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ABSTRACT 

This paper investigates a simulation optimization problem with both stochastic objective and constraint 
functions with a discrete solution space. Our objective is to identify a set of near-optimal solutions within 
a specific quantile, such as the top 10%. To achieve this goal, we first employs a probabilistic branch-and-

bound algorithm to find a level set of solutions. Then, we combine a penalty function approach with the 
probabilistic branch-and-bound algorithm to handle stochastically constrained problems. Both convergence 
analysis and experimental results are provided that demonstrate the superior efficiency of our proposed 
approaches over existing methods. 

1 INTRODUCTION 

Simulation is a popular approach for complex decision-making problems involving uncertainty. For discrete 

decision variables, several simulation optimization (SO) methods exist, including ranking and selection 
procedures, retrospective optimization, and random search algorithms (Hong, Nelson, and Xu 2015). 
Research has also focused on discrete SO with stochastic constraints, where Park and Kim (2015) developed 
penalty function with memory (PFM). PFM uses a penalty parameter and a measure of violation that can 
handle boundary solutions. Most SO research aims for finite-time or asymptotic convergence guarantees, 
but the probabilistic branch-and-bound (PBnB) algorithm takes a different approach, seeking a level set of 

solutions reaching a specific quantile (Zabinsky and Huang 2020). The existing PBnB lacks consideration 
of stochastic constraints and is limited by conservativeness in critical parameters. Our contributions include 
extending PBnB for discrete SO problems with an asymptotic convergence guarantee, incorporating penalty 
function techniques, and developing a benchmark algorithm for comparison in extensive experiments. 

2 METHODOLOGIES 

The SO problem considered in this study is formed as min
𝑥∈Ω

𝑔(𝑥) = 𝐸[G(x)] , where Ω  is the feasible 

solutions bounded by stochastic constraints ℎℓ(𝑥) ≤ 𝑄ℓ, for all ℓ = 1, … , 𝑚. The goal of this study is to 

approximate the target level set 𝐿(𝛿, Ω), which is the top 100𝛿 percent of solutions in the feasible region. 

We first introduce one of the PFM, 𝑃𝑆2, from Park and Kim (2015), which convert the SO problem into 
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min
𝑥∈Θ

𝑧(𝑥). Θ  is the set of all solutions including feasible and infeasible ones, and 𝑧(𝑥) = lim
𝑘→∞

�̅�𝑘(𝑥). 

�̅�𝑘(𝑥) = �̅�𝑘(𝑥) + ∑ 𝜆ℓ𝑘[𝑆ℓ𝑘(𝑥)]+
ℓ  is the penalized objective function calculated based on 𝑃𝑆2.  

  
Using �̅�𝑘(𝑥) as the objective function, we proposed the discrete version of PBnB to approximate the target 
level set for discrete SO problems with stochastic constraints. The discrete PBnB follows a similar 
framework with the original PBnB (Zabinsky and Huang 2020). PBnB iteratively uses samples solutions 
to estimate the quantile bounding the target level set, and it categorize subregions of the domain space into 

maintained, pruned, and current subregions. These categories representing the part of the solutions is part 
of the target level set or not, where maintained subregions are considered to be part of the target level set. 
There are three phases of the discrete PBnB: (1) Sampling & Quantile Estimation; (2) Subregions Updating; 
(3) Branching & Terminating. Specifically, the discrete PBnB randomly allocates different size of 
observations in different types of subergions, where more observations are allocated to the undecided 
current subregions. Then, using the observed samples, the discrete PBnB estimates the quantile which is 

used as the threshold for the categorization of subregions. Also, the discrete PBnB allows returning to 
current subregions, but the original PBnB does not. 
 

3 RESULTS AND DISCUSSIONS 

Both convergence analysis and experimental results are provided for the 𝑃𝑆2 incorporated discrete PBnB. 
First, the convergence analysis leads to the maintained subregions provided by the 𝑃𝑆2  incorporated 

discrete PBnB converging to the target level set as the iteration 𝑘 → ∞. Second, in the numerical experiment, 
Goldstein-Price function with two types of constraints are the implemented as the testing environment. The 
the 𝑃𝑆2 incorporated discrete PBnB is compared with a two-stage PBnB algorithm. The two-stage PBnB 
algorithm implements a feasible region detection PBnB (Tsai et al. 2018) first and use the discrete PBnB 
to identify the target level set. Two metrics are used in the comparison, ratio of the target level set 
maintained and the accuracy of the maintained subregion. As shown in Table 1, 𝑃𝑆2 incorporated discrete 

PBnB and the two-stage PBnB performs slightly better with the easy constraint, where the difference 
between the ratio maintained expanded during the hard constraint. The difference could be caused by the 
incorrect feasibility identification for the two-stage PBnB during the first stage, that loses part of the target 
level set.  

Table 1. Numerical Experiment Results 

Goldstein-Price 
𝑃𝑆2 PBnB Two-Stage PBnB 

Ratio Maintained Accuracy Ratio Maintained Accuracy 

Easy constraint 0.9943 0.9950 0.9659  0.9586 
Hard constraint 0.9731 0.9731 0.9012  0.9421 
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