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ABSTRACT

Reinforcement learning provides a framework for learning-based control, whose success largely depends
on the amount of data it can utilize. The efficient utilization of historical samples obtained from previous
iterations is essential for expediting policy optimization. Empirical evidence has shown that offline variants of
policy gradient methods based on importance sampling work well. However, existing literature often neglect
the interdependence between observations from different iterations, and the good empirical performance
lacks a rigorous theoretical justification. In this paper, we study an offline variant of the natural policy
gradient method with reusing historical observations. We show that the biases of the proposed estimators
of Fisher information matrix and gradient are asymptotically negligible, and reusing historical observations
reduces the conditional variance of the gradient estimator. The proposed algorithm and convergence analysis
could be further applied to popular policy optimization algorithms such as trust region policy optimization.

1 PROBLEM FORMULATION AND ALGORITHM DESIGN

Consider an infinite-horizon MDP defined as (S ,A ,P,R,γ,ρ0), where S is the state space, A is the
action space, P is the transition probability with P(st+1|st ,at) denoting the probability of transitioning
to state st+1 from state st when action at is taken, R is the reward function with R(st ,at) denoting
the cost at time stage t when action at is taken and state transitions from st , γ ∈ (0,1) is the discount
factor, ρ0 is the probability for the initial state, i.e., s0 ∼ ρ0. Consider a stochastic parameterized policy
πθ : S → ∆(A ), defined as a function mapping from the state space to a probability simplex ∆(·) over
the action space, parameterized by θ ∈Rd . For a particular probability (density) from this distribution we
write πθ (a|s). The performance of a policy is evaluated in terms of the expected discounted return η(πθ ) =
Es0,a0,... [∑

∞
t=0 γ tR (st ,at)], where s0 ∼ ρ0 (s0) ,at ∼ πθ (at | st) ,st+1 ∼P (st+1 | st ,at). Denote by dπθ (s) the

discounted state visitation distribution induced by the policy πθ , dπθ (s) = (1− γ)∑
∞
t=0 γ tP (st = s | πθ ). It

is useful to define the discounted occupancy measure as dπθ (s,a) = dπθ (s)πθ (a|s). Using the discounted
occupancy measure, we can rewrite the expected discounted return as η(πθ ) = E(s,a)∼dπθ (s,a)[R(s,a)]. The
goal is for the agent to find the optimal policy πθ ∗ that maximizes the expected discounted return, or
equivalently, θ ∗ = argmaxθ∈Θ η(πθ ). We use the following standard definitions of the value function V πθ ,
the state-action value function Qπθ , and the advantage function Aπθ : V πθ (st) = Eat ,st+1,...

[
∑

∞
l=0 γ lr (st+l)

]
,

Qπθ (st ,at) = Est+1,at+1,...

[
∑

∞
l=0 γ lr (st+l)

]
, and Aπθ (s,a) = Qπθ (s,a)−V πθ (s).

The natural policy gradient (NPG) algorithm defines F(θ) to be the Fisher information matrix (FIM)
induced by πθ , and performs natural gradient descent as follows: θn+1 = ProjΘ

(
θn +αnF−1(θn)∇η (θn)

)
,

where F(θ) = E(s,a)∼dπθ (s,a)[∇ logπθ (a|s)(∇ logπθ (a|s))T ].
For ease of notations, we denote by ξ i

n = (si
n,a

i
n) the i-th state-action pair sampled from the discounted

occupancy measure dπθn (s,a) at iteration n. We assume {ξ i
n, i = 1, · · · ,B} are independent and identically
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distributed (i.i.d.) samples (observations) from the stationary distribution of the Markov decision process
under the policy πθn . A vanilla unbiased FIM and gradient estimator can be obtained by the sample average
of a batch of data. However, in the vanilla stochastic natural policy gradient (VNPG), a small batch size B,
which is often the case when there is limited online interaction with the environment, could lead to the large
variance in the estimator. An alternative FIM and gradient estimator, which reuse historical observations,
are as follows:

F̂ (θn) =
1

KB

n

∑
m=n−K+1

B

∑
i=1

ω(ξ i
m,θn|θm)S(ξ i

m,θn), ∇̂η(θn) =
1

KB

n

∑
m=n−K+1

B

∑
i=1

ω(ξ i
m,θn|θm)G(ξ i

m,θn),

where we reuse previous K−1 iterations’ historical observations, ω(ξ i
m,θn|θm) =

dπθn (ξ i
m)

dπθm (ξ i
m)

is the likelihood
ratio. The update of stochastic natural policy gradient with reusing historical observations (RNPG) is then
as follows, and we summarize RNPG in Algorithm 1.

θn+1 = ProjΘ
(

θn +αnF̂−1(θn)∇̂η (θn)
)
. (1)

Algorithm 1: Natural Gradient Descent with Reusing Historical Observations
1. At iteration n = 0, choose an initial parameter θ0. Draw i.i.d. samples {ξ i

0, i = 1, · · · ,B} from
discounted occupancy measure dπθ0 (s,a) by interacting with the environment.

2. At iteration n+1, conduct the following steps.
2.1 Update θn+1 according to (1).
2.2 Draw i.i.d. samples {ξ i

n+1, i = 1, · · · ,B} from discounted occupancy measure dπθn+1 (s,a) by
interacting with the environment.

2.3 n = n+1. Repeat the procedure 2.
3. Output θn when some stopping criteria are satisfied.

2 CONVERGENCE ANALYSIS

In this section, we first analyze the convergence behavior of RNPG by the ordinary differential equation
(ODE) method. We will show that the RNPG and VNPG share the same limit ODE, while the bias resulting
from the interdependence between iterations gradually diminishes, ultimately becoming insignificant in the
asymptotic sense.
Theorem 1 Let Dd [0,∞) be the space of Rd-valued operators which are right continuous and have left-
hand limits for each dimension. Under some mild conditions, there exists a process θ ∗(·) to which the
subsequence of {θ n(·)}n converges w.p.1 in the space Dd [0,∞), where θ ∗(·) satisfies the following ODE

θ̇ = F−1(θ)∇η(θ)+ z, z ∈ −C (θ), (2)

where z is the projection term, i.e., the minimum force needed to keep the trajectory of the ODE θ(·) from
leaving the solution space Θ. The solution trajectory {θn}n in Algorithm 1 also converges w.p.1 to the
limit set of the ODE (2).

Note that in the update (1), we can decompose the natural gradient estimation into three components:
the true natural gradient, the noise caused by the simulation error, and the bias caused by reusing historical
observations. We then separately analyze the noise and bias effects on the estimation of FIM and gradient,
and show the noise and bias terms are asymptotically negligible.
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