
Proceedings of the 2023 Winter Simulation Conference 

C. G. Corlu, S. R. Hunter, H. Lam, B. S. Onggo, J. Shortle, and B. Biller, eds. 

MODEL PREDICTIVE CONTROL IN OPTIMAL INTERVENTION OF COVID-19 WITH 

MIXED EPISTEMIC-ALEATORIC UNCERTAINTY  

 
 

Jinming Wan 

 
Binghamton University 

4400 Vestal Parkway East 
Binghamton, NY 13902, USA 

 
 

ABSTRACT 

Non-pharmaceutical interventions (NPI) have been proven vital in the fight against the COVID-19 

pandemic before the massive rollout of vaccinations. Considering the inherent epistemic-aleatoric 

uncertainty of parameters, accurate simulation and modeling of the interplay between the NPI and contagion 

dynamics are critical to the optimal design of intervention policies. We propose a modified SIRD-MPC 

model that combines a modified stochastic Susceptible-Infected-Recovered-Deceased (SIRD) compartment 

model with mixed epistemic-aleatoric parameters and Model Predictive Control (MPC), to develop robust 

NPI control policies to contain the infection of the COVID-19 pandemic with minimum economic impact.  

1 INTRODUCTION 

The COVID-19 pandemic has taken a substantial economic and societal toll worldwide. Compartment 
models have been predominantly used in modeling the infection dynamics of epidemic outbreaks. The 
susceptible-infected-recovered-deceased (SIRD) model and its variants have been widely used to predict 
case counts for COVID-19 and the optimal design of NPIs. Model predictive control (MPC) has proven 
effective in controlling various real-world processes in which future dynamics are highly uncertain. 

Consequently, combining MPC with the compartment model is a promising approach to designing policies 
to contain the spread of diseases. 

As in most complex systems, parameters in a compartmental model could be rather challenging to infer 
from the available data owing to a lack of knowledge, incomplete and inaccurate data, as well as 
computational issues. Stochastic compartmental models have been developed and applied to the 
investigation of the COVID-19 pandemic and quantify uncertainties in such models. In this study, we 

consider a mixed epistemic-aleatoric uncertainty for parameters in compartmental models in the context of 
COVID-19 for two reasons. First, the knowledge gap is narrowing as more studies are conducted on 
COVID-19 and its variants; and second, the uncertainty of infectious system parameters cannot be 
completely eliminated by acquiring new knowledge or data, due to inherent stochasticity and individual 
differences. Therefore, it is more reasonable to characterize the extensively studied COVID-19 pandemic 
in compartmental models using mixed epistemic-aleatoric parameters. 

In this study, we propose a modified stochastic SIRD-MPC model to develop robust control policies to 
combat the spread of  disease with minimal social and economic impacts. We use mixed epistemic-aleatoric 
parameters in a stochastic compartmental model with feedback to emulate the dynamics of human 
interventions. Subsequently, we apply the MPC technique to determine the optimal NPI control policy 
while considering uncertainty propagation using probability bounds analysis (PBA) for uncertainty 
quantification. It is noteworthy that our proposed model possesses general applicability beyond the scope 

of COVID-19.  
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2 MODEL 

We propose a modified SIRD compartment model by incorporating the feedback control policy 𝑈𝑡 and the 
conventional SIRD compartment model to capture the interventional evolution of the COVID-19 pandemic. 

The discretization of the modified SIRD model is adopted to characterize the compartment evolution, with 
time step ∆𝑡 = 1 day: 

𝑆(𝑡 + 1) = 𝑆(𝑡) − (1 −  𝑈𝑡)𝛽𝑆(𝑡)𝐼(𝑡) 
𝐼(𝑡 + 1) = 𝐼(𝑡) + (1 −  𝑈𝑡)𝛽𝑆(𝑡)𝐼(𝑡) − 𝛾𝐼(𝑡) − 𝛼𝐼(𝑡) 

𝑅(𝑡 + 1) = 𝑅(𝑡) + 𝛾𝐼(𝑡) 
                                                                𝐷(𝑡 + 1) = 𝐷(𝑡) +  𝛼𝐼(𝑡)                                                                   (1) 

𝑈𝑡 = 𝐶𝑡(1 − 𝑒(−φ×𝐼(𝑡))) 
Where mixed epistemic-aleatoric parameters β, γ, and α are the transmission rate, recovery rate, and death 
rate, respectively (The uncertainty about the probability distribution of a model parameter is expressed in 

terms of a particular form of the distribution function to an interval bounded by lower and upper bounds on 
the distribution function parameters. Therefore, we can use the interval to quantify the epistemic uncertainty 
to characterize the average infectivity under various ambient environments and use the normal distribution 
to represent the aleatory uncertainty. Specifically, 𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙([0.03,  0.90],  0.05) follows the normal 
distribution to represent the aleatory uncertainty (internal randomness of disease transmission) with mean 
𝜇 = [0.03,0.90]  and standard deviation 𝜎 = 0.05 , where [𝑎, 𝑏]  represents an interval to quantify the 

epistemic uncertainty (knowledge gaps in understanding the contagion process of disease) of with lower 
bound 𝑎  and upper bound 𝑏). Here, 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡), and 𝐷(𝑡) represent the proportional population of 
compartment susceptible, infected, recovered, and deceased. 𝐶𝑡 ∈ [0.0, 1.0] represents the nominal level of 
control at time stamp 𝑡, which indicates a nominal discount on 𝛽; the effective control policy 𝑈𝑡 is subject 
to the influence of the population's perception of infection risk and compliance with the intervention policy. 
For simplicity, we have 𝑈𝑡 = 𝐶𝑡(1 − 𝑒(−φ×𝐼)); φ > 0 is the scaling factor to steer the strength of the 

feedback for infection rate 𝐼, which can capture the attitude of society and/or government encountering 𝐼. 
Large φ means that the public is prone to comply with the control policy and vice versa. Therefore, the 1 −
𝑒(−φ×𝐼) represents the effective level of policy implementation, which can characterize overall compliance 
of control policy for the society and/or government in dealing with the pandemic.  

In present work, the PBA method for uncertainty propagation is used to assess the possible 

outputs/compartment states and the effect of uncertainty on decision-making for our proposed model. 

Meanwhile, cumulative uncertainty makes effective optimal control impractical due to the time propagation 

of uncertainty with model dynamics. To address this issue, MPC is applied because it involves continuously 

updating the best strategy to make up for performance losses predicted over lengthy time horizons. We use 

a two-stage approach to implementing MPC in this investigation: (a) solving the optimization problem for 

a fixed predictive horizon 𝑁𝑝  using the system’s states ℎ(𝑡0) = (𝑆(𝑡0), 𝐼(𝑡0), 𝑅(𝑡0), 𝐷(𝑡0)), achieved 

from the collected epidemiological data (true data or estimated stochastic data), as the initial conditions at 

the start of the optimization problem and (b) putting into the first step of optimal design 𝐶𝑡0
 for the 

compartment model (equation (1)) to achieve the next time stamp states ℎ(𝑡1) and starting the next new 

prediction horizon ([𝑡1, 𝑡𝑁𝑝+1]) until the final terminal time. Therefore, the MPC procedures aim at 

optimizing the objective within the predictive horizon 𝑁𝑝. The general MPC problem with cost function 

𝑓(ℎ(𝑡), 𝑈𝑡) starting from time stamp 𝑡 = 𝑘 can be represented as: 

                                                         𝑱(ℎ(𝑘)) = min
𝑪(𝒌)

∑ 𝑓(ℎ(𝑡), 𝑈𝑡)
𝑘+𝑁𝑝

𝑡=𝑘+1                                                    (2) 

where 𝐽(𝑘) denotes the total estimated cost in MPC from time stamp 𝑘  to 𝑘 + 𝑁𝑝 . 𝑓(ℎ(𝑡), 𝑈𝑡) is the 

general form of the cost function, reliant on ℎ(𝑡) and 𝑈𝑡 at the time stamp 𝑡. ℎ(𝑡) = ℎ(𝑡|𝑘) is the predicted 

state at time stamp 𝑡 given state ℎ(𝑘) at time stamp 𝑘. 𝑪(𝒌) = {𝐶𝑘, … 𝐶𝑘+𝑁𝑝−1} is a vector of manipulated 

variables in a prediction horizon 𝑁𝑝 days start from time stamp 𝑘, and 𝐶𝑚𝑖𝑛 and 𝐶𝑚𝑎𝑥 are the minimum 

and maximum values of the nominal level of control 𝐶𝑡. 


