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ABSTRACT

Input uncertainty, which refers to the output variability arising from statistical noise in specifying the input
models, has been intensively studied recently. Ignoring input uncertainty often leads to poor estimates of
system performance. In the non-parametric setting, input uncertainty is commonly estimated via bootstrap,
but the performance by traditional bootstrap resampling is compromised when input uncertainty is also
associated with simulation uncertainty. Nested simulation is studied to improve the performance by taking
variance estimation into account, but suffers from a substantial burden on required simulation effort.
To tackle the above problems, this paper introduces a non-nested method to build asymptotically valid
confidence intervals for input uncertainty quantification. The convergence properties are studied, which
establish statistical guarantees for the proposed estimators related to real-data size and bootstrap budget.
An easy-implemented algorithm is also provided. Numerical examples show that the estimated confidence
intervals perform satisfactorily under given confidence levels.

1 INTRODUCTION

The problem of input uncertainty refers to the effect of not knowing the true, correct distributions of the
basic stochastic processes that drive the simulation. Input models are often based on a finite list of the
observed real-world data, which are therefore subject to error. A stochastic output usually suffers two types of
uncertainties. With the availability of cheap and flexible computing power, the existing simulation softwares,
which measure simulation error based on Monte-Carlo methods, have gained increasing importance in
probability and statistics. On the contrary, there are rare software considering input-uncertainty errors.
Few practitioners are even aware of this problem. Although the existence of input uncertainty has been
put forward in the 1990s, the modelers may still ignore this source of uncertainty.

When the input distributions are obtained from the observed real-world data, it is possible to quantify
the impact of input uncertainty on the output results. Therefore, they have excessive confidence in the results
of the usual simulation output analysis, which is conditional on the data set used to fit the input probability
distributions. Many results, such as Barton and Schruben (2001), Henderson (2003), have indicated that
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the error in such conditional confidence intervals can be quite large, which results in information loss to a
large extent. And in most cases, the simulation outputs not only depend on the unknown input distributions
but also are affected by some extra random variables whose distributions are already known, which can be
massively simulated. For example, the queueing system with unknown distribution of interarrival-time and
known distribution of service time, where both distributions should be considered to quantify the average
waiting time. Thus, the simulation outputs suffer two kinds of uncertainties simultaneously, i.e., input
uncertainty and simulation uncertainty.

A common approach to quantify input uncertainty is the bootstrap resampling method, which constructs
the bootstrap empirical distributions as the input model estimators, see Barton and Schruben (1993), Barton
and Schruben (2001). To capture the uncertainty in the input distributions without additional real-world
samples, bootstrap technique is usually applied to create a new empirical distribution function (EDF) for
use in each simulation run. In the bootstrap resampling method, the empirical distribution Fn based on the
real-world data is firstly constructed as the input model estimator. Then the bootstrap samples of Fn are
generated accordingly and the corresponding bootstrap empirical distributions are calculated, which will be
used to quantify the input uncertainty. The bootstrap resampling method is easy to be implemented as not
requiring any prior information on the input models and the simulation outputs, so it is applied prominently
in the non-parametric regime as in Cheng (2001), Ankenman and Nelson (2012) and parametric regime as
in Cheng and Holloand (1997), Song and Nelson (2015).

There are many different methods using bootstrap to construct confidence intervals of the simulation
output for input uncertainty quantification, among which the first is called the Bootstrap Standard Interval
introduced by Efron (1981). Suppose that θ̂ is a bootstrap point estimator for the target θ and its variance is
estimated as σ̂2, then the approximate confidence interval by bootstrap can be set as [θ̂ − σ̂zα/2, θ̂ + σ̂zα/2],
where zα/2 is the 100−α/2 percentile of a standard normal distribution. The interval is claimed to have
an approximate coverage probability of 1−α . Except for the standard confidence intervals, there are
some other bootstrap confidence intervals such as percentile confidence intervals, bias-corrected confidence
intervals, and bias-corrected and accelerated confidence intervals, and all of them depend upon the percentile
of the bootstrap distributions. In Efron and Tibshirani (1986), the authors conducted a comparison among
these different bootstrap confidence intervals mentioned above.

However, when applying the bootstrap standard confidence intervals to quantify input uncertainty,
people face a few potential difficulties. One main difficulty lies in the estimation of variance, the solution of
which is mainly the method of nested simulation. More precisely, to handle both the input and simulation
noises, the bootstrap resampling method usually adopts nested simulation, which typically comprises a
two-layer sampling procedure. The outer-level simulation resamples the input data to build the bootstrap
empirical distribution as the input model estimator, while the inner-level runs simulation replications
under each bootstrap resampling to estimate the corresponding conditional expectation, which could be
computationally prohibitive. Lam and Qian (2022) developed a subsampling framework to improve the
computational burden by the conventional bootstrap approach. The other challenge brought by nested
simulation in the implementation of the bootstrap resampling is how to allocate the limited simulation
budget between the outer-level size B and inner-level size k, which has a direct implication on the simulation
output. Yi and Xie (2017) introduced a sequential experiment design to efficiently allocate the simulation
resources to bootstrapped samples of input models. Except for the nested simulation, metamodel-assisted
bootstrap is first proposed by Barton, Nelson, and Xie (2010) to quantify both input uncertainty and simulation
uncertainty. However, the algorithm only works for parametric input models, and the metamodel may cause
additional uncertainty.

There are many other methods to quantify input uncertainty besides the bootstrap procedure. The
Bayesian method, first introduced by Chick (1997), typically emphasizes the choice of parameters for
parametric distributions. In terms of the Bayesian model, averaging strategy has been described by Chick
(1997), Zouaoui and Wilson (2003). Zouaoui and Wilson (2004) considered the case with unknown input
models and quantified the simulation output variance due to simulation uncertainty, parameter uncertainty,
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and model uncertainty. Biller and Gunes (2010) provided a Bayesian approach that can be applied to
multivariate input models, and Biller and Corlu (2011) extended the Bayesian framework to handle a
large number of correlated inputs. The delta method, first discussed in Cheng (1994), was further studied
in Cheng and Holloand (1997), Cheng and Holland (2004). It applies the sampling distribution by the
maximum likelihood estimates of the input parameters to quantify the parameter uncertainty. Lam and
Qian (2019) studied the use of the delta method in estimating non-parametric input variance. The robust
optimization approach to input uncertainty was further studied and is still a very active research area, see
Lam and Qian (2016), Ghosh and Lam (2019). However, the responses rely on the selection of distance
measures and problem constraints, and cannot be directly applied to non-convex cases.

Motivated by the non-nested variance estimators proposed by Goda (2017), where the authors provided
several non-nested Monte Carlo estimators for the variance of a conditional expectation, we adopt the
non-nested variance estimator for the input uncertainty problem. In this paper we implement the bootstrap
resampling method for interval construction and propose the new non-nested bootstrap estimators when
input uncertainty and simulation uncertainty co-exist, which avoids the substantial burden on the required
simulation effort caused by nested simulation. We also provide an algorithm for estimating the mean
and variance estimators and constructing asymptotic confidence intervals accordingly to quantify the input
uncertainty. Moreover, the theoretical results about the relationship between the size of real-world data n
and the bootstrap times B are also provided to verify the convergence properties. The numerical results
demonstrate that the proposed method works effectively.

The remainder of this paper is organized as follows. Section 2 describes the formulation of the input
uncertainty quantification problem. Section 3 introduces how to build confidence intervals for the input
uncertainty quantification problem. Section 4 reports related experimental results. Finally, a conclusion is
drawn in Section 5.

2 NON-PARAMETRIC INPUT UNCERTAINTY QUANTIFICATION

Throughout this paper, the following notations are used. The notations ‘
p−→’, ‘ d−→’ and ‘ a.s.−−→’ signify

convergence in probability, convergence in distribution, and convergence with probability one, respectively.

2.1 Problem Formulation

The case that there is no information available about the input distribution families except for a limited
amount of real data is primarily considered, and the input uncertainty is measured in a non-parametric
way. The aim is to estimate confidence intervals for the mean response of a system that is represented by
a stochastic simulation, of which the input models are unknown but can be estimated by real-world data.

All the simulation output can be summarized as depending on two types of random variables, i.e., one
with unknown distributions but a limited amount of data, and the other with known distributions. In this
paper, we mainly consider a 1-dimensional simulation output h(X,U) with an S1-dimensional input variable
XT = (X1,X2, · · · ,XS1), where the joint probability distribution F for X is unknown, and an S2-dimensional
input variable UT = (U1,U2, · · · ,US2), where the joint probability distribution G for U is known. This paper
estimates the expectation value of h(X,U), which is essentially a mapping of the unknown distribution F.
Denote T (F) as

T (F) = E[h(X,U)].

Notably, the output h(X,U) is a general representation of the simulation output of the random variables X
and U, for instance, it can be an indicator, a quantile, a variance and so on.

Moreover, as the distribution for U is known, T (F) can be written as the expectation of a particular
mapping of the random variable X, i.e.,

T (F) = E[q(X)],
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where

q(X) = EU[h(X,U)|X].

Extra simulation is always necessary to calculate q(x) by generating different values of U under a fixed
realized value of X. The distribution of X is unknown, which brings into the input uncertainty, while the
distribution of U is known, which still leads to the simulation uncertainty. Therefore, the total variation for
T (F) estimation comes from the joint uncertainty composed by the simulation uncertainty when estimating
q(X) for each fixed value of X, and the input uncertainty when estimating the expectation by using real-world
data. In this paper, we mainly focus on building confidence intervals for estimating T (F) to quantify the
uncertainty caused by the limited sample of real-world data with size n.

2.2 Traditional Bootstrap Quantification Framework for the Pure Input Uncertainty Cases

This part propagates input uncertainty from the input model to the simulation output by using bootstrap
resampling of the real-world data.

Firstly, the unknown distribution F can be estimated by the observed real-world data {x1,x2, · · ·xn} in a
non-parametric manner, where xT

i = (xi1,xi2, · · · ,xiS1) and xi’s are independently and identically distributed
(i.i.d.) observations following the probability distribution F.

We estimate the joint input distribution by its empirical cumulative distribution function (ecdf) Fn,
where

Fn(x) =
1
n

n

∑
i=1

I{Xi≤x}.

Then T (Fn) is an estimator of T (F) and can be expressed as

T (Fn) = E[q(X)|x1,x2, · · ·xn] =
1
n

n

∑
i=1

q(xi).

T (Fn) is a mapping of the ecdf Fn, which represents the expectation of q(X) when X follows the ecdf Fn.
In the following, we denote E∗ as taking the expectation under the probability measure conditional on the
real-world data x1,x2, · · ·xn, i.e.,

E∗[Y ] = E[Y |x1,x2, · · ·xn],

such that

T (Fn) = E∗[q(X)].

Secondly, to analyze how T (Fn) changes with respect to Fn, the most commonly used method involves
generating many ecdfs with different sets of data and then calculating the corresponding different T (Fn)’s.
However, with highly limited data, the method mentioned above will suffer from substantial error if
one divides the limited data into several parts for calculation. An alternative to estimating the empirical
distributions is to apply resampling methods. The bootstrap, introduced by Efron (1979), is one of the
most popular techniques adopted in resampling to measure the variability of a given statistic, which makes
full use of the whole real-world data.

Given the data {x1,x2, · · · ,xn}, a bootstrap sample is defined to be a random sample of the same size n
drawn from Fn, say {x∗1,x∗2, · · · ,x∗n}. The star notation indicates that the bootstrap sample {x∗1,x∗2, · · · ,x∗n}
is not the actual data set {x1,x2, · · · ,xn}, but rather a randomized, or resampled version of the real data.
Then we can calculate the corresponding empirical cumulative distribution function from {x∗1,x∗2, · · · ,x∗n}
as

F∗
n(x) =

1
n

n

∑
j=1

I{x∗j≤x}.
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F∗
n is called a bootstrap empirical cumulative distribution function (bootstrap ecdf). Then the estimator

based on this bootstrap ecdf can be denoted as

T (F∗
n) = E[q(X)|x∗1,x∗2, · · · ,x∗n] =

1
n

n

∑
j=1

q(x∗j).

T (F∗
n) refers to the expectation of q(X), in which X follows the bootstrap ecdf F∗

n.
After bootstrapping B times, there will be B different bootstrap samples, where the i-th bootstrap

sample is denoted as {x∗i
1 ,x

∗i
2 , · · · ,x∗i

n }. For the B different bootstrap samples, the bootstrap ecdfs can be
constructed as {F∗1

n ,F∗2
n , · · · ,F∗B

n }. For a bootstrap ecdf F∗i
n , the corresponding estimator for T (F) should

be

T (F∗i
n ) = E[q(X)|x∗i

1 ,x
∗i
2 , · · · ,x∗i

n ] =
1
n

n

∑
j=1

q(x∗i
j ).

Substituting the B bootstrap ecdfs, one can analyze how T (F∗i
n )’s changes with respect to F∗i

n ’s to quantify
the input uncertainty. In the following, we denote E∗i as taking the expectation under the probability
measure conditional on the i-th bootstrap sample, i.e.,

E∗i[Y ] = E[Y |x∗i
1 ,x

∗i
2 , · · · ,x∗i

n ],

and the equation

T (F∗i
n ) = E∗i[q(X)]

can be similarly derived.
Therefore, the different T (F∗i

n )’s are the estimators of T (F). To establish the confidence intervals for
T (F) by T (F∗i

n )’s, it is necessary to figure out the difference between T (F∗i
n )’s and T (F), which is the

major concern studied in this paper.

2.3 Bootstrap Quantification Frameworks for the Joint Uncertainty Cases

2.3.1 Nested Quantification Framework

However, as we discussed previously, the exact form of q(X) can not be obtained directly in many cases,
and in our setting, recall that

q(x) = EU[h(X,U)|X = x].

Nested simulation is typically applied in this situation. In a two-level nested simulation, an outer level
of simulation samples different scenarios, while the inner level uses simulation to estimate a conditional
expectation given the scenario. Specifically, extra simulation is needed to estimate q(x) by generating a lot
of samples of U in this setting, thus an additional error by simulation is also introduced to analyze T (F),
i.e., the extra error when we estimate q(x) by simulating U. Then the estimator of q(x) can be constructed
as 1

k ∑
k
l=1 h(x,ul).

Unfortunately, Sun, Apley, and Staum (2011) claimed that the nested variance estimator can be badly
biased unless the inner level sample size k is large enough. In fact, the bias of the variance estimator for a
two-level nested procedure is O(k−1). This further exemplifies a typical situation in the two-level nested
simulation: for its mean-squared error to converge to zero, it is necessary that both the outer sample size
and inner level sample size go to infinity. Therefore, the two-level nested simulation can be extremely
time-consuming. Moreover, the relationship between the outer-level sample and the inner-level sample size
is hard to derive. Sun, Apley, and Staum (2011) also provided an unbiased nested Monte Carlo estimator
by a pre-computation step to choose proper inner-level sample sizes (each scenario may have a different
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number of inner-level samples), which is referred to as 1 1
2 -level simulation. However, the pre-computation

is complex, depending on the specific problem and a given computational cost.
To resolve the problem, this paper introduces a non-nested method to build the asymptotically valid

confidence intervals for the joint uncertainty quantification and discusses the convergence conditions for
the relationship between bootstrap times B and real-world data size n.

2.3.2 Non-nested Quantification Framework

Goda (2017) constructed several non-nested Monte Carlo estimators for the variance of a conditional
expectation. Let X be a random variable with probability density function pX defined on ΩX , and
f : ΩX →R be a function. Let Y be another random variable which is correlated with X , then they built the
following estimators V1,V2, and V3 for computing the variance of a conditional expectation. The estimators
for VarY (EX |Y [ f (X)]) are:

V1 =
1
n

n

∑
i=1

f (xi) f (x′i)− µ̂
2,

V2 =
1
n

n

∑
i=1

f (xi) f (x′i)− (
µ̂ + µ̂ ′

2
)2,

V3 =
1
n

n

∑
i=1

f (xi) f (x′i)− µ̂ µ̂
′,

where µ̂ = 1
n ∑

n
i=1 f (xi), µ̂ ′ = 1

n ∑
n
i=1 f (x′i), and xi and x′i independently and randomly sample from X |Y = yn.

Goda (2017) proved that all of the estimators V1,V2 and V3 are biased, and the bias of V3 is smaller or equal
to that of V2, which itself is smaller or equal to that of V1. The bias for every realized estimator decays at
the rate n−1, so that the bias is negligible for large n. A bias correction method of the estimators is also
provided.

Inspired by Goda (2017), we proposed our non-nested quantification framework based on the obser-
vation that estimating the variance of T (F∗i

n ) can be also regarded as a variance estimation problem of a
conditional expectation essentially. The non-nested estimators can be modified to solve the input uncertainty
quantification problem then. Since the estimators are no longer of the nested form, there is no need to
take care of a proper choice of inner-level sample sizes. Here we construct the estimators using V2 in our
setting. And in fact, the estimators based on V1 or V3 can be implemented similarly.

The non-nested mean and variance estimators for q(X) should be

m̄ =
B

∑
i=1

mi/B,

σ̂
2 = n

 1
B

B

∑
i=1

mi1 ·mi2 −

(
1

2B

B

∑
i=1

(mi1 +mi2)

)2
 ,

where

mi1 =
1
n

n

∑
j=1

h(x∗i
j ,u

i1
j ),

mi2 =
1
n

n

∑
j=1

h(x∗i
j ,u

i2
j ),

mi = (mi1 +mi2)/2.
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and {ui1
1 , · · · ,ui1

n ,ui2
1 , · · · ,ui2

n } are i.i.d. following the known distribution G. Here mi’s are regarded as the
mean estimators of T (F∗i

n )’s. Goda (2017) demonstrated that constructing Monte Carlo estimators require
two function evaluations for each bootstrap sample. By using two conditionally independent estimators
for T (F∗i

n ), the bias of the non-nested variance estimator should be O(B−1) and the total computational
budget equals 2B. Therefore, we can evaluate input uncertainty by constructing confidence intervals with
the proposed mean and variance estimators.

Next, we will provide the theoretical and numerical instructions for the estimated confidence intervals.
Moreover, we will also discuss the relationship between the size of real-world data n and the bootstrap
times B to verify the convergence properties for the estimators.

3 CONFIDENCE INTERVALS CONSTRUCTION

3.1 The Convergence Property for m̄

Assumption 1 E|q(X)|2 < ∞.
Assumption 1 ensures that Var(T (F)) is finite, which guarantees that

√
n(T (Fn)− T (F)) admits a

Central Limit Theorem (CLT). This assumption yields the following propositions.
Proposition 1 Given {X1, · · · ,Xn}, suppose that there are B conditionally independent bootstrap estimators,
denoted as {T (F∗1

n ),T (F∗2
n ), · · · ,T (F∗B

n )}, then under Assumption 1,

√
n(T̄ (F∗

n)−T (F)) d−→ N(0,σ2(F)),

as n → ∞, where σ2(F) means the variance of q(X) when X follows F, and

T̄ (F∗
n) =

1
B

B

∑
i=1

T (F∗i
n ).

Interested readers may refer to Bickel and Freedman (1981) and Singh (1981) for the main proof of
proposition 1. Next, we discuss the convergence property of m̄, and it’s necessary to make a restriction on
h(X,U).
Assumption 2 E|h(X,U)|2 < ∞.

Then we can conclude the following theorem.
Theorem 1 Under Assumption 2, as B,n → ∞,

√
n(m̄− T̄ (F∗

n))
p−→ 0.

Consequently, we can obtain that

√
n(m̄−T (F)) d−→ N(0,σ2(F)),

as B,n → ∞.

3.2 The Convergence Property for σ̂2

Under the following assumption, we can obtain the convergence result of the variance estimators.
Assumption 3 E|h(X,U)|4 < ∞.
Theorem 2 The variance estimator for q(X) is

σ̂
2 = n

[
1
B

B

∑
i=1

mi1 ·mi2 − m̄2

]
,
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and under Assumption 3, when B/n → ∞,

σ̂
2 p−→ σ

2(F),

as n → ∞.
For the input uncertainty problem associated with simulation uncertainty, the proposed non-nested

method requires B/n → ∞ to achieve consistency, such that the total computational budget should be 2B.
Compared to the nested estimators, the bias of the nested variance estimator should be O(k−1) and the
total computational budget equals to 2Bk, where B,k → ∞.

So far, we propose the mean and the variance estimators for input uncertainty quantification that
contains input and simulation uncertainty together, and establish their convergence property under regular
conditions. To ensure their consistency, the bootstrap times B must satisfy that B/n → ∞, where n represents
the real-world data size. The following algorithm is further proposed to build bootstrap confidence intervals
in practice based on the previous results.
Algorithm 1 Non-nested Bootstrap (NNB) Confidence Intervals.

1: Input: The real-world data {x1,x2, · · ·xn}, the bootstrap times B, and the fixed confidence level α .
2: Output: The estimated confidence interval for T (F).
3: Estimate F. Calculate the empirical distribution Fn as an estimator of F.

Fn(x) =
1
n

n

∑
i=1

I{xi≤x}

4: for i = 1 to B do
5: Generate a bootstrap sample {x∗i

1 ,x
∗i
2 , · · · ,x∗i

n } from the empirical distribution Fn, and then compute
the corresponding bootstrap empirical distribution F∗i

n as an estimator of Fn.

F∗i
n (x) =

1
n

n

∑
j=1

I{x∗i
j ≤x}

6: Simulate ui1
1 , · · · ,ui1

n ,ui2
1 , · · · ,ui2

n from the known distribution G.

mi1 =
1
n

n

∑
j=1

h(x∗i
j ,u

i1
j ), mi2 =

1
n

n

∑
j=1

h(x∗i
j ,u

i2
j )

7: end for
8: Calculate the mean estimator m̄,

m̄ =
B

∑
i=1

(mi1 +mi2)/2B.

9: Calculate the variance estimator σ̂2,

σ̂
2 = n(

B

∑
i=1

mi1 ·mi2/B− m̄2).

10: Calculate the confidence interval,

[m̄− σ̂√
n

zα/2, m̄+
σ̂√

n
zα/2].
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In Algorithm 1, the final confidence interval is directly built by using m̄ and σ̂√
n (not by σ̂ ), and

therefore it is possible that the convergence conditions for the coverage probility of constucted confidence
interval can be relaxed to B,n → ∞. In the simulations, we also study the cases in which the conditions are
relaxed to B,n → ∞ for both nested and non-nested methods, and compare their finite-sample performances
extensively, while k → ∞ is still necessary for nested simulation.

4 NUMERICAL RESULTS

This section illustrates the performance of the proposed algorithm using numerical experiments. The
following numerical results show the coverage probabilities of the estimated confidence intervals based on
the proposed estimators. All of the reported coverage probabilities are validated based on 5000 independent
replications.

The Black-Scholes model is a famous option pricing model for the dynamics of a risk-neutral financial
market containing derivative investment instruments. In the simulation problem, the objective is to calculate
the price of a European call option. For a strike of K and maturity T , a standard result is given by

C(S(τ),K,T ) = e−rTE[max(S(T )−K,0)],

and the statistical process for the stock price grows like

S(T ) = S(τ) · exp((r−σ
2/2)(T − τ)+σ

√
T − τW )

= S(τ) ·X(T − τ),

where S(τ) represents the stock price at time τ , following a geometric Brownian motion, and W is a standard
Wiener process. In this setting, we let S(0) = 100,r = 0.15,T = 2,τ = 1,K = 95, and σ = 0.15. Assume
that the stock price at time T can be represented as the product of two independent random variables S(τ)
and X(T − τ), where the distribution of S(τ) is known, and the distribution of X(T − τ) is unknown with
a list of real data.

Substituting in the proposed algorithm, we can obtain the estimated confidence intervals for S(T ), and
calculate the coverage probabilities by computing the average rate of whether the estimated confidence
intervals contain the true value. We also provide the coverage probabilities of the confidence intervals built
by the nested simulation when the inner size k = 2 as a comparison, as the total computational budget
for the non-nested and nested simulation are the same. To test the applicability of our non-parametric
approach, we investigate the coverage probabilities of the non-nested bootstrap (NNB) confidence intervals,
constructed by the proposed mean and variance estimators. The numerical results show the coverage rate of
the estimated 90% and 95% confidence intervals. Moreover, we also provide comparative experiments with
nested estimators. Under different n and B, the performances of the algorithms are presented in Tables 1–3.

Table 1: 90% Confidence Intervals for Option Pricing (k=2).

B
n

50 100 500 1000 5000

NNB Nested NNB Nested NNB Nested NNB Nested NNB Nested
k=2 k=2 k=2 k=2 k=2

100 0.8642 0.9128 0.8828 0.9272 0.8942 0.9370 0.8934 0.9336 0.8920 0.9380
n0.8 0.8462 0.9066 0.8664 0.9230 0.8854 0.9326 0.8928 0.9354 0.8968 0.9338
n/2 0.8370 0.9018 0.8762 0.9206 0.8912 0.9308 0.8930 0.9284 0.8962 0.9358
n 0.8630 0.9158 0.8784 0.9258 0.8962 0.9338 0.8934 0.9396 0.9014 0.9438

n1.2 0.8804 0.9216 0.8960 0.9358 0.8958 0.9304 0.8958 0.9356 0.9000 0.9378
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Table 2: 95% Confidence Intervals for Option Pricing (k=2).

B
n

50 100 500 1000 5000

NNB Nested NNB Nested NNB Nested NNB Nested NNB Nested
k=2 k=2 k=2 k=2 k=2

100 0.9172 0.9582 0.9348 0.9670 0.9444 0.9692 0.9432 0.9716 0.9468 0.9734
n0.8 0.9010 0.9526 0.9250 0.9610 0.9462 0.9734 0.9458 0.9702 0.9440 0.9706
n/2 0.8962 0.9487 0.9264 0.9612 0.9436 0.9700 0.9406 0.9686 0.9470 0.9744
n 0.9172 0.9582 0.9334 0.9646 0.9464 0.9730 0.9488 0.9738 0.9528 0.9764

n1.2 0.9274 0.9610 0.9426 0.9676 0.9440 0.9714 0.9474 0.9740 0.9472 0.9716

It is evident that the coverage probabilities of the proposed NNB method show convergence to the
confidence levels, which demonstrates the algorithm can be applied effectively in quantifying input un-
certainty in a non-parametric manner. Notably, the coverage probabilities do not converge well to the
confidence levels for the nested confidence intervals, which is consistent with the result that the nested
variance estimator introduces extra simulation error when quantifying input uncertainty, especially for a
small k. Although it seems that the nested method performs better for the cases of n = 50 in Table 1 and
Table 2, the results should come from the fluctuations caused by small samples. In fact, when k = 2, the
limitations of the coverage probabilities will not be equal to the confidence levels for the nested method.

Moreover, we also provide the numerical comparison to the nested method with k → ∞ under the same
budget. In the following table, let k = B for nested simulation, and B,k will also go to infinity as n goes
to infinity. The numerical results show the coverage rate of the estimated 90% confidence intervals.

Table 3: 90% Confidence Intervals for Option Pricing (k=B).

Bk
n

50 100 500 1000 5000

NNB Nested NNB Nested NNB Nested NNB Nested NNB Nested
k=B k=B k=B k=B k=B

2∗100 0.8642 0.8454 0.8828 0.8524 0.8942 0.8542 0.8934 0.8624 0.8920 0.8542
2∗n0.8 0.8462 0.8004 0.8664 0.8270 0.8854 0.8724 0.8928 0.8718 0.8968 0.8788
2∗n/2 0.8370 0.8032 0.8762 0.8366 0.8912 0.8788 0.8930 0.8806 0.8962 0.8862
2∗n 0.8630 0.8368 0.8784 0.8512 0.8962 0.8808 0.8934 0.8846 0.9014 0.8826

2∗n1.2 0.8804 0.8458 0.8960 0.8644 0.8958 0.8908 0.8958 0.8894 0.9000 0.8918

In this case, the coverage probabilities show convergence to the given confidence level for both nested
and non-nested simulation methods, as k increases with n and B. However, the coverage probability of
the proposed NNB method converges much faster than that of the nested simulation, which effectively
implies that, under the same computational budget, the proposed non-nested variance estimator reduces
the variability of the variance estimate and thus provides more accurate confidence intervals compared to
the existing nested method.

5 CONCLUSIONS

This paper mainly considers the input uncertainty quantification problem in a non-parametric way, which
enables the input uncertainty and simulation uncertainty to occur simultaneously. Since the existing nested
bootstrap methods suffer from high computational budget under the joint uncertainty case, we propose a
new non-nested bootstrap method to build asymptotically valid confidence intervals for input uncertainty
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quantification, inspired by the variance estimators in Goda (2017). The theoretical properties are also
studied, which establish statistical guarantees for the proposed estimators. An easy-implemented algorithm
for building confidence intervals is also provided. Numerical results demonstrate that the estimated
confidence intervals perform satisfactorily under given confidence levels, and show faster convergence rate
under the same computational budget compared to nested methods, which further verify the effectiveness
of the proposed estimators and the corresponding non-nested method.
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