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ABSTRACT

We study the ranking-and-selection problem of selecting a subset of simulated systems that with high
probability contains a system with near-optimal performance. The posterior probability that at least one
system in a given subset is near optimal – referred to as the posterior probability of good inclusion (pPGI)
– can be expressed in terms of a sum of one-dimensional integrals and computed via numerical integration.
Still, enumerating all possible subsets and computing their associated pPGI is impractical for large problem
instances, thus we explore approximate solution methods. In particular, we investigate a greedy algorithm
that builds a subset by iteratively adding the system that increases the pPGI the most.

1 INTRODUCTION

Research on how to incorporate the Bayesian statistical philosophy into ranking and selection (R&S) has
predominantly focused on the problem of how best to allocate scarce simulation effort to maximize some
criterion based on selecting a single system (Chen et al. 2015). Far less attention has been given to
subset selection, which refers to the task of selecting a subset of simulated systems having some desired
property. The Bayesian framework makes delivering statistical guarantees for R&S procedures convenient,
but is often accompanied by computational challenges, especially as the number of systems grows. This is
because Bayesian R&S procedures involve computing posterior quantities of interest, such as the posterior
probability of correct selection. Quantities such as this can be expressed as integrals of the posterior
distribution on the mean performances of all systems over some (possibly non-convex) region.

Suppose there are k systems under consideration and the mean performance of each system is unknown,
but can be estimated via simulation. Systems are assumed to be simulated independently and endowed with
independent prior distributions. Adopting a Bayesian perspective, we let Wi denote the mean performance of
System i, for i = 1,2, . . . ,k. Here, Wi is viewed as a random variable whose posterior distribution represents
the remaining uncertainty after having obtained experimental evidence E .

We explore the subset-selection problem of finding a subset of systems that contains one having near-
optimal mean performance with high (posterior) probability. More specifically, given a subset of systems
S ⊆ {1,2, ...,k} and user-specified tolerance δ ≥ 0, we define the posterior probability of good inclusion
(pPGI) of the subset as pPGI(S) := Pr(∪i∈S{Wi ≥Wmax −δ}|E ), where larger performance is assumed to
be better, Wmax := maxi=1,2,...,k Wi, and Pr(· | E ) denotes the posterior probability. Our goal is to find the
smallest subset with a posterior probability of good inclusion exceeding 1−α , where 1−α ∈ (1/k,1) is
a user-specified confidence level. In other words, we consider the combinatorial optimization problem

min
S⊆{1,...,k}

|S| such that pPGI(S)≥ 1−α. (1)
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2 APPROACH

By conditioning on the identity and mean performance of the best system, the posterior probability of good
inclusion of a given subset can be expressed in terms of a sum of one-dimensional integrals:

pPGI(S) = 1− ∑
i∈Sc

∫
∞

−∞

[
∏
j∈S

FWj|E (w−δ ) ∏
ℓ∈Sc\{i}

FWℓ|E (w)

]
fWi|E (w)dw. (2)

A similar technique was applied in Eckman and Henderson (2022) to simplify the calculation of the posterior
probability of good selection. In (2), FWi|E (·) and fWi|E (·) represent the cdf and pdf, respectively, of the
marginal posterior distribution for the mean performance of System i; in the standard R&S setup, these
are normal or Student’s t distributions, depending on whether the true variances are known or unknown.
While (2) is computationally tractable for many problem instances, as the number of systems increases
the complexity and number of the integrals increases, as does the number of possible subsets. Thus,
exhaustively enumerating all subsets and computing their pPGI is generally impractical.

We investigate a computationally cheap heuristic approach for solving Problem (1). For the related
problem of finding the smallest subset that contains the best system with high probability, Eckman et al.
(2020) showed that an optimal subset can be found via a simple greedy algorithm. Motivated by this, we
inspect a greedy algorithm that iteratively builds a subset S by each time adding the system (not yet in S)
that leads to the largest increase in the pPGI until the pPGI exceeds 1−α .
Conjecture 1 The subset returned by the greedy algorithm is an optimal solution to Problem (1).

The aforementioned increase in the pPGI from adding System i to a subset S can be expressed as a
sum of one-dimensional integrals and has a similar computational cost to that of (2):

∆(i | S) = pPGI(S∪{i})−pPGI(S) =
∫

∞

−∞

[
∏
j∈S

FW j|E (w−δ ) ∏
ℓ∈Sc\{i}

FWℓ|E (w)

]
fWi|E (w)dw

+ ∑
ℓ∈Sc\{i}

∫
∞

−∞

[
∏
j∈S

FW j|E (w−δ ) ∏
m∈Sc\{i,ℓ}

FWm|E (w)
[
FWi|E (w)−FWi|E (w−δ )

]]
fWℓ|E (w)dw. (3)

We conjecture that there exists a partial ordering of the pPGI increments of different systems in terms
of their posterior means and variances, denoted by µi and ρ2

i , respectively. Eckman and Henderson (2022)
established a similar relationship for the posterior probability of good selection.
Conjecture 2 Suppose that the true variances were known. For any pair of Systems i and j satisfying
µi ≤ µ j −δ/2 and ρ2

i ≤ ρ2
j , ∆(i | S)≤ ∆( j | S) for all S ⊆ {1,2, . . . ,k}\{i, j}.

If Conjecture 2 were to be proven true, it could be used to accelerate the greedy algorithm by decreasing
the number of systems for which it needs to evaluate ∆(i | S) at each iteration.

3 NUMERICAL EXPERIMENTS

Experiments on random problem instances have so far failed to find counter-examples disproving Conjec-
tures 1 and 2. Additional experiments and efforts to rigorously prove these two conjectures are ongoing.

REFERENCES
Chen, C.-H., S. E. Chick, L. H. Lee, and N. A. Pujowidianto. 2015. “Ranking and Selection: Efficient Simulation Budget

Allocation”. In Handbook of Simulation Optimization, edited by M. C. Fu, 45–80. New York: Springer.
Eckman, D. J., and S. G. Henderson. 2022. “Posterior-Based Stopping Rules for Bayesian Ranking-and-Selection Procedures”.

INFORMS Journal on Computing 34(3):1711–1728.
Eckman, D. J., M. Plumlee, and B. L. Nelson. 2020. “Revisiting Subset Selection”. In Proceedings of the 2020 Winter

Simulation Conference, edited by K.-H. G. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and
R. Thiesing, 2972–2983. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.


	INTRODUCTION
	APPROACH
	NUMERICAL EXPERIMENTS

