Proceedings of the 2023 Winter Simulation Conference
C. G. Corlu, S. R. Hunter, H. Lam, B. S. Onggo, J. Shortle, and B. Biller, eds.

OPTIMAL COMPUTING BUDGET ALLOCATION FOR MONTE CARLO TREE SEARCH IN

OTHELLO
Daniel Qiu Jie Xu
Thomas Jefferson High School Dept. of Systems Eng. & Operations Research
Alexandria, VA 22312, USA George Mason University

Fairfax, VA 22030, USA

ABSTRACT

Upper Confidence bounds applied to Trees (UCT) is the most popular tree policy for Monte Carlo Tree
Search (MCTS). However, UCT focuses on minimizing cumulative regret rather than maximizing the
Probability of Correct Selection (PCS) of the best action, which is often preferred in game engines. To
address this, we examine an Optimal Computing Budget Allocation (OCBA) tree policy that provides a
rigorous way for maximizing the PCS rather than minimizing regret. MCTS-OCBA has been shown to work
well with simple games such as Tic-Tac-Toe, where the search space is small enough to simulate through,
but not unsolved games such as Othello or Go. We report numerical results showing that MCTS-OCBA
performs better in Othello than MCTS-UCT and thus demonstrate OCBA is a more efficient tree policy
for MCTS for game engines.

1 INTRODUCTION

MCTS performs a tree search using simulations on a current game state to identify the best move. It is the
algorithm used by Google DeepMind’s AlphaGo that beat world champion Lee Sedol (Silver et al. 2016).
MCTS has 4 steps: selection, expansion, simulation, and backpropagation. The goal of selection is to use
a tree policy to select a leaf node of a game tree for simulation evaluation. The goal of expansion is to add
a new leaf node to the game tree. The goal of simulation is to use a default policy to simulate the game
until its end. The goal of backpropagation is to update information for the tree. A tree policy controls
how the tree is grown and is of fundamental importance. There has recently been a proposed algorithm
that focuses on maximizing the PCS of the best move called OCBA (Li et al. 2022), which is achieved
by solving an optimization problem with PCS as the objective function. While MCTS-OCBA has been
demonstrated to outperform MCTS-UCT on Tic-Tac-Toe (Li et al. 2022), its performance has yet to be
tested on an unsolved game. We do so on an Othello game engine, which is an unsolved game widely
used in computer game literature (Browne et al. 2012).

2 METHODOLOGY AND RESULTS
2.1 MCTS-UCT vs MCTS-OCBA

In MCTS-UCT, the child node chosen is the node that maximizes % +c 1‘,’1—7 where w; is the sum of

all values of simulations starting from that node, n; is the number of visits to that node, c is a constant,
and N is the number of visits to the parent node. In our code, we set ¢ to 1, and calculate the value of a
simulation by using the formula Zfb, where a is the number of the player’s tokens and b is the number of
the opponent’s tokens. In MCTS-OCBA, we denote by I, a set that contains the nodes that can be reached
from state x, and let §; be the difference between the performance of the best node i* and node i, and ¢
be the variance of the simulation noise. We use 7i; to denote the number of simulations to be allocated to

Qiu and Xu

node i. A key feature of MCTS-OCBA is the role of 62 as in the following equations for solving 7;:

~ 2
n M c;j/9;
Vi, jeli,j4 J_ i%) and jis = o
LJ xsly] 75 Ly 7i; Gi/si nlx

. . 2 G'
i€l iy !

We update o; and §; as simulation data is collected and simulate the next node L= argma}x(ﬁi —n;).
1€y

2.2 Simulation Policy

We test two simulation policies: i) random play, ii) a heuristic policy. The heuristic policy builds upon
Othello domain knowledge (Lee and Mahajan 1990) and uses the number of corners, X-squares (the squares
directly diagonal to corners), number of moves, and potential mobility (p-mob, the total number of empty
spaces next to opponent pieces) to estimate the desirability of a move:

(# of your corners — # of enemy corners) x400 + (# of enemy X-squares — # of your X-squares) * 100

+ (# of your moves)/(# of opponent moves) * 50 + (your p-mob)/(enemy p-mob) 80.

2.3 Results

Table 1 reports numerical results. MCTS-OCBA consistently outperformed MCTS-UCT with random
simulation policy, delivering 60.2% wins, 3.4% ties with 50 simulations, 54.0% wins, 2.2% ties with 100
simulations, and 52.0% wins, 3.8% ties for 500 simulations. MCTS-OCBA’s performance is also better
than MCTS-UCT with simulation heuristic (60.8% wins and 2.2% ties with 50 simulations, 59% wins and
1.4% ties with 100 simulations, and 50.8% wins and 3.6% ties with 500 simulations). MCTS-OCBA’s
advantage is larger when simulation budget is relatively small or when using heuristic rollout policy.

Table 1: Experimental Results from 250 games (ties not reported)

(White vs Black, 250 games) No Heuristic | Heuristic
MCTS-OCBA vs MCTS-UCT (50 simulations) 149 - 93 144 - 102
MCTS-UCT vs MCTS-OCBA (50 simulations) 89 - 152 83 - 160
MCTS-OCBA vs MCTS-UCT (100 simulations) 142 - 102 149 - 96
MCTS-UCT vs MCTS-OCBA (100 simulations) 117 - 128 102 - 146
MCTS-OCBA vs MCTS-UCT (500 simulations) 130 - 111 134 - 109
MCTS-UCT vs MCTS-OCBA (500 simulations) 110 - 130 119 - 120

3 CONCLUSION

We reported new numerical results that help illustrate MCTS-OCBA is a better tree policy than MCTS-UCT
in an unsolved game like Othello and show the performance improvement is robust with different simulation
policies. Further work could be done by building state-of-the-art game engines with MCTS-OCBA.

REFERENCES

Browne, C., E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and
S. Colton. 2012. “A Survey of Monte Carlo Tree Search Methods”. IEEE Transactions on Computational Intelligence and
Al in Games 4:1-49.

Lee, K., and S. Mahajan. 1990. “The Development of a World Class Othello Program”. Artificial Intelligence 43:21-35.

Li, Y., M. C. Fu, and J. Xu. 2022. “An Optimal Computing Budget Allocation Tree Policy for Monte Carlo Tree Search”.
IEEE Transactions on Automatic Control 67:2685-2699.

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al. 2016. “Mastering the Game of Go with Deep Neural Networks and Tree Search”. Nature 529(7587):484—489.

	INTRODUCTION
	Methodology and Results
	MCTS-UCT vs MCTS-OCBA
	Simulation Policy
	Results

	Conclusion

