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ABSTRACT 

Scheduling is a fundamental task in each production facility with implications on the overall efficiency of 
the facility. While classic job-shop scheduling problems become intractable when the number of machines 
and jobs increases, the problem gets even more complex in the context of semiconductor manufacturing, 
where flexible production control and stochastic event handling are required. In this paper, we propose a 

Deep Reinforcement Learning approach for lot dispatching to minimize the Flow Factor (FF) of a digital 
twin of a real-world, stochastic, large-scale semiconductor manufacturing facility. We present the first 
application of Reinforcement Learning (RL) to an industrial grade semiconductor manufacturing scenario 
of that size. Our approach leverages a self-attention mechanism to learn an effective dispatching policy for 
the manufacturing facility and is able to reduce the global FF of the fab. 

1. RELATED WORK 

Previous approaches (Waschneck et al. 2018; Kuhnle et al. 2021) regarding the application of RL for 
dispatching in the Job-Shop Scheduling Problem (JSSP) setting of semiconductor manufacturing achieve 
good results on commonly referenced benchmark problems that are deterministic and contain no more than 
20 machines. Extending on those approaches, Tassel et al. (2023) propose a self-supervised, RL-based 
approach to improve the global dispatching of a fab. The approach is evaluated on the academic, open-
source SMT2020 testbed (Kopp et al. 2020), which models a modern wafer fab including over 1000 tools. 

While the scale of the addressed problem goes well beyond the small test datasets for JSSP, the SMT2020 
fab models have some shortcomings compared to real manufacturing settings. In fact, our scenario’s load 
mix is much more diverse, and the tool dedications are more complex. Our dataset contains more than ten 
times the number of products and features flexible processing times on different tools for the same 
operation. 

2. APPROACH 

We utilize a neural network architecture based on self-attention, which is size-agnostic regarding the length 
of the queue by use of a self-attention mechanism (see Figure 1). Our optimizer is based on the sample 
efficient Covariance Matrix Adaptation Evolution Strategies (CMA-ES) approach (Hansen and Ostermeier 
2001) that considers the covariance of parameters and aims for faster convergence while sampling.  The 
training can be highly parallelized, which is essential as our simulation requires extensive runtime.  
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3. RESULTS 

To enable good generalization, we train a model on two loading scenarios in parallel (see Figure 2). Each 
policy is therefore evaluated over different loading scenarios within each episode. A scenario refers to a 
specific interval of time from the past two years in the modeled wafer fab. In fact, different loading scenarios 
vary in the number of free tools, the total number of WIP lots, and the product mix. When training on two 
loading scenarios in parallel, we observe that, during the testing, the strategy generalizes for those two 

scenarios over different random seeds and previously unseen scenarios (see Table 1).  
We additionally introduce a tardiness penalty as we find that the pure optimization of the FF sometimes 
leads to increased total tardiness. If the tardiness is higher than for the reference, the reward is the FF 
discounted by the ratio at which the tardiness is worse relative to the reference. Our results show that this 
is effective in preventing increased tardiness. Training on two sufficiently different scenarios yields a much 
more stable policy than training on just one with different random seeds. However, some scenarios show 

considerably better improvement than others. This problem can approached in the future by training on 
even more scenarios and random seeds in parallel. 

Table 1: Evaluation of a policy trained with 64 CPU cores on loading scenarios 1 and 2 in parallel. 

Relative Improvement  Scenario 1 Scenario 2 Scenario 3 Scenario 4 

FF  2.72 % ± 0.34 0.88 % ± 0.28 5.00 % ± 0.22 0.60 % ± 0.31 

Tardiness 36.92 % ± 1.10 22.84 % ± 1.15 26.91 % ± 1.87 17.93% ± 1.43 

Completed Wafers 0.35 % ± 0.11 0.79 % ± 0.09 0.66 % ± 0.05 0.13 % ± 0.16 
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Figure 2: FF improvement during the training. Figure 1:  Neural network architecture. 


