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ABSTRACT

The ridesharing platform has significantly changed how taxis operate in recent years. Most previous
works focus on improving the user experience and maximizing the revenue from the platform or system
level. The individual driver benefits are rarely addressed. In this work, we propose a deep reinforcement
learning-based framework to help the individual driver maximize their daily income via order selections and
self-repositioning. We first formulated the taxi operation as a Markov Decision Process. Then we created a
multi-agent simulation consisting of the taxi drivers that use different strategies. A deep Q network-based
(DQN) framework is proposed for drivers to learn which orders to select and where to reposition. Our
result shows the driver who adopts DQN framework outperforms all other drivers. Furthermore, we found
that the optimal policy does not suggest the driver operating in particular areas but recommends selecting
the order with $5 to $7.5 taxi fare.

1 INTRODUCTION

Taxis play an essential role in the urban transportation system. Traditionally, vacant taxis cruise around
the city and get hailed directly by passengers on the street. By meeting and picking up passengers on the
street, taxi drivers can only rely on their driving experience accumulated over the years and some luck
to find passengers to maximize their daily incomes. The fuel and time costs when taxis are vacant and
the lack of experience in seeking passengers on the streets could significantly lower the number of orders
being served and drivers’ daily incomes.

Thanks to smartphones being widely used over the last decade, ridesharing platforms, such as Uber, Lyft,
DIDI Chuxing, etc., are able to track both drivers’ and passengers’ locations through smartphones’ GPS and
then match drivers with passengers using its optimized algorithm (Smith 2016). More specifically, unlike
traditional taxi-hailing services, ridesharing platforms do not allow passengers to hail their taxis directly
on the streets. Alternatively, passengers send their trip request information, including pick-up locations,
drop-off locations, and pick-up times, to the ridesharing platform through ridesharing platform websites
or Apps. Based on the trip request information received from passengers combined with available drivers’
geographical information, passengers are matched with available drivers through the platform’s optimal
matching algorithm, and trip requests are directly dispatched to corresponding drivers. Besides matching
passengers with the closest drivers, the ridesharing platforms ask vacant taxi drivers to reposition/relocate
their taxis to higher-demand areas for serving passengers. Compared to the traditional taxi-hailing operation
mode, even though taxi drivers lose some freedom in terms of selecting which orders to serve (order selection)
or deciding which areas to go (self-reposition), the ridesharing platform still has many advantages of reducing
passengers’ waiting time and drivers’ idle cruising time.
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As the ridesharing platform provides a better user experience for passengers, improving taxi revenue
has become a key issue. Rong et al. (2017) developed a strategy by mining the historical trip records and
exploring important factors in drivers’ incomes. The overall income can be increased by predicting future
taxi rides. Pandit et al. (2019) used a queuing model to compare static and dynamic pricing strategies for
ridesharing services in a small region and concluded dynamic pricing strategy is able to achieve higher
overall revenue. Wu et al. (2021) proposed a queuing model to simulate drivers and a dynamic pricing model
to maximize the platform profit. Asghari and Shahabi (2018) developed a dynamic pricing mechanism by
considering the system’s future demand to increase the platform’s overall revenue. These studies concentrate
on mining historical trip data. The input of trip data is not mapping directly with a decision the driver makes
at each time. By developing the Markov Decision Process (MDP) model and using reinforcement learning
(RL) based approaches (Sutton and Barto 2018), drivers can learn the optimal decisions by interacting
with a dynamic environment using the trial-and-error method. For instance, vacant taxis can be learned to
reposition to better locations. Zhou et al. (2018) proposed a novel Spatial Network-based Markov Decision
Process (SN-MDP) model solved by dynamic programming to recommend better driving directions for
vacant taxis. Chen et al. (2020) proposed an online taxiing framework to maximize profits using a new
fuel consumption estimation model. Jiao et al. (2021) developed a deep reinforcement learning-based
intelligent driver assistant program for idling drivers to reposition themselves to achieve better income
efficiency, i.e., income-per-hour. Instead of considering drivers as agents, Liu et al. (2021) considered
each grid cell as an agent and proposed a multi-agent reinforcement learning-based framework, META
(MakE Taxi Act differently), to mitigate the disequilibrium of supply and demand via taxi repositioning.
The city-level revenue is then improved since more orders are served after repositioning. To maximize
daily income, vacant taxi drivers are not only able to reposition themselves but also make decisions on
whether to serve passengers or not. Gao et al. (2018) applied a Q learning-based solution to help taxi
drivers to make operation choices among empty driving, carrying passengers, or waiting. Zhou et al.
(2018) proposed an RL approach to help drivers choose between serving and idling. Most previous studies
focus on maximizing all taxis’ system-level or global revenue using reinforcement learning-based or other
methods. However, only a few studies target individual driver income maximization, and the one we found
is from Wang et al. (2020), where a deep Q network based-approach was proposed to recommend orders
to drivers. Specifically, they created a model to predict and evaluate the Q-values of nearby orders using
a supervised learning scheme based on historical trip data. No actual agent-based simulation was built for
agents to learn the optimal solution through interacting with the environment. So the influence of other
agents’ decisions was not evaluated.

Before 2022, to attract more passengers to use their platforms and ridesharing services, ridesharing
platforms tend to focus more on improving passengers’ user experience, i.e., reducing passenger waiting
time, lowering the trip request rejection rate, etc. As a result, drivers are not allowed to select which
order they want to serve, and they cannot even see orders’ details, e.g., drop-off locations, estimated trip
time, and fares, before accepting passengers’ orders. Since the middle of the last year, the ridesharing
platform, such as Uber, enhances drivers’ user experience by letting them choose the trip they want (Capoot
2022). Specifically, drivers are granted permission to view all nearby orders and then are allowed to select
which order they want to take according to their personal preferences. Since there are thousands of trip
orders daily, it is hard for the individual driver to decide which order is optimal at the current time and
location. Maximizing daily income becomes a sequential decision-making problem. To help drivers select
the ’best’ orders among many orders at each time, we create a fully distributed multi-agent simulation
containing various types of drivers and propose a Deep Q Network (DQN) decision-making algorithm to
help individual drivers maximize their daily income through order selection and self-repositioning.

The rest of the paper is organized as follows. In Section 2, we introduce our distributed agent-based
simulation model as well as our proposed DQN-based algorithm. In Section 3, the result and our model’s
performance will be discussed. Our work is concluded in Section 4 with a discussion of the limitations of
our work and potential research directions that may arise.
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2 METHOD AND SIMULATION MODEL

This section discusses trip data preprocessing, the agent-based simulation model assumptions and settings,
and the proposed deep Q network (DQN) based framework for the individual taxi driver to maximize their
daily income. In general, taxi drivers served as agents in the simulation. We first develop a multi-agent
Markov Decision Process (MDP) simulation model consisting of only rule-based agents that adopt various
order selection policies. We run scenarios for the multi-agent simulation model to record rule-based agent
trajectories. Then the agent who adopts the reinforcement learning algorithm to learn the optimal policy,
known as the RL agent, is trained using the rule-based agent trajectories recorded in the pre-run scenarios.
More details are included in the following subsections.

2.1 Trip Data Preprocessing and Key Assumpionts

The trip data we used is historical yellow cab taxi orders obtained from New York City Taxi & Limousine
Commission website (NYC TLC). The dataset is one of the most common public data sets in the transportation
research area. The data includes pick-up and drop-off dates/times, pick-up and drop-off locations, trip
distances, and fares. Pick-up and drop-off locations are taxi zones pre-defined by the NYC government
based on zip codes. Instead of applying input modeling to generate taxi orders, our simulation model
directly uses historical taxi orders as real trip requests for agents to select. After picking an order, the agent
transit from the current location to other locations and receive trip fares. We used the first two weeks of
August 2017 data for training the model and the third week of August 2017 for testing. Based on the data
we have, some key assumptions for the simulation model are listed below:

• Time Step: Previous studies regarding the dispatch optimization in the ridesharing system using
reinforcement learning often round time-related features, i.e., pick-up time, drop-off time, and trip
time, to the nearest 15, 20, or 30 minutes. However, we found many trips in the historical data
lasting less than 15 minutes. We also consider the 15-minute waiting time might be too long for
the vacant taxi that does not take an order in the previous time step. As a result, we have decided
to round the pick-up time, drop-off time, and trip time to the nearest 5 minutes. The simulation
time step, denoted by t ∈ {0,1,2, ...,143}, starts with 0, corresponding to 7 a.m., and ends with
143, corresponding to 7 p.m. Since passengers are assumed to wait up to 15 minutes, orders at
6:45 a.m., 6:50 a.m., and 6:55 a.m. could also be retrieved and selected by agents.

• Trip Time Estimation: The trip time regarding a vacant taxi relocating from the current zone to
the other zone is estimated using the average trip time between two zones based on historical trip
data. If a vacant taxi serves an order, the trip time is the exact time shown on the order. In addition,
a trip time of fewer than 5 minutes is considered 5 minutes to avoid taxis trapping in the same time
step forever.

• Passenger Waiting Time: We assume passengers are willing to wait up to 15 minutes. In other
words, a taxi driver can see and select any unserved orders within the past 15 minutes. If an unserved
order showing in the order book has exceeded 15 minutes, it will be automatically dropped from
the order book.

• Taxi Operating Hours: In New York City, a single taxi driver often has a 12-hour shift each day
(Jula 2016). Based on this information, we assume all taxis to be operated 12 hours from 7:00 a.m.
to 7:00 p.m., Monday to Sunday.

• Taxi Operating Areas: Only the Manhattan area’s orders are considered, i.e., all taxi trips are
limited within the Manhattan area. There are 69 taxi zones in total in the Manhattan area as of
2017 based on the NYC TLC website.

• Removed Outliers from Dataset: The orders whose trip time is longer than 90 minutes or shorter
than 1 minute are considered outliers. Orders that are more than 200 USD are removed as well.
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2.2 Problem Formulation as a Markov Decision Process

We model the taxi driver operation process, including order selections and passengers picking up and
dropping off, as a Markov Decision Process (MDP) (Puterman 1990). The MDP is defined as (S,A,P,R,γ),
where S is a finite set of states, A is a finite set of actions, P is a state probability transition matrix, R is a
reward function, and γ ∈ (0,1] is a discounted factor used in the reward function.

All taxi drivers are considered agents in the system. The simulation model has two categories of
agents: rule-based agents and reinforcement learning (RL) agents. In general, rule-based agents serve as
background agents, following a pre-designed policy to take actions and transit from the current state to
the next. On the other hand, an RL agent does not follow the pre-designed policy but learns the optimal
policy that maps states to actions based on the current observed environment to maximize its cumulative
rewards by the end of the day. More details regarding the simulation setting, how agents interact with the
environment, and how RL agents learn the optimal policy are discussed as follows.

2.2.1 Agent

Our simulation has two types of agents: rule-based agents and reinforcement learning (RL) agents.
Specifically, rule-based agents make decisions following pre-designed rules, while RL agents learn their
optimal policy through trial-error methods.

All agents have two basic attributes, a unique id, and a current status. agent.id ∈ {0,1, ...,N} where
N is the number of agents, and is the identity of each agent. The agent.status ∈ {0,1} is a binary variable
that represents whether an agent can take an action. The agent.status = 0 means an agent is either self-
repositioning or serving an order at the current time step. When agent.status = 1, each agent can select
an order or reposition itself to a particular taxi zone. Besides basic attributes, the agent’s state space is the
key attribute of the agent, which will be described in the following subsection.

2.2.2 State

The state space for an RL agent is the observed environment at the current time step t. We refer to the
state space in previous ridesharing studies and design our state space to include the current agent’s spatial-
temporal features and aggregated features from orders which can assist drivers in making decisions. The RL
agent state space at the current time step t contains two types of information, agent basic spatial-temporal
features, and unserved order aggregated features. The spatial-temporal feature contains the taxi zone where
the agent is currently located and the current time step when agent.status = 1. Since we assumed that
passengers could wait for up to 15 minutes, i.e., three-time steps, an available agent can select one unserved
order placed within the past 15 minutes at the current taxi zone. The order aggregated features are the
demand and average taxi fares from the current taxi zone to others. They are aggregated based on unserved
orders placed within the past 15 minutes. Specifically, the demand feature is aggregated by counting the
orders from the current taxi zone zi to each taxi zone j. The average taxi fare feature is aggregated by
calculating the average fares among orders from the current taxi zone zi to each taxi zone j. As a result,
the state is defined as

St = (Xt ,Di j,t ,Fi j,t)

• Xt = (zi, td ,day), where zi, i ∈ {0,1,2, ...,68} is the taxi zone number that the RL agent currently
located when agent.status = 1; td is either the drop-off time step when the RL agent finishes serving
an order or the arrival time step when the RL agent performs self-repositioning; the agent.status
will be changed from 0 to 1 when td = t. day is the day of the week.

• Di j,t , j ∈ {0,1,2, ...,68} is a 1×69 matrix. It represents the total number of available orders from
the current zone zi to each zone j within the past 15 minutes.

• Fi j,t , j ∈ {0,1,2, ...,68} is a 1× 69 matrix. It represents the average fares f̄i j of available orders
from the current zone zi to each zone j within in the past 15 minutes.
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To increase the speed of the simulation and save CPU memory, the state space of rule-based agents
only includes the Xt . Specifically, the state space of a rule-based agent is defined as St = (zi, td ,day). We
reduce agent state space because rule-based agents mainly serve as background agents, and we only need
to track their locations and which orders they select at each time step.

2.2.3 Action

At each time step t, all available agents, i.e., agent.status = 1, take actions sequentially. Each available
agent is limited to seeing and selecting the order whose pick-up zone is the same as the agent’s current
zone because traveling from the current zone to other zones often takes more than 15 minutes. The action
space for each agent is defined as A = {a j}, where j ∈ {0,1, ...,68}. More specifically, since Manhattan
has 69 different zones, there are 69 drop-off zones. We categorize orders into 69 types according to the
drop-off taxi zones. Each type of order refers to an action. If an action corresponds to multiple orders in
the current state, the agent will select the order with the highest taxi fare. All agents are allowed to choose
any unserved orders placed within the past 15 minutes sequentially.

Rule-based agents take actions following pre-designed rules. Three different types of rule-based agents
are proposed. A "random agent refers to an agent who randomly selects an available order. A "max agent"
adopts a greedy strategy. They always select the available order with the highest taxi fare. A "restricted
agent" refers to an agent limited to picking up, dropping off passengers and relocating itself within the
three busiest taxi zones. The three busiest taxi zones, also known as restricted taxi zones for restricted
agents, are identified as having the highest trip requests among the three zones. Compared to random and
max agents, the restricted agent only operates in areas with the highest demands. They aim to reduce the
trip time per order and plan to serve as many orders as possible to improve their daily income.

2.2.4 Reward

Each agent receives an immediate reward after picking up an order. The immediate reward is the taxi fare
associated with the order. If agents decide to relocate to other zones, the reward is zero. Then the immediate
reward for an agent moving from zone i to zone j at timestep t is defined as rt = fi jIt , where It ∈ {0,1} is
an indicator to determine whether the agent is serving an order or repositioning. Specifically, It = 0 refers
to the agent repositioning to other zones despite available orders; It = 1 refers to the agent accepting an
order and receiving the taxi fare as a reward. The future discounted reward is defined as Rt = ∑

T
t=t ′ γ

t ′−trt ,
where T = 143 is the terminated state and γ ∈ (0,1] is the discounting factor. We set the discounting factor
as 0.99, allowing the agent to consider long-term rewards while not completely ignoring immediate ones.

2.2.5 Deep Q learning

Given the large state and action space, it is impossible to calculate the probability transition matrix P. A
model-free Q learning algorithm (Watkins and Dayan 1992) is used to help the agent learn the optimal
policy. By applying the neural network (Mnih et al. 2013) to estimate Q values, a model-free deep Q
network (DQN) based algorithm is proposed for the RL agent to learn the optimal policy. More specifically,
the DQN utilizes a deep neural network to approximate the Q function, denoted by Q(st ,at). The Q
function, known as the state-action value function, estimates the expected cumulative reward for taking
action a in a state s. The optimal Q value following any policy π , denoted by Q∗(st ,at), is the maximum
Q value. It is defined as follows:

Q∗(st ,at) = maxπE[Rt |st = s,at = a,π]

where π(a|s) = P(At = a|St = s) is a probability distribution mapping from states to actions. By using the
Bellman optimality equation, the Q-value can be updated iteratively as follows:

Qnew(st ,at) = (1−α)Qold(st ,at)+α(Rt + γmaxa(st+1,a))
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where α is the learning rate.
The Q∗(st ,at) can be estimated using the deep neural network with weight θ , denoted by Q(st ,at ;θ)≈

Q∗(st ,at). The loss function of the Q-network is the mean squared error of predicted Q-values and target
Q-values. We use the loss function, denoted by Lk(θk), to update weight θ at each iteration k,

Lk(θk) = E[((Rt + γmaxaQ(s,a;θ
−
k ))−Q(s,a;θk))

2]

where θ− is the weight of the target Q-network. Notice that the weight of the target Q-network is not
learned. Instead, θ− is synchronized from θ of the Q-network in some previous iterations.

2.3 Proposed Algorithms

Algorithm 1: Rule-based Agents Simulator

Input: Agents, OrderBook;
Output: Locs,Rws;
for episode=(1, 15) do

Set day = episode;
Filter order based on day from the OrderBook;
Initialize each agent states S0 in Agents;
Initialize Locs,Rws;
Shuffle the order selection/decision-making sequence for Agents;
for t = (0, 143) do

for agent in Agents do
if t ̸= td then

continue
end
if agent.type = random then

Select a random order if there are available orders;
Select a random zone to reposition if there is no available order;
Record the drop-off zone or reposition zone as at ;

end
else if agent.type = max then

Select the order that has the max fare if there are available orders;
Select a random zone to reposition if there is no available order;
Record the drop-off zone or reposition zone as at ;

end
else

Select the order within the three restricted zones if there are available orders;
Select a random zone within three restricted zones to reposition if there is no

available order;
Record the drop-off zone or reposition zone as at ;

end
Update St based on at ;
Update Locs,Rws

end
end

end
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DQN model is hard to converge, especially when the state-action pair space is large. Since our model
consists of a large number of states and actions, based on previous experience, more than 10000 episodes
are expected to use for training. In addition, given a large number of agents need to be iterated and updated
at each time step, it takes a significant amount of time to finish running one episode. As a result, it is nearly
impossible to conduct the full training with all 8000 agents together. We separate the RL agent training
process and the rule-based agents running process to solve the long training time issue. In general, we first
run scenarios for rule-based agents to track and store their trajectories. Then we incorporate and input rule-
based agent trajectories in the RL agent model. Specifically, we run three different scenarios/replications
with different random numbers for 8000 rule-based agents on each date from August 1st to August 15th.
For each scenario, a matrix, denoted by Locs ∈ ZT×N , where N = 8000,T = 143, stores all rule-based agent
trajectories at each time step. A Rws ∈ RH×N matrix where H is the number of episodes is also used to
store agents’ cumulative rewards at the end of each episode. More details about the rule-based simulation
model are demonstrated in the following paragraph.

Algorithm 2: RL Agent DQN based Order Selection Algorithm

Initialize replay memory D, Q-network parameter θ , Q-target parameter θ−, Agent;
for episode=1:H do

Select a random day from 1 to 15;
Filter the Orderbook based on day;
Select a random scenario sce for day;
Filter rule-based agents trajectories Locs based on day and sce;
Shuffle the order selection sequence for Agents;
for t=0:143 do

if t=td then
Obtain available orders based on Locs;
Aggregate Di j,t ,Fi j,t ;
Create a feature vector φt = φ(st) = φ(Xt ,Di j,t ,Fi j,t);
Compute Q(φt ,a′) for all a′ ∈ At ;
With probability ε select a random action at ;
With probability 1− ε select at = maxaQ(φt ,a);
Update φt+1 based on action at ;
Store transition (φt ,at ,rt ,φt+1) in D;
Sample random minibatch of transitions (φt ,at ,rt ,φt+1) from D;
Minimize E[((Rt + γmaxaQ(st+1,at ;θ−))−Q(s,at ;θ))2] w.r.t θ using gradient descent
method;

Set θ = θ− every n step;
end

end
ε = ε ×decay_rate;

end

At the beginning of the episode, we first filter trip orders from the order book based on the selected
day. Then all agents are located in random zones, and Locs are initialized based on that. A random
decision-making sequence is set for agents to take action sequentially. At each time step, agents follow the
random sequence to take actions and only the agent whose status is one can take action. Based on the type
of agents, agents take actions differently. A random agent selects a random order with available orders or
repositions to a random zone if there is no available order. A max agent selects an order with the maximum
fare if there are available orders or goes to a random zone if there is no available order. A restricted agent
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can only select an order in his three restricted zones if there are available orders or repositions to one of the
three restricted zones if there is no available order. An agent updates its state, rewards, and status based
on the action taken, and the Locs,Rws are also updated accordingly. The complete algorithm for running
rule-based agents and getting their trajectories is shown in Algorithm 1.

After obtaining the trajectories of rule-based agents in Locs, we train an RL agent by incorporating Locs
with the simulator. Specifically, for each episode, we randomly select a scenario of rule-based trajectories
on a random day and assume that all rule-based agents follow the same trajectories stored in Locs. At the
timestep that the RL agent can take action, we first obtain unserved orders based on other agent trajectories
Locs. According to the random decision-making sequence, orders selected by the rule-based agents that
have a higher sequence are dropped from the OrderBook. The RL agent is only able to observe and select
the rest of the available orders. The order selected by the RL agent will be duplicated if selected by a
lower sequence rule-based agent in Locs. Since there is only one RL agent in our model and there are
more than 100000 orders daily, duplicating an order cannot significantly affect our simulation. Next, we
aggregate demand and average fare by each zone for unserved orders and formulate the state space φt . φt
served as the input of a two-layer fully connected neural network, and the output is Q(φt ,a) values for all
actions. With the probability epsilon, a random action is chosen. Otherwise, the action that has the largest
Q value is selected. Based on the selected action, we update φt+1 and store transition (φt ,at ,rt ,φt+1) in a
replay buffer. To update θ and θ− of Q-network and target Q-network, we randomly sample a minibatch
of transitions from D, and minimize the loss function respective to θ using the gradient descent method
(Kingma and Ba 2014). The target network weight θ− is not learned through the neural network but is
synchronized from the Q-network every N learning step. The ε starts with 1, then decreases by a decay
rate until the minimum value of 0.05 is achieved. The complete algorithm is shown in Algorithm 2.

3 EXPERIMENT AND RESULT

3.1 Experiment

The distribution of temporal-spatial data usually changes over time. Agents observe different training and
testing environments if the training and testing data set has different patterns or trends. Then RL model
performance on the testing data set can be significantly affected. To better split the training and testing data
sets and find which time period throughout the year can be used for training and testing, we train a simple
binary classifier and use the AUC-ROC score to evaluate. More specifically, the AUC-ROC score is often
used to evaluate how well the classifier can distinguish between two classes. We label our training data
set 0 and testing data set 1. If the AUC-ROC score is close to 0.5, we conclude that our classifier cannot
identify the training and testing data sets, which means they have similar patterns. By further analyzing
the 2017 trip data using the method we discussed above, we have found adjacent weeks tend to have more
similar patterns. We have decided to use the first three weeks of the trip data in August. The first two
weeks and the third week have a 0.512 AUC-ROC score, which implies they have similar patterns and
could be used as training and testing datasets.

We utilize the first two weeks of August 2017 trip data to train our RL agent. One day is considered
one episode. At the beginning of each episode, a random day is drafted from the first two weeks of August.
RL agent is trained under 13000 episodes containing over 25000 learning steps. The learning steps are
not equivalent to the simulation time steps. It counts the number of time steps that the RL agent takes an
action. There are 8000 rule-based agents and one RL agent in our simulation model. We assume that half
of the rule-based agents are random agents, ten are restricted agents, and the rest are maxed agents. We use
Python to construct our simulation model and use agent trajectories to validate the correctness of the MDP
process. As mentioned above, we run three scenarios of the rule-based agent for each day separately to
record their trajectories using three different random numbers. The randomness will first affect the agent’s
initial taxi zones, decision-making sequences, and random actions, which results in agents’ trajectories and
served orders changing. Then our RL agent is trained based on the rule-based agent trajectories. The RL
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agent model is trained three times with three different random numbers to tackle the randomness issue.
Three optimal policies will be evaluated in our test data set. It takes about 6 hours to finish running one
scenario for rule-based agents and 10 hours to train the single-agent RL model. The total time for running
all scenarios decreases when the parallel computing mechanism is applied to run different scenarios on
multiple cores separately.

3.2 Result

Our result concludes that both average cumulative maximum Q values and average cumulative daily scores
are able to converge, and those values from the RL model with the random number 41 are presented in
Figure 1 below. According to the ZipRecruiter yellow cab salary in New York City dataset (ZipRecruiter
2023), a New York City yellow cab taxi driver can make an average of 25 USD/hour. This does not include
leasing fees, insurance, fuel cost, etc., but only considers incomes collected from taxi fares. The top 2%
drivers can make from 36.53 USD/Hour to 39.13 USD/Hour. In our model, the RL agent gets more than
40 USD/ Hour in training, which can rank in the top 2% in practice.

Figure 1: Training average maximum Q values.

The third week of August 2017 trip data is used for testing. Each day is considered one episode, and
each episode is run with six replications, which is enough to construct the confidence intervals. We first
compare our RL agent with three different types of rule-based agents, and the result is shown in Figure 2.
Our RL agent significantly outperforms all rule-based agents based on the average daily scores of each
agent from Sunday to Monday. Considering the randomness of the simulation model and the number of
rule-based agents, extreme values can easily affect the average scores of each type of rule-based agent. We
also calculate the percentile of scores for each type of agent. Table 1 compares three types of rule-based
agents and the RL agent according to the percentiles. Our RL agent still significantly outperforms rule-based
agents in all five different percentiles. Averaging across all days, the RL agent is able to make 43 USD/Hour,
which is similar to our training result. Figure 3 presents the confidence intervals of the RL agent scores for
each day of the week, Sunday through Monday, using different random numbers. Even though the average
daily scores on various days of the week given the same random number and the average daily scores on the
same day of the week among different random numbers are very similar, the ranges of confidence intervals
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Table 1: Agent performance comparison.

Percentile Random Agent Max Agent Restricted Agent RL Agent
0 20.10 13.55 230.21 387.50
25 113.46 116.74 323.49 486.20
50 55.66 157.12 345.94 506.05
75 217.01 220.05 391.25 538.13
100 401.37 422.40 441.85 644.36

are different. Based on the first plot in Figure 3, A smaller confidence interval range, e.g., Wednesday to
Friday, indicates a lower uncertainty. In comparison, a much larger confidence interval range, e.g., Sunday
to Tuesday, results in much higher uncertainty. We conclude that our RL model is more reliable for the
RL agent from Wednesday to Friday than the rest of the days.

Figure 2: Average scores comparisons.

By further analyzing the record of the RL agent trajectories and selected orders, we want to explore
what kind of orders the RL agent prefers to serve and what taxi zones the RL agent wants to operate.
By testing three trained RL models on the testing data set, we found that the optimal policy obtained
by the RL agent might not be the most related to the particular taxi zones where the RL agent picks up
orders. Instead, it is more highly correlated to the taxi fare of each order. Figure 4 presents the taxi fare
distributions among three random numbers. In conclusion, the optimal policy reflects that the RL agent
tends to select orders with $5 to $7.5 and rarely selects orders with over $15., leading to higher daily
cumulative rewards. Short trip orders appear to be more attractive to the RL agent than long trip orders.
Besides the fact that more short trip orders exist in the historical trip record, we think the intuition behind
selecting $5 to $7.5 orders could be the driver can serve more orders within the time frame and earn more
taxi fare initial charges, which make up a significant portion of the total fare. Another intuition could be
longer trips increase the risk of traffic congestion. The earning per minute significantly reduces if drivers
encounter traffic congestion.

4 CONCLUSION AND FUTURE DIRECTION

We developed a fully distributed agent-based simulation model for New York City taxi drivers and proposed
a deep Q network-based approach to help individual drivers maximize their daily incomes through order
selection. Compared with previous studies focusing on improving the passenger user’s experience or
maximizing the overall ridesharing platform revenue, our work aims to solve the individual driver income
maximization problem using deep reinforcement learning. We compare the RL agent performance with
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Figure 3: Daily rewards using three different random numbers.

Figure 4: Daily rewards using three different random numbers.

8000 rule-based agents. The results show that the RL agent outperforms rule-based agents by adopting the
optimal order selection policy.

Our simulation model and the proposed method still have several limitations. First, given that the
research focuses on the driver experience aspect, we assume that if an unserved order has passed 15 minutes,
the system will lose this order/customer. As a result, the rider experience is not addressed. We plan to
study rider experience and driver preference tradeoffs in our future research, and also explore how much
money needs to be added to those lost orders so that they can be served eventually during the 15-minute
period. Secondly, since the current fully distributed model takes much time, we run three rule-based agent
scenarios on each day separately and utilize agents’ trajectories to train the RL agent. The RL agent only
learns from three scenarios for each day, but there are much more scenarios in practice. As a result, the
environment for training the RL agent is less dynamic than the real-world environment. Additionally, our
current research creates a DRL-based framework for single agent. The obtained optimal strategy might not
work when there are many RL agents. We plan to develop a multi-agent DRL-based model and obtain a
joint optimal policy for more drivers to use in the future.
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