect
significant information on the
conseguences of the Thypothesis
(e.g., building up a table on the
distribution of distances between
the given kind of cell) and then
check these consequences against
real life ‘’experimental data. In
such fashion we can obtain a
validation or reputation of the
hypothesis,

65

We shall give examples of how our
particular simulator has been wuséd in the
kind of situations described above.

2. THE BASIC MODEL AND DESIGN AIMS

We have decided that in this first
simulator we shall restrict our attention to
linear arrays (i.e., arrays in which all but
the first and last cell has a unique
predecessor and a unique successor). The
justifications for such a restriction are
the following. '

(a) There are linear iterative arrays
which have universal ‘computing
power, i.e., they can simulate the
behavior of any digital computer
whatsoever,

(b) A very large portion of the
research which 1is being done on
iterative arrays is concerned with
linear arrays, this is true
particularly for most of the
authors' research and for the
research of the people most closely
associated with them.,

(c) One can often represéent hon-linear
phenomena by linear arrays. 2 e
shall give an example later on.

(d) The basic programming techniques
which we applied to linear arrays
would not carry over to two or more
dimensional arrays.

(e) There is a theory for linear
cellular iterative arrays whose
applicability to biology has been
well demonstrated8911.12,14 1t is
far from clear what the precise
analog of this theory should be in
the manydimensional case. There
are as yet no authorative works in
this direction.

We shall describe other assumptions we
have made, and give justifications for them
while describing our basic model. This
model has originally been suggested by
Lindenmayerl! and a mathematical theory for
it has been developed, among others, by
Herman8:2 and Lindenmayer.12

In this model, which from now on will be
referred to as Lindenmayer model, we deal
with linear arrays of cells with the
following properties.

(a) Each cell is capable of having one
of finitely many states. The
justification for assuming a finite
number of states in a biological
system is that there usually are
threshold values for parameters
that determine the behavior of the
cell., Thus with respect to each of
these parameters it is sufficient
to specify +two conditions of the
cell: "below threshold” and "above
threshold", although the parameter
itself may have infinitely many
values. Even 1if this is not

(b)

(c)

(a)

possible, it is nearly always
reasonable to ‘approximate the value
of the parameter by one of finitely

many predetermined values. In
applications to circuits the
finiteness of the number of states
is a basic assumption of the

underlying theory.

The next state of any cell is
determined by its present state and
the states of its two immediate
neighbors, This would sometimes be
done in a probabilistic fashion.

This assumption that a cell is
affected directly only by its own
neighbors and the effect of any

other cell can only reach it via
these neighbors is reasonable in
most situations. However, it rules
out the possibility of
instantaneous information
transmission along a filament say
by the surface tension on the
exterior, or along an iterative
array of circuits with no delays
between them.10 One may argue that
no information transmission of this
type is really instantaneous and
provided our unit of time is taken
small enough, we can observe how
the change is transmitted from cell
to «cell, This can however lead to
problems of essentially different
time scales for the various
phenomena we wish to represent. We
shall discuss how such problems can
be resolved.

The change of state takes place
simultaneously along the whole
array.

This is usually assumed to be the
case in a (synchronous) electrical
circuit. In biology it seems
somewhat unnatural, but when we
consider that one possible next
state can always be the present
state, we can see that asynchronous
operation can easily be simulated.

The change of state of the two end

cells of the' array is partially
determined by the state of the
environment at that end. The

environment does not have a direct
influence on the intermediate
cells.

The first part of this feature is
blatantly reasonable, but the
second one is a somewhat unnatural
restriction. The only
justifications for it are that it
makes the programming essentially
easier and that it has not often
been found necessary to have it
otherwise., It is +true that in
iterative circuits7,10 each cell
has a "primary input",-but since it
is usually kept constant during a
computation it can be incorporated
into the rules determining the

66

(e)

The
models

intuitive picture.

behavior of cells. In the many
bioclogical applications of
Lindenmayer models there is only

one example where sensitivity to
the environment by each cell was
found necessary, that is in the

work of Surapipith and Lino:lenmayer.“4

During a change of state a cell may
divide into two or more cells or
disapper altogether.

This is a feature which makes
Lindenmayer models so suitable for
simulating biological development.
In other models2:3 growth can only
take place at the end of the array.
This 1is very restrictive from a
biological point of view. In
computer terminology the difference

between the _Lindenmayer and the
von Neumané4: conception is the
same as between an array and a
list. (This particular analogy

becomes even more illuminating when
we compare von Neuman's fixed two-

dimensional array with
Lindenmayer's branching filaments.)

above description of Lindenmayer
should be sufficient for a good
A precise mathematical

definition has been given by Herman.

Our
models as described above, bearing
the kind of applications listed
of §1.

object was to simulate Lindenmayer
in mind
at the end
resulted in several

This has

additional design aims.

(a)

(b)

A large variety of notation should
be acceptable for describing states
of cells both in the input and in
the output.

There are many reasons for this.
One is when one wants to check the
work of others, it greatly
simplifies matters if one can use
their notation. But this varies
from person to person. Codd3 uses
numbers, Balzer] uses 1letters and
Lindenmayer!2 wuses both as well as
symbols like /,), (. In many
cases the use of different kinds of
synbols is well Jjustified, by
making the output more readable.
(E.g., / is used by Lindenmayer to
denote an oblique cell wall, rather
than a 'real' cell.) Another
reasonable sort of notation is A1,
A2, .., A9, B1, B2, ..., B9 to
distinguish between the different
states of the same cell type.

The program should have the ability
to test for cycles in development.

This is necessary in the electrical
engineering applications in order
to find out whether or not a
network is regular. It is also
important in biological
applications, since it is our main
tool for solving the problens

(c)

caused by the different time
scales. For instance, in an
example which will be described in
detail later on we shall be
interested in the concentration of
a certain chemical in the
biological cells. After a cell
divides, there is a redistribution
of +this chemical in the whole
filament which takes something in
the order of 3 minutes. As opposed
to this, the life cycle of a cell
is about a day long. In order to
simulate the redistribution of the
chemical with any precision we need
a time wnit which is about a six
thousandth of a day. In order to
get statistically significant data,
we need to observe the development
for at least 10 days. That is
60000 wunits of time. If a long
array is to be manipulated this
many times by the program the
simulation would take an
extraordinarily great length of
time. Also note, that during most
of this +time there would be no
change in the simulating process as
far as the distribution of the
chemical is concermed. There are
two possible ways of avoiding this

difficulty. One is to assume that
the redistribution of the chemical
is instantaneous. (Such a

simulation has been carried out for
the same organism by Dr. Richard
Gordon at the Center for
Theoretical Biology at the
University of Buffalo.) This would
bring in an additional error in the
simulation., The alternative is to
check for a steady state. This
will appear as cyclic behavior in
the distribution of the chemical
(with a small cycle length) due to
the fact that our measure of the
concentration is only an
approximation. If a cycle is
detected, time can be updated to
the next time when the 1life cycle
of a cell is at an end. This way
it is possible to simulate
reasonably cheaply biological
situations in which events are
occurring on two time scales.

The program must have the ability
to gather statistiecs and to present

it to the wuser in a reasonable
foxm,

This is essential for the
biological hypothesis testing
application. Although the user can
write his own statistical
subroutines, we have decided to

incorporate as standard feature the
ability to tabulate certain
phenomena (in the same sort of
fashion as a GPSS TABLE) and also
to give a histogram (similar in
appearance to the CSMP histogram)
of the table. Examples of the kind
of things that maybe tabulated are:

67

(

(1

(

(4)

(e)

(£)

3.

(i) Distance between certain
kinds of cells.

ii) Length of strings of
consecutive appe arance of
certain kinds of cells.

ii) Number of occurrences of
certain kinds of cells.

iwv) Relative number of
occurrences of certain kinds

of cells (relative to all the
cells in the array at the
time the measurement is
taken).

There must be the ability to stop
simulation wpon the occurrence of
certain kinds of cells.

This is needed for instance when
the occurrence of a certain kind of
cell signifies the death of an
organism. In simulating the
firing squad the appearance of a
firing state should sign%fy the end
of the simulation. Codd” uses the
appearance of a certain state as a
halt instruction for his cellular
computer.

The user must have the ability to
simulate a number of similar
Lindenmayer models within the same
computer run with a minimal amount
of programming effort on his part.
The situation when a number of
similar models have +to be tested
arises in a variety of situations.
For instance, when one has a fair
idea of +the developmental rules
which will cause a particular kind
of organism to develop, but wants
to make the rules more precise,
experiments with variants of the
rules is the only way. Similarly,
when the regularity of a network is
to be checked, one has to test that
equilibrium is reached for all
possible combinations of primary
input values. Since the primary
input wvalues are incorporated into
the rules determining the behavior
of the «cells, again we have a
number of similar runs.

The program should be usable in a
wide wvariety of situations with
very little additional programming
effort.

DESCRIPTION OF THE PROGRAM

We now
satisfies all the design aims

the last

Apart from
information

have working which

described in

a program
section.

control type
of run in

certain Jjob

(e.g., length

simulated time) the user need only write one

subroutine.
three states how the middle one

we have

to describe for any
changes if

three cells in those states. Even

This is

here there is an option to use a standard
subroutine which will read in a table
describing this function. However, in most
cases the function will not be random and
thus a large table can be described by
relatively few logical instructions. We
shall refer to this subroutine as the DELTA
subroutine,

At present this subroutine and any other
user written subroutines (for instance the

one describing the history of the
environment if it is not constant) are
assumed to be in FORTRAN, although this can

easily be changed. FORTRAN has been chosen,

since it is generally available, it is
probably the best known language to
scientists and it does not appear to have
any disadvantages as opposed to other high
level -languages for this kind of
application. The main (control) program is
alse written in FORTRAN, but all of the
internal subroutines have been written in

COMPASS, the CDC 6400 assembler language.
(We also have FORTRAN versions of them, but
on the examples we tried, +this caused
approximately four times longer runs. This
is because of the unsuitability of FORTRAN
for list processing.)

The essence of the program is the
maintainence of a 1list representing the
array of cells. From this list the state of
the cells are passed one by one to the DELTA
subroutine, which at any time holds three

consecutive . elements of the old list and
returns the string of elements by which the
middle one must be replaced. This will
usually result in relinking the 1list. A
list of available elements is also
maintained and available space is
immediately relinked to this list. This way

there 1is no garbage collection problem at
all. During this process the program checks
for the occurrence of a cell indicating
termination of the program and also gathers
statistics if this was requested. Cycles up
to any user specified length are checked for
by keeping copies of the state of the 1list
at the last instances. A copy of the
present list is also available to the user
for manipulation in statistics gathering,

At the simplest level, the user will use
numbers to describe +the states of cells,
will specify the number of states, the state
which is the constant environment, the state
which causes termination (if any), the
maximum number of steps for which the
simulation should run, the dinitial array,
and a table taking place of the - DELTA
subroutine. For this he will get a list of
all arrays from the initial till the final
(determined either by an occurrence of the
specified state or by the number of steps).

In more sophisticated uses he may use a
full character set option for state
description, he may write subroutines for
testing termination on certain states or on
cycle length, he may write a subroutine for
varying the environment, and he may use the

statistical survey option either with the
standard subroutines or his own. At no time
does he have to know the internal

68

organization of CELIA or make any changes to
it.

Upon termination of one simulation
control is passed to the main routine which
checks whether a new simulation is requested
in the Jjob control data. One part of this
data is a variable which can be referred to
in the DELTA subroutine, It is by altering
this variable in the job control +that the
user can achieve coensecutive runs of similar
but not identical simulations.

4. APPLICATIONS

We shall concentrate on the details of a
biological hypothesis testing application.
However, before doing that we wish to give a

demonstration of our claim that the
restriction to linear arrays does not
preclude the study of more complicated
organisms.

Lindenmayer 11,12 has discussed
developmental rules for the red alga
Callithamnion Roseum Harvey. This is an

organism which has branches growing out from
the sides of some of its cells and also it
may have transverse or cbligue cell walls
between cells, Yet such an organism can be
described by a linear array. This array
contains extra, non-biological cells, namelyy
to represent a transverse cell wall, / to
represent an oblique cell wall, left
parenthesis to represent the beginning of a
branch and right parenthesis to represent
the end of a branch, Numbers will represent
actual cells. If we further agree that
branches grow on alternative sides and
oblique cell walls are tilted in alternative
directions, then,

(2+2¢+9 (3)/8/7/6/5)

represents the organism

77
DNV

2 2
Lindenmayer!2 describes a set of
developmental rules for this organism and

the corresponding DELTA subroutine is given

in Figure 1. Figure 2 is the output we got
for a simulation which stopped after 16
steps and Figure 3, is the corresponding

branching, array. There are +two particular
interesting aspects of this example. One is
that the next state of each cell depends on
the cell only and not on its neighbors.
Second is that it would be impossible to
embed such branching pattern into a von
Neumann2/3 type fixed two dimensional space.

We have used one program for testing and

developing theorems in many of the
references!,7,8,9,10,11,12 a3 well as in
other works. We shall forego detailed

description of these applications.

Our most interesting application was in
the area of biological hypothesis testing.
What we describe now is more for the purpose
of demonstrating how our program can be

applied, than for giving the final answer to
an open problem of biclogy. For the latter
purpose a lot more experimental and
simulation work is still to be carried out.

The problem we are dealing with is the
problem of heterocyst formation in blue-
green algae., Certain blue-green algae are

linear arrays (filaments) of three kinds of
cells: vegetative cells, heterocysts and
spores. Under certain circumstances
vegetative cells turn into heterocysts.
Fritsch® called heterocysts a "botanical
enigma". As Wolk!3 says "although the
observations of a number of investigators

have supported various suggestions as to the
non-reproductive functions of these cells,
no definite elucidation of their function
has yet been presented.” The problem is
that there has been very little work done in
studying all but the immediate consequences
of any of the rather numerous suggestions
and so there is hardly any -evidence to
justify or to reject any of them. We shall
show how our program can help in this
direction, We shall concentrate on one
particular hypothesis, one which has been
based on the work_ of Fritsch® and Foggs.
Again we quote Wolk 13,

"Fritsch stated as working hypothesis
that the primary function of heterocysts is
secretion of growth stimulatory substances.
He further preoposed that when these
substances decrease sufficiently in
concentration in the region between two
heterocysts which are becoming increasingly
widely spaced because of vegetative growth,
a new heterocyst forms."

to inhibit the
night mean, Fogg
that a vegetative cell becomes a
heterocyst when its intercellular
concentration of a specific nitrogenous
inhibitory substance, probably ammonia or
simple derivative, falls below a critical
level. He further suggested that periodic
concentration gradients of such inhibitorxy
substance exist along the length of a
filament, and that heterocysts form at
points where inhibition is minimal.”

"That nitrogen acts
formation of heterocysts
suggested,

On this basis we built a model for
heterocyst formation in blue~green algae.
(Here the authors received continuous advice
and help from Dr. Richard Gordon. Many of
the basic biological ideas are due to him.
However, whatever faults the model may have
from the biological point of view is most
likely due to simplifications by the authors
of the fairly complex situation presented to
them by Dr. Gordon.)

We ignored spores altogether, since
under certain conditions they do not appear.

So our filaments consist of nothing but
vegetative cells and heterocysts.
Heterocysts do not divide, concentration of
the inhibiting chemical in them does not
vary with +time or from heterocysts to
heterocyst. The concentration, ¢, of the
inhibitory chemical in a cell wvaries
proportionately to the difference between
the concentration in that cell, the

69

concentration in the cell on its left (1),
the concentration on the cell on its right
(r) and the concentration in the environment
(e). Thus

dec

T - k1(l—c) + k1(r-c) + kz(e-c)

k.(1L + r + e - 3c)

where we have assumed k = k, = k. (We can
think of this as the chemical fldwing across
the walls of a cell at a speed propotional
to the difference in concentration on either
side.)

In a short length of time At, the change
in concentration will be Ac, where

c =k.0t. (L + x4+ e - 30).

(flote the implicit assumption: the rate of

flow across the external cell wall is the
same as across walls between cells. An
alternative interpretation is that we have

assumed that the permeability coefficient of
the intercellular walls, k, , equals the
specific rate of destruction of the
chemical, ko, e 1is then proportional to
instead of° equal to, the concentration in
the environment.)

Vegetative cells have at life cycle of
approximately a day. At the end of their
life cycle they divide into two daughter
cells each of the same concentration as the
mother cell. However, if the concentration
of the inhibitory chemical is below a
certain threshold, say t, instead of
dividing, the cell will turn into a
heterocyst., We will assume that this is the
mechanism by which heterocysts form.

Wolk15 has tabulated the length of
inter-heterocyst intervals following growth
in the presence and absence of ammonium. We
shall investigate whether his experimental
results are sufficient to refute the
validity of model as outlined above. We
shall restrict our attention to the case
when ammonium is absent (i.e., e=0).

In our simulation the state of a cell
had two components. One was the
concentration of the inhibitory substance
within it. This had a range from 0 to 999,
with 999 being the concentration in
heterocysts, which we assume is held
constant by the heterocyst. The other was
the number of units of time it still had to
go before the end of its life cycle.
Because of the relatively great speed of the
passage of the inhibitory chemical as
compared to a life cycle, we gave this the
range from 0 to 999%. (0 for heterocysts.)

A cell whose state is denoted by the
number 3875521, is a cell with a
concentration 387 which still has 5521 units
of time to live.

It would be unreasonable to assume that

two daughter cells of the same cell_ will
have exactly the same length of time to
live. In our program we have assumed that

the life cycle of cells is normally
distributed with standard deviation being
104 of the mean. The mean we tock to be
6000 time units. Thus we use a

probabilistic next state function.

In each step the time component of the
state is reduced by 1 (except when it is
already 0) and the concentration ¢ changes
into

c+ Ac=c+ k.At. (1 + r - 3¢).

First we had to decide on the value of

k.A t. By comparing different values it was
found that the value which caused steady
state to be reached after cell division in

about the same time what has been estimated
on the basis of diffusion theory is 1/4.
Figure 4 shows a part of the history of the
development under these assumptions. Note
that steady state situations have been
skipped. .

Next we had to decide what the value of
the threshold t should be. This we have
done by running a number of similar shorter
experiments with various thresholds. The
one which gave the most approximate mean
inter-heterocyst interval was t=3.

Using this assumption we made a
simulation run giving us a table of a total
of #43 inter-heterocyst distances. (See
Figures 5 and 6). This table we have
compared with the table of _Wolk15 based on

longer

experiments. Using a yx°~ -test we found
that the hypothesis that the two tables
report on two samples from the same

distribution can only be rejected with about
80% confidence. This means that even if our
model was perfectly valid, worse
discrepancies between experiment and
observation than what we have found would
occur on average one out of five tinmes.
This is not strong enough evidence to reject
the model and +the wunderlying biological
hypothesis. ’

So the Pritsch-Fogg hypothesis together
with the details we have filled in passed at
least one test of wvalidity. Naturally,
before it 1is accepted as authoritive much
more experimental and simulation work has to
be done. We hope that we demonstrated that
CELIA can be a great help in such work.

5. PROJECTED FUTURE WORK

The program CELIA has already been found
useful in a wide variety of situations.
However, it has not been used very long and
it may have some weak points which have so
far remained hidden. Our intention is to
keep applying it to genuine biological
problems (the development of hydra is a
possible next -line of investigation) and
thereby discover any weakness it may have.

As far as adding to the program is
concerned, there is only one projected
addition in the near future, This is to

make the program suitable to deal with the
branching patterns of Lindenmayer!'?’. Since

70

our internal 1list structures have already
been built doubly-linked with this extension
in mind, no difficulty of implementation is
foreseen at this stage.

to genuinely many dimensional
arrays is not envisaged at this stage. Some
simulation work is being done in this
direction by many people on particular
organisms, but the underlying model is not
sufficiently uniform to justify a nonlinear
version of CELIA.

Extension

ACKNOWLEDGEMENTS
The authors wish to thank Dr. R. Gordon
for his help and advice on biological

matters and Mr. E. Artzy who wrote our

COMPASS list processing subroutines.

REFERENCES
1. BALZER, R.
An 8-state minimal time solution to
the firing squad synchronization
problem, Information and Control,
v. 10, 1967, pp. 22-42,

2., BURKS, A. W. (ed.) .
The Theory of Self-Reproducing
Automata, by John von Neumann,
University of Illinois Press,
Urbana, Il1l., 1966.

3. CODD, E,., F. .
Cellular Automata, Academic Press,
New York, New York, 1968,

GORDON, R. & WALSHBY, A. E.
Development of the spacing pattern
of heterocysts in Anabaena, in
preparation.
FOGG, G. E.
Growth and heterocyst production in
Anabaena Cylindrica Lemm. II. In
relation to carbon and nitrogen

metabolism, Annals of Botany, N.S.,
. v. 13, 1949, pp. 20 71-259.

FRITSCH, F. E.
The heterocyst:
enigma, Proceedings
Society, London, V.
194-211,

a botanical
of the Linaean

162, 1951, pp.

7. HENNIE III, F. C. . .
Iterative Arrays of Logical Circuits,

MiT Press, Cambridge, Mass., i1361.
8. HERMAN, G. T. .
The computing . ability of a

developmental model for filamentous
organisms, Journal of Theoretical
Biology,v. 25, 1969, pp. #421-435.

9, HERMAN, G. T.
The role of environment in
developmental models, Journal of
Theoretical Biology, to appear.

10. KILMER, W. L.
On dynamic switching in one-
dimensional iterative logic

networks, Information and Control,
v. 6, 1963, pp. 399-415,

11. LINDENMAYER, A.

Mathematical models for cellular
interactions in development, I.
Filaments with one-sided inputs,
II. Simple and branching filaments
with two-sided input. Journal of
Theoretical Biology, v. 18, 1968,
Pp. 280-293 € 300-315.

12, LINDENHMAYER, A,

Developrental systems without
cellular interactions, their
languages and grammars, to appear.
£ Fiqure 1
13. SHOUP, R. G. Paker f flerman Fiq
Programmable Cellular Logic Arrays, wEMU?NEDﬂTﬁLME%:¢:Lom
Ph.D. dissertation, Carnegie-Mellon 000010 INTEGER RyM (1) ,BLANKSRP,TCH,
« University, 1970. 000010 DATA BLANK/AR /yLP/BRL /+RP/BR)
000010 DATA TCw/8Re _/égc¥/ﬂﬂg /
000010 IF (M NE,BR)) 0 34
14, SURAPIPITH, V. & LINDENMAYER, A. 0308}';‘ :N.13 e
. . . 2
Thioguanine~dependent light S ools MM Z) = a3
sensitivity of perithecial g%gﬁ :gﬁ;; Re
initiation in Sordaria fimicola, 000017 20 N =1
Journal of General Microbiology, V. 000020 MMl = M
I 000021 RETURN .
59, 1967, pp. 227-237. 000022 30 IF (M NE,8R3) 60 TO 44
006024 N=3
000024 M{1) = ARZ
15, WOLK, P. C. 200076 MM(2) = TCH
Experimental Studies on the 283331 ::;3;; RRé
Development of a Blue-green Alga, 000031 40 IF (M NE,AR4 y GO TO S4
T —— — -
Ph.D. dissertation, Rockefeller 8%8% %?ﬁ = AR2
Institute, 1964. 600035 MM(2) = TCW
000036 MM(3) = 8RS
000040 RETURN , _
000040 50 IF{M(NE,RRS)y 60 TO &0
000042 N =3
000042 MM(1) = 8R6
@0906‘ MM(2) = OCW
000045 MM{3) = B8RS
000047 RETURN) .
000047 60 IF (M,NE,8R6)y GO TO 7h
000051 N =}
~ 000051 MM (1) = AR?
000053 RETURN . 60 1o 88
000053 70 IF(MJNE,RRY H [
000055 : =1
Present address of R. W. Baker is: 9 herom” Re
Engineering Department 83882} 80 IF (H.NE. a8) 60 TO 24
= &
Pfaudler Company) 000061 MM(1) = RR9
Division of Sydron Coxrporation 000063 Mu{2) = Lp
000064 HM(3) = BR3
Rochester, New York 000066 MM(4) = RP
000067 RETURN
000070 END

SUBPROGRAP LENGTH
000152

FUNCTION ASSIGNMENTS

STATEMENT ASSIGNMENTS

Fiaqure 2

Baker & Werman

<

[\UR N

> ¢ in

NN

~ o~

N NO

© o

NN

R 1IN

PN

PO~

NN an

ikt 2N

L I N

LT E R

~N~N

PO

NN

PN~

NN

—a P~

o~ Nm

b K

N

L IR N

[N

- NN\N.n

NNt o

NN

L B N

FOUDINN

N >IPN~D

PN 2NN

N~ N>~

—r~Nm

PN P~

P ~NNO

AW N

PN -~

NONNE

N e~ PN

[V VN

bt il M A]

N~

N~

R 1R N

BN~ o~

N ONN\N G

W N~ N

NN NO

~NN -\

N &€ DD O~

WHIN NN

NNPN~D

Ead 2L I R N

NDA~AININ

~ NN~ D~

O~ NNm

PN >

NU PN AN

PNV~~~

N~ DU NP~

CONNO NN

O~ ONG A~ PN

POONNNIDNNY

NN NN - N

PAanmNDTFPORN

NSO PN DN\

- P NNNP N ~D

NOO~~OND =P\

NN N~NNNNY

O~ m NN

PN AAND IO

NINENTVINDINN

PO PIPNANNINA~D

N NAND~INION

R TNAON-N D~

CNNO -~ ™

PADINOCOOND >~

NN PN~ NN

PFPAEPINANA~D -~

NOAUMN PN NDC o~

gl Bl T RS-0 R &

72

1 $99000¢
1 9950000
1 9990000

1 9990000

Baker & Hermran Figure 3

1 9990000
1 9990000
1 $990000
1 9990000
1 99%0000

1 9990000

1 9990000

ENTRIFS IN TABLE
43

-
SOBNOAET AN D

-
N =

13

1 9990000

1 9990000

1 9990000

1 9990000

1 9990000

1 9990000

1 9990000

1 9990000

1 9990000

Baker & Herran

MEAN ARGUMFNT

4035274

4025273

4025272

4025271

4020299

4020298

4020297

3990296

3960295

3940294

3930293

3920292

3920291

3910290

39102A9

3910248

3916147

4456141

4226140

4106139

Figure 5

2044975

2044074

2034073

2034972

2035407

2035606

1905605

1845604

1795603

1765602

1745601

1725600

1715599

1715598

1705597

1705596

3916393

2396392

2146391

1836390

STANDAPD DEVIATIGN
BT

2046026
2046025
2036024
2036023
2036153
1536152
1416151
13161Sp
1266149
12261414
1196147
1186146
1166145
1156144
1156143
1156142
1705308
1705307
13253046

1165305

Baker & Herman Fiqure 4

4035703

4025702

4025701

4025700

2031951

2031050

1901049

1841n48

1791047

1761046

1741045

1721044

1711043

1711042

1701041

1701040

1155854

1155R53

1155852

1055451

12,86
INTFRYAL ngRepyen PER FENT GUMULATIVF CUMULATTYF
COUNT FPEQUFNNY OF ToTaL PERCENTAGF GEMATNNES
1] 0 0.00 0.00 100.00
1 L} 0.01 0.00 190.00
2 n 0.08 0,00 100,00
3 Q .92 0.00 109.01
3 9 0.09 06.00 100.0°
5 0 0.00 9,09 100,00
& 1] 1.00 0.00 100.090
7 1 2.31 2433 a7.hA7
8 5 11.63 1%.95 A6, 05
a ’6 13.95 27.91 7?2.00
10 1. 2.%3 30.223 69,77
11 3 £.98 17.21 62,70
12 5 11.67 4A, 84 S1.1F
13 3 6.98 55,81 44,19
14 3 13.95 69,77 30,23
i5 3 6.9° 76,74 l.2F
1€ 2 4.6% 31,40 18.80
17 2 4,65 R6.05 13,95
18 2 4.65 en, 70 q.1n
19 1 2.33 o3.02 he9QR
20 3 6.97 100.00 <00
Raler ¢ Herman Pigure A
T
T
T
1
)
I
T
T*
Ter¥% %
[e¥¥r¥a
1=
T*e ¥
Tr¥¥us
I‘.i
IFrTxae
THxw
t'.
Tes
T**
i
I-“l

73

9990000

9990000

9990000

9990000

4020728

4020727

4020726

3990725

3960724

3940723

3930722

3920721

3920720

3910719

3910718

3910717

1700752

1700751

1700750

1706749

9990000

9990000

9991000

9990000

9990000

Q990600

9990000

9990000

Q29580000

9990000

9990000

9590000

3910429 9990000

3910428 9990000

3910427 9990000

3910426 9990000

