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ABSTRACT 

Queue-Time Constraints (QTCs) set a maximum waiting time for lots between consecutive process steps. 
In semiconductor manufacturing, exceeding these limits results in yield loss, rework, or scrapping. 
Managing QTCs is challenging due to the need for lots to wait until there is available capacity for the final 
step. Specifically, accurately calculating the capacity is computationally expensive, making it difficult to 
handle large instances. Our research addresses the scalability of QTC management in real fabs with 
numerous constraints. We propose a deep Reinforcement Learning (RL) solution to handle lot release into 
the QTC. We describe the infrastructure developed for RL training using actual fab data, assess the 
performance of our RL approach, and compare it to three baseline solutions. Our empirical evaluation 
demonstrates that the RL method surpasses the baselines in key performance metrics including queue-time 
violations, while requiring negligible online compute time. 

1 SYSTEM, SIMULATOR, AND METHODOLOGY 

We propose a deep RL-based approach to control a Queue-Time Management System (QMS) in a large-
scale realistic problem. Previous papers dealt with smaller QMS problems, scheduling one part (Yedidsion 
et al. 2022) and ten parts (Yedidsion et al. 2023) using artificially generated data. This work involves 
managing hundreds of part types with data taken from a real fab. We designed a custom-built simulator to 
simulate a fab with QTCs. The simulator allows us to flexibly define a fab environment with any number 
of stations, station families, and lots (batches of wafers) of multiple part types. Figure 1 displays a simplified 
system diagram of the environment considered in this research. The QMS controls the Gate steps and 
decides which lots to release at each time-step. For each part type, we define a route, which is a set of 
processing steps. Each step is assigned to dedicated stations in a station family and has its own processing 
times. Any pair of steps in a route can have a QTC between them. The simulator supports releasing multiple 
lots of multiple part types at each time-step.  

 Figure 1: Simplified system diagram. 
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The experimental setup that was used for the evaluation is based on data from a real fab. The environment 
has 589 gate steps, 11 station families with 74 stations. Each part has 1-3 QTCs in its route. To create a 
training database, we collected 450 snapshots of Work In Progress (WIP), and recorded 450 days of lot 
arrivals from real fab data. When combining initial WIP, with lot arrivals, we get 202,500 unique day-long 
episodes for training and testing. We used a queue-time based dispatch rule that orders lots based on their 
remaining queue-time, so that the lot that has the least amount of time to violate its QTC will be scheduled 
first. Each episode has 96 time-steps, and each time-step takes 15 minutes. At each time-step the agent can 
take a multi-discrete action indicating how many lots to release of each part type with respect to availability. 
The simulator releases these lots and simulates 15 minutes of processing time. Following that, the RL agent 
receives an observation reflecting the system’s state at the end of the time-step, and a reward. The state-
action-reward sequence is saved, and periodically the RL algorithm uses this experience to update the 
weights of the neural network which represents the policy. The policy picks the next action and is updated 
to maximize the cumulative reward over the time horizon. We designed a reward structure which 
encourages the agent to minimize the number of queue-time violations while optimizing for throughput and 
the number of successful lots. For the RL algorithm, we used the Proximal Policy Optimization (PPO) 
algorithm (Schulman et al. 2017) implementation by https://stable-baselines3.readthedocs.io. 

2 EVALUATION AND CONCLUSION 

We compare the performance of the RL agent (PPO) to that of three baseline agents.  
1. Kanban agent: Maintains a fixed queue size. Proposed in (Scholl and Domaschke 2000). 
2. Frequency agent: This agent releases a lot at a frequency which is closest to the processing time 

of the second step in each route. 
3. Always agent: The Always agent releases all available lots and provides an upper bound on 

throughput (although at the cost of many violations). 
For testing, each agent controlled the gate step for 30 unique episodes, and average key performance 
indicators (KPIs) were recorded. The evaluation metrics for each agent are summarized in Table 1.  

Table 1 - Results 
 KPI 

Agent #completions #successes #violations %v/(v+s) 
Always 122.83 136.43 12.63 8.47% 

Freq 111.10 124.63 7.30 5.53% 
Kanban 120.60 135.50 1.63 1.19% 

PPO 119.47 133.96 1.30 0.96% 
 

PPO achieves a low number of violations (less than 1% of all constraints) with a relatively high number of 
successes and high throughput. The model is constantly improving with more training and parameter 
tunning. In terms of compute time, PPO can quickly decide on the next action given a state observation, 
and that time does not grow exponentially with the size of the problem as opposed to exact solution 
methods. 
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