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ABSTRACT

Stochastic gradient descent (SGD) or stochastic approximation has been widely used in model training and
stochastic optimization. While there is a huge literature on analyzing its convergence, inference on the
obtained solutions from SGD has only been recently studied, yet is important due to the growing need for
uncertainty quantification. We investigate two easily implementable resampling-based methods to construct
confidence intervals for SGD solutions. One uses multiple, but few, SGDs in parallel via resampling with
replacement from the data, and another operates this in an online fashion. Our methods can be regarded
as enhancements of established bootstrap schemes to substantially reduce the computation effort in terms
of resampling requirements, while at the same time bypasses the intricate mixing conditions in existing
batching methods. We achieve these via a recent cheap bootstrap idea and Berry-Esseen-type bound for
SGD.

1 INTRODUCTION

Stochastic optimization commonly arises in many applications across machine learning, operations research,
and scientific analysis. The problem can be formulated as:

min
x∈Rd

H(x)≜ Eζ∼P[h(x,ζ )] (1)

where P is some underlying data distribution governing the randomness ζ ∈ Ω, and h is some known
real-valued function. Stochastic gradient descent (SGD) or stochastic approximation is a popular numerical
approach to solve (1). With an initial guess x0 ∈ Rd , SGD iteratively updates the solution using

xt+1 = xt −ηt∇h(xt ,ζt+1), t = 0, . . . ,n−1 (2)

where ζt is a sample drawn using a Monte Carlo model generator or real data. While the Robbins-Monro
(Robbins and Monro 1951) procedure outputs xn after a large number of iterations, one could also take the
average x̄n ≜ 1

n ∑
n
t=1 xt as the output, which is known as the Polyak-Ruppert-Juditsky averaging (Polyak and

Juditsky 1992) or for convenience in this paper we call it averaged stochastic gradient descent (ASGD).
Both approaches are common, with ASGD known to be more robust with respect to the step size ηt (Rakhlin
et al. 2012).

We are interested in conducting inference, or quantifying the uncertainty, in SGD. That is, we aim
to construct, using the iterates (2), a 1− γ confidence interval for (each component of) the true optimal
solution x∗ of problem (1). Despite the popularity of SGD, to our best knowledge, this problem has been

979-8-3503-6966-3/23/$31.00 ©2023 IEEE 3681



Lam and Wang

systematically studied only recently, driven by applications in exploration (Lattimore and Szepesvári 2020)
and as stopping criteria (Su and Zhu 2018; Fang et al. 2018; Chen et al. 2020).

1.1 Existing Methods and Challenges

A main challenge in SGD inference is the serial dependence incurred by the sequence {xt}, which makes
the construction of a consistent standard error estimator intricate. We discuss the ideas and challenges
of several recent works that address this issue. Chen et al. (2020) proposed two methods, one based on
the delta method that directly approximates the asymptotic covariance of gradient ∇h(x,ζ ) and Hessian
at optimal ∇2H(x∗). However, this requires the computation and storage of the Hessian matrix, which
can be computationally demanding. For example, backpropagation can only provide first-order gradient
information (Rumelhart et al. 1986), and arguably, a major advantage of SGD lies in its Hessian-free
nature. In addition, storing a Hessian matrix requires an expensive O(d2) space. These put aside the subtle
regularity assumptions needed for consistency as noted by Chen et al. (2020) themselves.

Motivated by these, Chen et al. (2020)’s second method borrows the batch-means idea in stochastic
simulation output analysis (Glynn and Iglehart 1990; Schmeiser 1982; Schruben 1983; Glynn and Lam
2018) and Markov Chain Monte Carlo (Geyer 1992; Flegal and Jones 2010; Jones et al. 2006). This
approach divides the iterations of SGD into M batches of increasing sizes and aggregates the means of these
batches to construct confidence intervals. However, the batch-mean method introduces hyperparameter M,
the number of batches, to tune. Additionally, experiments show that this method is more sensitive to the
quality of converges of SGD and could underperform other methods. Relatedly, Li et al. (2018) presented
a batch-means method for inference in M-estimation by using SGD trajectory with a constant step size.
Instead of using batches with increasing lengths, they use batches with a fixed length but separated by
gaps to overcome the dependence between iterations of SGD. Zhu and Dong (2021) studied a batch-mean
algorithm to construct a d-dimensional confidence region for the optimal solution to problem (1). Their
method works by canceling out the asymptotic covariance matrix of the rescaled residue of SGD using an
F-type statistic. Additionally, they explore the influence of varying the number and sizes of batches on the
efficacy of their algorithm.

Another approach is to use the bootstrap which, advantageously, does not succumb to the computation
load of variance estimation nor the tuning and sensitivity of batch sizes. Fang et al. (2018) developed
an online bootstrap method that persistently maintains B perturbed version of SGD estimates, updated
upon each data arrival. However, B is required to be large for their method to work properly. For linear
regression problems of dimensions 10 or 20, they set B = 200, which means 200 times more computational
cost compared to running the SGD itself or using batch means.

Yet another approach called HiGrad is proposed by Su and Zhu (2018) based on “splitting” an SGD
trajectory. More specifically, it first runs SGD for several steps. Then, with the outcome of this thread as a
starting point, perform multiple SGD threads using different data, and continue this branching process for
each thread’s outcome until data are used up. A confidence interval is constructed using all the obtained
split outcomes. HiGrad requires a substantial modification to the original SGD runs; in fact, there is no
more “original" run of SGD in HiGrad.

Finally, we briefly mention a line of work on quantifying algorithmic randomness, including Lunde
et al. (2021) that applied the bootstrap on streaming principal component analysis (Oja 1982), and Chen
and Lopes (2020) on randomized Newton methods. Moreover, Nesterov and Vial (2008) gave a complexity
bound on the number of iterations of their method in relation to the confidence level on reaching the optimal
value via SGD. However, all these works focus on assessing the uncertainty from algorithmic randomness
and treat the data as fixed, and hence are less relevant to our focus in this paper.
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1.2 Our Contributions

Our discussion above reveals that existing approaches in SGD inference encounter either intricate algorithmic
tuning that relates to mixing conditions (batching), substantial modification on the SGD itself (HiGrad),
or computation and storage challenges (delta method and online bootstrap). In this paper, we investigate a
methodology that resolves these three challenges simultaneously. More precisely, we adopt the bootstrap
approach, which does not require mixing-related tuning nor substantial modification to the original SGD.
At the same time, we enhance the bootstrap to make it substantially lighter in terms of resampling cost.
The latter is made possible by using a recent “cheap bootstrap" idea (Lam 2022b; Lam and Liu 2023; Lam
2022a).

Our methodology can be implemented in both offline and online fashions. The offline version, which
we call the Cheap Offline Bootstrap (COfB), reruns the SGD using resampling with replacement from the
data B times and constructs confidence intervals from these resampled iterates via an approach similar to
the standard error bootstrap. However, while this approach may appear to require heavy resampling effort,
our key assertion is that the B in our implementation can be very small (such as 3). In this way, our
approach is computationally less demanding than the delta method (Chen et al. 2020) and online bootstrap
(Fang et al. 2018), does not require hyperparameter tuning in batch-means (Chen et al. 2020; Zhu and
Dong 2021), and also does not substantially modify the SGD trajectory in HiGrad (Su and Zhu 2018).

A caveat of COfB is that we can only rerun SGD after all the data become available. Thus, it cannot
be used in a single-pass streaming fashion. To address this, our online version, Cheap Online Bootstrap
(COnB), runs multiple (B+1) SGDs in parallel on the fly as new data comes in. COnB borrows the idea
of Fang et al. (2018) in perturbing the gradient estimate in the SGD iteration. However, like COfB, it is
computationally much cheaper than Fang et al. (2018) as it only needs to maintain a very small number
of SGD runs. In both our theory and experimentation, we illustrate that using B = 3 already produces
consistently better coverage than the existing approaches.

Our methodology synthesizes two recent ideas. One, as mentioned earlier, is the recent cheap bootstrap
idea. Roughly speaking, instead of using the resemblance of the resample distribution to the sampling
distribution as in classical bootstraps, the cheap bootstrap exploits the approximate independence between
the resample and original estimates. Coupled with asymptotic normality, this allows to construct a pivotal
statistic with an extremely small number (as low as 1) of resample runs B. While the cheap bootstrap
gives rise to asymptotically exact-coverage intervals, it also comes with the cost of (arguably fair) larger
interval lengths when B is small. Nonetheless, as discussed in Lam (2022b), Lam and Liu (2023), the
interval length advantageously shrinks quickly as B increases away from 1. Our second methodological
element, which constitutes our main technical development, is to show the asymptotic independence, more
precisely a joint central limit theorem, for the original and the resampled SGD runs under resampling with
replacement, and how to suitably aggregate the outputs guided by this theorem using the cheap bootstrap
logic. To attain this independence, we generalize the recent non-asymptotic bounds for ASGD studied by
Shao and Zhang (2022), Anastasiou et al. (2019) to hold uniformly for both the original and resampled
runs, under SGD and ASGD settings.

2 METHODOLOGY

Denote the underlying data distribution by P. Let xout be the output of (A)SGD, using step sizes ηt = ηt−α

and i.i.d. data {ζt}n
t=1 drew from P. More precisely, in ASGD xout =

1
n ∑

n
t=1 xt , and in SGD xout = xn,

where xt is the solution obtained in the t-th iteration of (2). Let P̂n denote the empirical distribution from
data {ζt}n

t=1, i.e., P̂n(·) = 1
n ∑

n
t=1 I(ζt ∈ ·), where I(·) denotes the indicator function. We also use (·)i to

denote the i-th entry of a vector and (·)i, j to denote the (i, j)-th entry of a matrix.
Our first method, COfB, works as follows. After obtaining xout with data {ζt}n

t=1, we repeatedly
resample with replacement from the data (i.e., draw n observations from P̂n) and run (A)SGD on the
resampled data for B times. Denote the resample outputs by x∗bCOfB, b = 1, . . . ,B. As we will see in later
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discussions, the number of reruns B is not necessarily large as long as it is greater than 2. Then, the 1− γ

confidence interval for the i-th entry of x∗ is given by

I COfB
i,n =

[
(xout)i− tB−1,1− γ

2
sCOfB

i ,(xout)i + tB−1,1− γ

2
sCOfB

i

]
(3)

where sCOfB
i ≜

√
1

B−1 ∑
B
b=1

(
(x∗bCOfB)i− (x∗COfB)i

)2, (x∗COfB)i ≜ 1
B ∑

B
b=1(x

∗b
COfB)i, and tB−1,1− γ

2
denotes the 1− γ

2
quantile of the student-t distribution with degree of freedom B−1. A pseudo-code for COfB can be found
in Algorithm 1.

Algorithm 1 Cheap Offline Bootstrap (COfB)
Input: i.i.d. data {ζt}n

t=1, number of reruns B≥ 2, step size sequence {ηt}, initial guess x0, nominal
coverage level 1− γ .
Output: I COfB

i,n , i = 1, . . . ,d
Run (A)SGD (2) to obtain xout.
for b← [1,2, . . . ,B] do

Resample with replacement from {ζt}n
t=1 to obtain {ζ ∗b1 , . . . ,ζ ∗bn }.

Run (A)SGD for n steps on {ζ ∗bt }n
t=1 with initialization x0 to obtain x∗bCOfB.

end for
for i← [1,2, . . . ,d] do

(x∗COfB)i← 1
B ∑

B
b=1(x

∗b
COfB)i

sCOfB
i ←

√
1

B−1 ∑
B
b=1

(
(x∗bCOfB)i− (x∗COfB)i

)2

I COfB
i,n ←

[
(xout)i− tB−1,1− γ

2
sCOfB

i ,(xout)i + tB−1,1− γ

2
sCOfB

i

]
end for

Note that COfB is an offline algorithm since resampling from {ζi}n
i=1 can only be accomplished when

all these data points have been obtained. In contrast, our second method, COnB, works by maintaining
B+1 parallel runs of ASGD starting from the same initialization. One of these trajectories is the original
run following exactly (2). The other B trajectories update similarly, except that the gradient estimate
∇h(xt ,ζt+1) is perturbed by a factor Wt,b following exponential distribution with rate 1. The confidence
intervals I COnB

i,n are constructed similarly as COfB with xout and {x∗bCOnB}n
b=1, except that the standard

error term sCOnB
i ≜

√
1
B ∑

B
b=1

(
(x∗bCOnB)i− (xout)i

)2 has xout instead of x∗COnB as the center of the squares. A
pseudo-code of COnB is in Algorithm 2. Note that, when a new data ζt arrives, COnB uses only B+1
gradient calculations to update the original and resampled outputs.

3 MAIN THEORETICAL GUARANTEES

Our main theoretical guarantees on COnB and COfB is on the asymptotic coverage exactness, for B as low as
either one or two. To explain and state this result more precisely, Let Hn(·) = 1

n ∑
n
i=1 h(x,ζi) denote the sample

average approximation (SAA) of (1) and x̂n the minimizer of Hn(·). ∥x∥p denotes (E[∥x∥p])
1
p for a random

variable x and ∥ ·∥ denotes the standard Euclidean 2-norm for vectors. Let X1 be a bounded subset of Rd ,
containing x∗ in its interior, and let X = {x|supy∈X1

∥x−y∥ ≤ ε1} for some ε1 > 0. For each i, j, define the
function classes Fi, j = {∂ 2

i, jh(x,ζ )|x∈X } and F̃i = {(∂ih(x1,ζ )−∑ j ∂ 2
i, jh(x2,ζ )(x1−x2))/∥x1−x2∥|x1 ∈

X ,x2 ∈X1,x1 ̸= x2}. These function classes represent the scopes of the higher-order terms of the Taylor
expansion of H at x∗, which are crucial in developing the required asymptotic properties. Let G(x) =∇2H(x)
and S(x) = E[∇h(x,ζ )(∇h(x,ζ ))top] be the Hessian of H and covariance matrix of ∇h(x,ζ ) respectively.
Given n data points, define Gn(x) = 1

n ∑
n
i=1 ∇2h(x,ζi) and Sn(x) = 1

n ∑
n
i=1 ∇h(x,ζi)(∇h(x,ζi))

top.
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Algorithm 2 Cheap Online Bootstrap (COnB)
Input: i.i.d. data {ζt}n

t=1, number of bootstrap runs B ≥ 1, step size sequence {ηt}, initial guess x0,
nominal coverage level 1− γ .
Output: I COnB

i,n , i = 1, . . . ,d
for t← [1,2, . . . ,n] do

xt ← xt−1−ηt∇h(xt−1,ζt)
for b← [1,2, . . . ,B] do

Randomly generate Wb,t from exponential distribution with rate 1.
x∗bt ← x∗bt−1−ηtWb,t∇h(x∗bt−1,ζt)

end for
end for
xout← 1

n ∑
n
t=1 xt

for b← [1,2, . . . ,B] do
x∗bCOnB←

1
n ∑

n
t=1 x∗bt

end for
for i← [1,2, . . . ,d] do

sCOnB
i ←

√
1
B ∑

B
b=1

(
(x∗bCOnB)i− (xout)i

)2

I COnB
i,n ←

[
(xout)i− tB,1− γ

2
sCOnB

i ,(xout)i− tB,1− γ

2
sCOnB

i

]
end for

Assumption 1 h and H are twice continuously differentiable in x. And the eigenvalues of ∇2h(x,ζ ) lies
in [l,L] for some positive real numbers 0 < l < L for all x,ζ .
Assumption 2 The noise of estimated gradient {∇h(xt−1,ζt)−∇H(xt−1)}n

t=1 is i.i.d. with mean 0.
Assumption 1 specifies that the objective function h exhibits strong convexity along with a bounded

Hessian, which implies the same property holds for H, in particular its strong convexity. Thus, it guarantees
the existence and uniqueness of x∗ that satisfies the first-order optimality condition ∇H(x∗)= 0. Assumption 2
stipulates that the evaluation noise in the first-order gradient oracle is unbiased, which is a standard assumption
to ensure the convergence of (A)SGD. To establish asymptotic normality, an additional assumption on the
variability of ∇h(x,ζ ) is required:
Assumption 3 There are τ0,τ > 0 such that ∥x0− x∗∥ ≤ τ0 and ∥∇h(x∗,ζ )∥4 ≤ τ . The eigenvalues of
S(x∗) = E[∇h(x∗,ζ )(∇h(x∗,ζ ))top] lie in the interval [λ1,λ2] for some positive constants λ1 < λ2.

We also need the SAA solution, namely, x̂n, to be consistent in the sense that the difference between
Hn(x̂n) and Hn(x∗) converges to 0 in probability. The following assumption is sufficient for this requirement.

Assumption 4 supx∈Rd |Hn(x)−H(x)| P−→ 0.
A further sufficient condition for Assumption 4 is that the function class {h(x,ζ )|x ∈Rd} is Glivenko-

Cantelli, which can be implied by Assumption 1 if the space of x is a bounded subset of Rd (Van der Vaart
2000), though we do not assume the latter here. Essentially, a function class F is Glivenko-Cantelli if the
law of large numbers holds uniformly in functions over F .

The following two assumptions are specialized for ASGD and SGD considered in this work respectively.
The specific choice of step size guarantees the convergence of (A)SGD in distribution. The Glivenko-
Cantelli assumptions help us analyze the vanishing property of some terms in our analysis of the residual
xout− x∗.
Assumption 5 The step size satisfies ηt = ηt−α for some α ∈ (1

2 ,1]. For each i, j, function class Fi, j is
P-Glivenko-Cantelli.
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Assumption 6 The step size is ηt = ηt−1, and the initial step size η satisfies η l > 1
2 . For each i, j, function

classes Fi, j and F̃i are P-Glivenko-Cantelli and P(xt = x∗) = 0, ∀t.
With the above assumptions, we have the following theorem:

Theorem 7 Under Assumptions 1, 2, 3, 4 and 5 for COfB running ASGD, or Assumptions 1, 2, 3, 4 and
6 for COfB running SGD, we have, for any fixed B≥ 2, i = 1, . . . ,d, the COfB 1− γ confidence interval
for i-th entry is asymptotically exact in the sense

lim
n→∞

P(x∗i ∈I COfB
i,n ) = 1− γ (4)

Moreover, under Assumptions 1, 2, 3, 4 and 5 for COnB, we have, for any fixed B≥ 1, i = 1, . . . ,d, the
COnB 1− γ confidence interval for i-th entry is asymptotically exact in the sense

lim
n→∞

P(x∗i ∈I COnB
i,n ) = 1− γ (5)

Theorem 7 states that COfB and COnB attain asymptotically exact coverage as the sample size n→∞,
regardless of any fixed choice of B ≥ 2 for COfB and B ≥ 1 for COnB. This light computation hinges
on our interval construction step at the end that differs from standard bootstraps. Note the subtlety that
COfB requires B≥ 2, but COnB is valid even for B as small as 1. This discrepancy comes from the slight
difference in the joint asymptotic limits among the original and resample (A)SGD runs of COfB and COnB
respectively, which will be discussed in Theorem 8 in the following section. One may also notice that
COnB works only for ASGD. Whether it will work for SGD is still open to us, as the asymptotic behavior
for SGD is actually more delicate.

4 IDEA BEHIND THE MAIN GUARANTEES

We present the development for Theorem 7 in three layers. First is the cheap bootstrap idea that relies
on asymptotic independence among original and resample (A)SGD runs. Second is the conversion from
conditional convergence of resample estimates given the data, a condition that is widely utilized in classical
bootstraps, into asymptotic independence. The third and most challenging step is the development of
uniform non-asymptotic bounds to argue this conditional convergence.

4.1 Bootstrap via Asymptotic Independence

We start with the following result on asymptotic independence among original and resample runs.
Theorem 8 Under the same assumptions as Theorem 7, we have

√
n


xout− x∗

x∗1COfB− x̂n
...
x∗BCOfB− x̂n

 d−−−→
n→∞


Z0
Z1
...
ZB

 (6)

and

√
n


xout− x∗

x∗1COnB− xout
...
x∗BCOnB− xout

 d−−−→
n→∞


Z0
Z1
...
ZB

 (7)

where Zb, b = 0, . . . ,B are i.i.d. d-dimensional Gaussian random variables with mean 0. When xout stands
for the ASGD output 1

n ∑
n
t=1 xt , the covariance matrix of Zb is G(x∗)−1S(x∗)G(x∗)−1, b = 0, . . . ,B, where

G(x∗) = ∇2H(x∗) and S(x∗) = E[∇h(x∗,ζ )(h(x∗,ζ ))⊤]. When xout stands for the SGD output xn, consider
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the singular value decomposition G(x∗) =QDQ⊤ with D= diag(d1, . . . ,dd), where d1, . . . ,dd are eigenvalues
of G(x∗) in decreasing order and Q the matrix consisting of eigenvectors. For i, j = 1, . . . ,d and b = 0, . . . ,B,
the covariance between (Zb)i and (Zb) j is given by σ2

i, j = η2(ηdi +ηd j−1)−1(Q⊤S(x∗)Q)i, j.
Theorem 8 involves two aspects. First, the asymptotic distribution of the error of the resample run

compared with the SAA solution in COfB, namely, x∗bCOfB− x̂n (or compared with the original ASGD run
in COnB, x∗bCOnB−xout) is the same as that of the original run compared with the true minimizer, xout−x∗.
Second, more importantly, is the asymptotic independence among all these errors. Derivation of Theorem
8 will be discussed in the later sections. Taking Theorem 8 for granted, the following is a proof of Theorem
7.

Proof of Theorem 7. Consider COfB first. Observe that

(xout)i− x∗i
sCOfB

i
=

√
n((xout)i− x∗i )√
n× (sCOfB

i )2
=

√
n((xout)i− x∗i )√

n× ∑
B
b=1((x∗bCOfB)i−(x∗COfB)i)

2

B−1

=

√
n((xout)i− x∗i )√

∑
B
b=1(
√

n((x∗bCOfB)i−(x̂n)i)−
√

n((x∗COfB)i−(x̂n)i))
2

B−1

As n goes to infinity, we have
√

n((xout)i− x∗i )√
∑

B
b=1(
√

n((x∗bCOfB)i−(x̂n)i)−
√

n((x∗COfB)i−(x̂n)i))
2

B−1

d→ (Z0)i√
∑

B
b=1((Zb)i−(Z̄)i)

2

B−1

d
=

N√
χ2

B−1
B−1

d
= tB−1

where Z̄ = (1/B)∑
B
b=1 Zb, and N stands for a standard normal variable, χ2

B−1 a χ2-variable with B− 1

degree of freedom, tB−1 a student t-variable with B−1 degree of freedom, and “ d
=” equality in distribution.

The convergence in distribution above comes from the continuous mapping theorem. The first equality in
distribution comes from the i.i.d. normality limit in Theorem 8 and the elementary relation between χ2

and normal. The second equality in distribution comes from the elementary construction of a t variable.
Thus, by a pivotal argument, we obtain the confidence interval generated from COfB.

A similar argument works for COnB, except that we use xout directly in place of x∗COfB in the pivotal
construction and correspondingly, it would result in student t-distribution with degree of freedom B.

4.2 From Conditional Convergence to Asymptotic Independence

Our next step is to prove Theorem 8. As a sub-step, the conclusions in Theorem 8 can be implied by a
conditional convergence:
Theorem 9 Suppose

√
n(xout− x∗) d−−−→

n→∞
Z0 (8)

In addition, if √
n(x∗bCOfB− x̂∗n)

d−−−→
n→∞

Z0 conditional on ζ1,ζ2, . . . (9)

then (6) holds, and if √
n(x∗bCOnB− xout)

d−−−→
n→∞

Z0 conditional on ζ1,ζ2, . . . (10)

then (7) holds, where Z0 denotes a d-dimensional Gaussian random variable with mean 0 and covariance
matrix as described in Theorem 8.

Therefore, if we can show (8), (9) and (10), then we obtain the conclusions in Theorem 8 and
subsequently the guarantees of COfB and COnB in Theorem 7. Note that (8) is the classical asymptotic
normality of (A)SGD guaranteed by our assumptions (Chung 1954; Sacks 1958). On the other hand, the
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type of conditional convergence in (9) and (10) is the main driver of classical bootstrap methods that allow
the approximation of a sampling distribution using the resample counterpart. Here, converting the latter
into the conclusion in Theorem 8 presents a new bootstrap methodological route that substantially reduces
B. The proof for Theorem 9 generalizes the proof of Proposition 1 in Lam (2022b) and we refer readers
to the details therein.

4.3 From Uniform Non-Asymptotic Bound to Conditional Convergence

For COnB, the desired conditional convergence result (10) is well established in the proof of Theorem 1
in Fang et al. (2018). We focus on proving (9) for COfB under both SGD and ASGD settings, which
constitutes our main technical development.

Let us abstractize our discussion to denote ψ(P) as the minimizer for (1) with data distribution P,
where ψ is viewed as a mapping from the data distribution to Rd . Correspondingly, define ψn as the
mapping from the data distribution to the outcome of (A)SGD. Then ψn(P) ∈Rd is the (random) outcome
of (A)SGD after n iterations, as a function of data distribution P with h and {ηt}n

t=1 implicitly chosen.
Classical results (Polyak and Juditsky 1992; Chung 1954) state that the weak limit of

√
n(ψn(P)−ψ̂(P))

exists and equals Z0. This Z0 is the Gaussian variable described in Theorems 8 and 9 whose variance
depends on P. Let Ẑm denote the normal variable that replaces P in its variance with P̂m, conditional on
the collected data. With these new notations, (9) holds if for any Borel measurable set D⊂ Rd , we have
the following

lim
n→∞
|P∗(
√

n
(
ψn(P̂n)− ψ̂(P̂n)

)
∈ D)−P(Z0 ∈ D)|= 0 w.p.1 (11)

where P∗ denotes the probability conditional on the data (we will also use E∗ to denote the corresponding
conditional expectation). By the triangle inequality, one can obtain

|P∗(
√

n
(
ψn(P̂n)− ψ̂(P̂n)

)
∈ D)−P(Z0 ∈ D)|

≤|P∗(
√

n
(
ψn(P̂n)− ψ̂(P̂n)

)
∈ D)−P∗(Ẑn ∈ D)|+ |P∗(Ẑn ∈ D)−P(Z0 ∈ D)|

It can be proved that the second term above vanishes with probability 1. On the other hand, we have the
following theorem for the first term:
Theorem 10 Under the same assumptions as in theorem 7 and focusing on COfB, for any measurable set
D, we have

lim
n→∞
|P∗

(√
n(ψn(P̂n)− ψ̂(P̂n)) ∈ D

)
−P∗(Ẑn ∈ D)|= 0 w.p.1 (12)

The proof invokes an expansive analysis on the behavior of the (A)SGD output. From the iterative
scheme (2), one obtains the following

xn+1 = B0nx1−
n

∑
m=1

ηmBmnδm−
n

∑
m=1

ηmBmnEm (13)

where δk ≜ δ (xk) = ∇H(xk)−G(x∗)(xk− x∗) is the second-order residual of the Taylor expansion of ∇H
at x∗, Ek−1 = ∇h(xk−1,ζk)−∇H(xk−1), and Bmn = ∏

n
j=m+1(I−η jG) ∈ Rd×d .

In the ASGD case, from (13) and using results from Shao and Zhang (2022), we show that there is a
4-tuple (τ̂0, τ̂,Ĉ,N) such that

sup
n>N
|P∗(
√

n
(
ψn(P̂n)− ψ̂(P̂n)

)
∈ D)−P∗(Ẑn ∈ D)| ≤ Ĉ(d3/2 + τ̂

3 + τ̂
3
0 )(d

1/2n−1/2 +n−α+1/2) (14)

for any measurable D. Shao and Zhang (2022) gave an inequality similar to (14) but with a fixed distribution
instead of a varying distribution P̂n depending on n. Additional arguments are required to show that the
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Table 1: Average time for different methods for logistic regression.

Method delta BM OB (B = 100) HiGrid(2,2) COfB ASGD COnB
Average Time (s) 10.53 1.10 104.49 0.95 3.15 4.09

established rate is uniform across all data distributions including the empirical distribution. Detailed proof
for (14) is omitted here due to space limit.

For the SGD case, the first two terms in (13) correspond to the interaction of the error of the initial
solution and second-order residual in the Taylor expansion of ∇H. One can show the following vanishing
property

lim
n→∞

E[∥B0nx1−
n

∑
m=1

ηmBmnδm∥] = 0

On the other hand, the last term ∑
n
m=1 ηmBmnEm consists of the difference between sample gradient ∇h

and true gradient ∇H, which converges to a normal distribution. We use the Berry-Esseen-type result
from Lemma 4 in Shao and Zhang (2022) to give a non-asymptotic convergence result for this term and
thus establish a bound similar to (14) that is uniform across all data distributions including the empirical
distribution.

(a) (b)

Figure 1: Performance of methods with respect to different choices of initial step size η , with sample size
n = 104. We compare the delta method, batch-mean method with M = n0.25, COfB method with B = 10,
COnB with B = 3,10, and the online bootstrap method with B = 10, when n = 104. The left figure shows
the sensitivity of the average coverage probability against η ; The right figure shows the sensitivity of the
average length of confidence interval against η . We report the result for identity Σ.

5 EXPERIMENTS

In this section, we illustrate the numerical performances of our approaches and compare with the other
methods. We consider logistic regression, with loss function h(x,ζ ) = log(1+ e−b×a⊤x). The data ζ = (a,b)
coming from distribution P consists of the independent variable a∈Rd and dependent variable b∈ {−1,1}.
where a follows a multivariate normal distribution with mean 0 and covariance matrix Σ, and b = 1 with
probability 1

1+e−a⊤x∗ . In this case, we have ∇h(x,ζ ) = −b×a
1+eb×a⊤x

and ∇2h(x,ζ ) = aa⊤

(1+ea⊤x)(1+e−a⊤x)
. The

Hessian information ∇2h(x,ζ ) above will only be used in the delta method.
Baselines. The batch-mean method (BM) splits {xi}n

i=0 into M batches, with ek and sk denoting
the ending index and starting index of the k-th batch respectively. nk denotes the number of iterates in
k-th batch, and the estimator is defined to be 1

M ∑
M
k=1 nk(x̄nk − x̄M)(x̄nk − x̄M)⊤, where x̄nk =

1
nk

∑
ek
i=sk

xi and
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x̄M = 1
eM−e0 ∑

eM
i=s1

xi. Let N = n1−α

M+1 , and ek to be the closest integer to ((k+1)N)
1

1−α for each k = 0, . . . ,M as
suggested in Chen et al. (2020). The confidence interval for each entry of x∗ is constructed using diagonal
entries of the batch-mean estimator and a normal quantile. The delta method (Chen et al. 2020) generate
confidence intervals using normal quantile and Σ̃2

n = G̃−1
n S̃nG̃−1

n , where G̃n = 1
n ∑

n
i=1 ∇2h(xi−1,ζi), and

S̃n =
1
n ∑

n
i=1 ∇h(xi−1,ζi)(∇h(xi−1,ζi))

⊤ are computed on the fly. The online bootstrap method (OB) (Fang

et al. 2018) works by generating B sequences of i.i.d. exponential random variables, {W (b)
i }n

i=1, b= 1, . . . ,B.
And for each b, run ASGD using {ζi}n

i=1 and step sizes {W (b)
i ηi}n

i=1. The confidence interval is then
constructed using the outcomes and normal quantile. The HiGrad method (Su and Zhu 2018) takes two
tuples (B1,B2, . . . ,BK) and (n0,n1, . . . ,nK) as hyperparameters describing when to break the SGD thread
into how many branches. Bk represents the number of branches a single branch divides into at the k-th
break, and nk represents the number of data each thread uses between the k-th and (k+1)-th breaks. After
all the breaks, there will be T = ∏

K
k=1 Bk threads and one obtain {x( j)}t

j=1op by averaging each thread.
The confidence interval for the i-th entry of x∗ is calculated by aggregating {(x( j))i}t

j=1op.
Hyperparameters. The nominal coverage probability is set to be 95%. We report results for three

choices of dimensions, d = 5,20,200. Two choices of Σ are tested, namely identity (Σ = Id) and Toeplitz
(Σi, j = 0.5|i− j|). For all experiments, the decay rate of step size α is set to be 0.501, so ηt = ηt−0.501. We
set x∗ = [0, 1

d−1 ,
2

d−1 , . . . ,1] and x0 = [0, . . . ,0] ∈ Rd .
For each set of hyperparameters, we run 500 independent trials and report the mean and standard

deviation of the coverage probabilities and the average length of the intervals across d dimensions. We tune
the initial step size η within the range [0.2,0.7] and report the result with the most accurate average coverage
probability. For the batch-mean method, M is selected to be the nearest integer to n0.25 as suggested in
Chen et al. (2020). For HiGrad, the architecture we experiment on is ((2,2),(n/7,n/7,n/7)). We report
the performance of COfB and COnB with B = 3, and set B = 200 for the online bootstrap method unless
otherwise specified, as suggested in Fang et al. (2018).

Results. Results for this logistic regression experiment can be found in Table 2. We use bold
numbers to denote good results in the sense that the coverage probability is between 92% and 98%, and
use italic numbers to denote bad results with coverage probability less than 80%.

Generally speaking, for any d and Σ discussed in this experiment, the delta method and batch-mean
method are outperformed by other methods. For the HiGrad method, we observe a significant drop in
performance when d = 200, which might be caused by its shorter SGD trajectory compared with other
methods. When d = 200, the number of data/iterations is inadequate for SGD to converge properly. The
performance of the delta method drops significantly as d increases since it requires a Monte-Carlo estimation
of a full Hessian matrix, the accuracy of which suffers when the dimension increases, while the benefit
of reusing data in bootstrap-type methods is more apparent. For the online bootstrap method, although it
gives a comparable coverage probability, our methods are significantly faster. As a trade-off, the average
length of the confidence interval of our method is larger compared with the batch-mean method and the
delta method, which is due to the t-quantile with degree of freedom B−1 (B) in our COfB (COnB). Recall
that entries of x∗ are linearly spaced in [0,1], and the confidence intervals are of magnitude 10−2. Thus
the benefits in computational efficiency appear to significantly outweigh the increase in interval length.

Table 1 presents the computation time for different methods. The experiment was performed on a single
processor at 3.4GHz. HiGrad and the batch-mean method are the fastest as they require no extra gradient
steps or computing Hessian. Roughly speaking, the computation time is proportional to the number of
gradient steps except for the delta method.

Sensitivity Analysis. In Figure 1, we compare the performance of our methods, the delta method,
the batch-mean method, and the online bootstrap method with number of samples n = 104 for the linear
regression problem. Observe that the coverage probability of COfB methods remains stable around 95%
regardless of changes in the initial step size. On the other hand, the batch-mean method requires a careful
choice of the initial step size to give a comparable coverage rate, and the optimal choice is not the same
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Table 2: Coverage probabilities and average interval lengths in the logistic regression experiment.

d = 5 d = 20 d = 200
Cov (%) Len (×10−2) Cov (%) Len (×10−2) Cov (%) Len (×10−2)

Identity Σ, n = 105

delta 95.00 (0.07) 3.10 (0.00) 94.12 (0.07) 3.68 (0.00) 61.92 (0.15) 5.85 (0.00)
BM 89.33 (0.10) 2.64 (0.00) 87.29 (0.11) 3.11 (0.01) 57.47 (0.16) 5.56 (0.02)
OB 94.83 (0.07) 3.18 (0.00) 96.96 (0.05) 4.41 (0.01) 99.91 (0.01) 50.71 (0.23)

HiGrad(2,2) 94.33 (0.07) 5.77 (0.02) 95.46 (0.07) 7.10 (0.02) 80.61 (0.13) 10.26 (0.04)
COfBASGD 94.12 (0.07) 4.21 (0.00) 95.03 (0.07) 7.32 (0.01) 92.34 (0.08) 19.00 (0.02)
COfBSGD 95.40 (0.07) 9.38 (0.01) 94.99 (0.07) 9.42 (0.01) 94.72 (0.07) 25.61 (0.03)

COnB 94.33 (0.07) 4.71 (0.02) 95.62 (0.06) 6.56 (0.03) 99.42 (0.02) 75.25 (0.43)
Toeplitz Σ, n = 105

delta 94.83 (0.07) 4.05 (0.00) 93.29 (0.08) 5.59 (0.00) 53.69 (0.16) 9.56 (0.00)
BM 84.00 (0.12) 3.16 (0.01) 75.25 (0.14) 3.75 (0.01) 34.93 (0.15) 7.30 (0.03)
OB 95.00 (0.07) 4.24 (0.00) 94.67 (0.07) 6.70 (0.01) 99.78 (0.01) 69.28 (0.26)

HiGrad(2,2) 95.33 (0.07) 7.18 (0.03) 93.38 (0.08) 8.92 (0.03) 57.02 (0.16) 10.27 (0.04)
COfBASGD 94.12 (0.07) 5.70 (0.00) 94.77 (0.07) 11.49 (0.01) 93.79 (0.08) 42.27 (0.05)
COfBSGD 95.36 (0.07) 9.48 (0.01) 94.80 (0.07) 9.65 (0.01) 94.41 (0.07) 30.53 (0.03)

COnB 94.00 (0.08) 6.22 (0.02) 94.71 (0.07) 10.27 (0.05) 97.82 (0.05) 99.61 (0.60)

across different problems. The delta method suffers from a huge under-coverage and fails to give a valid
confidence interval. The delta method and the batch-mean method have smaller average lengths, which
can be associated with their under-coverages. It can be observed that the coverage probability and the
average length of the batch-mean estimator both increase as η increases. Our COnB method has a similar
sensitivity as the online bootstrap method. Nonetheless, as mentioned earlier, COnB is substantially faster.
Additionally, the average length of our COnB becomes almost the same as that of the online bootstrap
method when increasing B to 10.
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