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ABSTRACT

The Lasso regression is a popular regularization method for feature selection in statistics. Prior to computing
the Lasso estimator in both linear and generalized linear models, it is common to conduct a preliminary
rescaling of the feature matrix to ensure that all the features are standardized. Without this standardization,
it is argued, the Lasso estimate will, unfortunately, depend on the units used to measure the features. We
propose a new type of iterative rescaling of the features in the context of generalized linear models. Whilst
existing Lasso algorithms perform a single scaling as a preprocessing step, the proposed rescaling is applied
iteratively throughout the Lasso computation until convergence. We provide numerical examples, with
both real and simulated data, illustrating that the proposed iterative rescaling can significantly improve the
statistical performance of the Lasso estimator without incurring any significant additional computational
cost.

1 INTRODUCTION AND BACKGROUND

Recall that in a linear model, we denote the n× p regression matrix (or feature matrix) containing the p
features vvv1, . . . ,vvvp as X = [vvv1, . . . ,vvvp] and the corresponding regression response vector as YYY ∈ Rn (with yyy
being the realization of the random vector YYY ). We assume that EX[YYY ] = 111β0 +Xβββ is a linear function of
some model coefficients βββ ∈ Rp and β0 ∈ R, the last one being called the intercept and corresponding to
the constant feature 111 ∈ Rn. Define the projection (idempotent) matrix C := In−111111>/n and let

η
2
i :=

‖Cvvvi‖2

n
=

vvv>i Cvvvi

n
, i = 1, . . . , p

be the empirical variance of the components of the i-th feature vector. We define the Lasso estimate
(Tibshirani 1996) of βββ as the solution to the penalized least squares:

(β̂0,λ , β̂ββ λ ) = argmin
b0,bbb

‖yyy−111b0−Xbbb‖2

2n
+λ

p

∑
i=1

ηi×|bi|, (1)

where λ > 0 is a suitably chosen regularization parameter and the intercept b0 is not penalized.
Feature Standardization. As mentioned in the abstract, it is common practice to standardize the

features vvv1, . . . ,vvvp so that the variance of each vvvi is unity (Hastie et al. 2015; Tibshirani 1996). This
standardization ensures that the Lasso estimate β̂ββ λ is not affected by the units in which the features are
measured, and in general, improves the performance of the estimator (Hastie et al. 2001). The standardization
can be accomplished by working with the matrix XS, rather than X, where S is the rescaling matrix

S := diag(η−1
1 , . . . ,η−1

p ).
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Extensions to GLMs. Suppose that the joint density of the response vector YYY given β0,βββ ,X is
g(yyy |β0,βββ ,X), where the dependence on β0,βββ ,X is through the linear map (β0,βββ ) 7→ 111β0 +Xβββ . Here, the
cross-entropy training loss (Kroese et al. 2019) (negative average log-likelihood) is −1

n lng(yyy |β0,βββ ,X) and
the extension of the Lasso estimator to the setting of generalized linear models is then given by :

(β̂0,λ ,S−1
β̂ββ λ ) = argmin

b0,bbb

− lng(yyy |b0,bbb,XS)
n

+λ

p

∑
i=1
|bi|.

Observe that, just like in the linear Lasso estimator, we scale the features so that their variance is unity
(Hastie et al. 2015). This scaling need only be applied once on X, possibly as a preprocessing step prior to
the main optimization, and then reversed at the end of the optimization.

New Rescaling Method for GLMs. Let r(b0,bbb) :=− lng(yyy |b0,bbb,X)/n be our shorthand notation
for the cross-entropy loss. We define η2

i (βββ ), i = 1, . . . , p, to be the i-th diagonal element of the p× p
Hessian matrix of second derivatives:

∂ 2

∂βββ∂βββ
> min

b0
r(b0,βββ ).

This is the Hessian matrix of the cross-entropy loss, evaluated at the true parameter βββ , and after the nuisance
parameter β0 is eliminated from the optimization. Then, instead of the usual rescaled Lasso estimator, we
propose the following alternative iteratively rescaled Lasso (IRL):

argmin
bbb,b0

− lng(yyy |b0,bbb,X)

n
+λ

p

∑
i=1

ηi(βββ )×|bi|. (2)

We now make three observations. First, since each ηi(βββ ) depends on the unknown βββ , the approximate
computation of (2) will be iterative and is the main reason for naming the method IRL.

Second, the linear Lasso estimator (1) is a special case of (2) when YYY is a multivariate Gaussian with
mean EX[YYY ] = 111β0 +Xβββ and variance VarX(YYY ) = I, because then η2

i (βββ ) = ‖Cvvvi‖2/n.
Third, one may ask what is the motivation for the proposed IRL estimator. The answer is that the IRL

estimator coincides with the traditional linear regression estimator (1), provided that the cross-entropy loss
r(b0,bbb) is replaced by its quadratic approximation in the neighborhood of the true coefficients β0,βββ . In
other words, our proposed IRL estimator uses exactly the same scaling as the linear Lasso estimator (1)
when the generalized linear model is linearized at the true solution. Note that there is no such agreement in
the scaling between the currently accepted linear estimator (1) and its GLM counterpart, that is, the current
widely-used scaling is not consistent across linear and nonlinear models. Our proposal is thus motivated by
the desire for consistency in the scaling applied to linear and nonlinear models.
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