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ABSTRACT 

In the highly dynamic world of semiconductor manufacturing, planning analysts are asked to analyze 

variations between weekly production plans with the goal of identifying a resolution in a landscape 

involving elaborate optimization models with significant interdependence between data elements. We 

propose a solution to effectively analyze the weekly planning engine output and identify the data elements 

with significant contribution to the outcome. An explainable Machine Learning model is trained and 

deployed to simulate the behavior of the planning engine. Each model execution can be explained to 

identify the features with the most significant contribution to prediction. The resulting application 

contributes to a timely resolution to the production plan deviation, while generating significant 

productivity gains.  

1 INTRODUCTION 

Semiconductor manufacturing is one of the most complex industrial processes. Manufacturers are 

supported by detailed supply chains and logistics operations plans to help meet the constantly increasing 

demand in a profitable manner.  

Operations are planned using mathematical optimization and operations research techniques. A set of 

hierarchically executed LP problems are defined with the objective to minimize completion time of all 

received and forecasted sales orders. The LP models produce optimal manufacturing schedules by 

considering, among other factors, resource capacity, inventory levels of raw materials and semi-finished 

goods, and prioritization of sales orders.  

The produced plans are sensitive to changes in internal and external factors. Internal factors are 

related to availability of resources and material and external factors include changes in demand and 

geopolitical dynamics. Given the high variability of these factors, the created plans can become obsolete 

quickly when deployed in a dynamic environment. The planning engine therefore operates as a time-

driven open-loop controller. A production plan is executed on a weekly basis while planning (control) 

horizon is several years. High ratio between control horizon and sampling frequency may lead to 

instability of successive production plans. 

2 PROBLEM DESCRIPTION  

The variability of production plans represents a great challenge for supply chain and operations planners. 

Planners strive to identify the root cause of production plan changes and escalate to minimize the 

deviation from the committed deliveries.  
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Often, processes for root cause analysis are manual. A team of analysts manually inspect the tables in 

the enterprise data warehouse or available reports to determine the factor that, based on their expert 

opinion, is responsible for the changes in production plans. Potential productivity gains from automating 

this process amounts to 1 day of planner productivity per week, or 4 days saved per employee each 

month,  

Besides being labor intensive, this manual process is also difficult, as analysts are constrained to 

assessing the factors individually. In reality however, the impact of a change of a single factor also 

depends on the values of other factors even if they remain constant. For example, the impact of material 

inventory level reduction for a particular part on production output is lower in situations of lower demand 

or lower capacity utilization. Moreover, the impact of the weekly fluctuations of LP engine inputs is often 

unevenly distributed across different product families. For these reasons Machine learning (ML) was 

identified as a potential solution to this root cause analysis (RCA) problem.  

3 METHODOLOGY 

Typical applications of ML for root cause analysis reduce the problem to a classification problem (Solé et 

al. 2017). Historical data, including the actual root causes, is used to train the model to be able to identify 

the root cause, given the values of predictive features that represent the current state. This methodology is 

not always applicable as there can be limited or no historical root cause data available. 

The methodology we propose consists of the following steps: 

1. Train a regression ML model to emulate the planning engine's behavior. The planning horizon is 

divided into quarters and the complex output of the planning engine is aggregated as the number 

of completed products per quarter. The target of the model is week-on-week delta in the number 

of completed products per quarter. The features of the model are week-on-week deltas of selected 

inputs to the planning engine such as: material inventory levels, resource capacity, order book and 

forecasted demand 

2. Trained ML model can be used to predict the week-on-week deltas of feasible sales per product 

family  

3. Each prediction of the ML model can be explained using Shapely values that quantify the 

contribution of each input feature to the model prediction. The method includes untangling the 

causality dependence graph of the potential root causes (Lundberg and Lee 2017).  

4 COMPUTATIONAL RESULTS 

The regression model was trained on 18 months of historical data comprising weekly plans for about 

1500 product families. The model predicts feasible sales for each product family for the two upcoming 

quarters. Random Forest regressor (Breiman 2001) was selected as the ML model after applying a model 

selection process and hyperparameter optimization using grid search with cross-validation.  

 The trained model is deployed and subjected to weekly evaluations and user acceptance testing 

(UAT) after each planning engine run. R2 of the model was above 0.95 in 3 out of 4 weeks observed 

during UAT.  

 Planning analyst evaluations concluded that in ~75% of cases the root causes identified by the model 

(features with the highest Shapely values) match their expert opinion. 
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