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ABSTRACT

The initial bias in steady-state simulation can be characterized as the bias of a ratio estimator if the simulation
model has a regenerative structure. This work tackles input uncertainty quantification for a regenerative
simulation model when its input distributions are estimated from finite data. Our aim is to construct a
bootstrap-based confidence interval (CI) for the true simulation output mean performance that provides
a correct coverage with significantly less computational cost than the traditional methods. Exploiting
the regenerative structure, we propose a k-nearest neighbor (kNN) ratio estimator for the steady-state
performance measure at each set of bootstrapped input models and construct a bootstrap CI from the
computed estimators. Asymptotically optimal choices for k and bootstrap sample size are discussed. We
further improve the CI by combining the kNN and likelihood ratio methods. We empirically compare the
efficiency of the proposed estimators with the standard estimator using queueing examples.

1 INTRODUCTION

In stochastic simulation, input models are often estimated by fitting distributions to a limited number of
real-world observations. Input uncertainty refers to the variability in the simulation output contributed by
such estimation errors. In this paper, we focus on input uncertainty quantification (IUQ) for a steady-state
simulation model. We assume that the distribution families of the input models are known, but the parameters
are unknown and estimated from the data. We apply the parametric bootstrap method to find a CI that
covers the true steady-state performance measure.

In steady-state simulation, the simulation output often has initial bias due to finite run time even if
a warm-up period is implemented. Our goal in this paper is to directly tackle the issue of the initial
bias of a steady-state simulation in IUQ experiment design when the simulation model has a regenerative
structure and thus the steady-state output mean can be written as a ratio estimator. At each bootstrapped
parameter, we divide up a single replication run into renewal cycles and construct the ratio estimator by
pooling the sample paths generated within the renewal cycles from its k-nearest neighboring parameters.
We propose the asymptotically optimal choice for k as well as the bootstrap sample size. To address the
issue that the kNN estimation does not scale well in the parameter dimension, we propose a second ratio
estimator that combines the kNN estimator with the likelihood ratio (LR) method to reduce the effect of the
dimensionality. We empirically compare the two proposed estimators’ performances against the standard
ratio estimator to demonstrate their finite sample efficiencies.

2 PROPSED ESTIMATORS AND CONVERGENCE

Let θ
c ∈ Rd denote the unknown true parameter of the input model and θ̂ be the maximum likelihood

estimator (MLE) computed from observed data. Let f̃
(

θ̂

∣∣∣θ c
)

be the sampling distribution of θ̂ . Given
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Figure 1: Schematic illustration of standard ratio estimator and the proposed kNN-based estimator.

a generic input parameter vector θ , let Yj(θ) ∈ R and A j(θ) ∈ R denote the cumulative reward and the
length of the jth renewal cycle, respectively. The paired sequence {(Yj(θ),A j(θ))} j≥1 is i.i.d. conditional
on θ . The renewal reward theorem stipulates that the long-run reward is η(θ) = E[Y (θ)|θ ]/E[A(θ)|θ ],
where the expectation is taken with respect to the inner-level simulation error run with input parameter θ .

The standard regenerative simulation estimator of η(θ) replaces the expectations with their respective
sample averages (Glynn 2006), that is, η̂std(θ) = Yj (θ)/A j (θ). To construct the CI, we first bootstrap a
size-n parameter set {θ i}1≤i≤n using θ̂ . By running r regenerative cycles generated at each θ i, we can
obtain the ratio estimators η̂std(θ i) for all 1 ≤ i ≤ n. Let q̂α,n(·) be the empirical α-quantile computed
from a size-n sample, we can construct the bootstrap CI as [q̂α/2,n(η̂std(θ)), q̂1−α/2,n(η̂std(θ))], which is
expected to have 1−α coverage as r tends to infinity.

To enhance the computational efficiency, we propose two kNN based estimators and describe the new
experiment design in the following. We first bootstrap size-ñ parameter set {θ̃ i}1≤i≤ñ, where θ̃ i

i.i.d.∼ f̃ (θ̃ |θ̂),
however, we do not run simulations at these parameters. Instead, we generate a second size-n set of
parameters {θ j}1≤ j≤n to drive the simulations. The two sample sizes, n and ñ, can differ and the two
sampling distributions may not be identical. Figure 1 illustrates how the two proposed ratio estimators are
constructed by pooling simulation outputs generated at {θ i}1≤i≤n. Given a θ̃ , let θ (i) be its ith nearest

neighbor among {θ j}1≤ j≤n. We compute Y
(
θ (i)

)
and A

(
θ (i)

)
for 1 ≤ i ≤ k and take their averages to obtain

ŶkNN(θ̃) and ÂkNN(θ̃), respectively, and define η̂kNN(θ̃)≜ ŶkNN(θ̃)/ÂkNN(θ̃). We show the bias and mean
squared error (MSE) of η̂kNN(θ̃) is O

(
(k/n)2/d

)
and O

(
(k/n)4/d

)
+O (1/k)+O (1/rk), respectively.

Based on all {η̂kNN(θ̃ i)}1≤i≤ñ, we can construct the empirical bootstrap CI.
Note that the convergence rates of the bias and the MSE for η̂kNN(θ̃) depend on the parameter

dimension d. This dependence is due to the bias introduced by the kNN method. To eliminate such
bias, we combine the kNN method with the LR method. Specifically, we propose another estimator
ŶkNNLR(θ̃) =

1
k ∑

k
i=1Y

(
θ (i)

)
W

(
θ (i)

)
, where W

(
θ (i)

)
denotes the empirical LR between θ (i) and θ̃ . We

accordingly compute ÂkNNLR(θ̃) and write η̂kNNLR(θ̃) ≜ ŶkNNLR(θ̃)/ÂkNNLR(θ̃). We show that both the
asymptotic bias and MSE of η̂kNNLR(θ̃) is of order O (1/rk) for the exponential family input models.

We apply all three estimators to an M/M/1/10 queueing model and control the total simulation budget to
compare the performance. The CI constructed by η̂std tends to show over-coverage and performs best when
matching n = r. The η̂kNN CI exhibits under-coverage when n is small, which we improve by carefully
choosing the sampling distribution of {θ j}1≤ j≤n. The η̂kNNLR CI shows robust performance across n,
regardless of the sampling distribution of {θ j}1≤ j≤n.
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