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ABSTRACT

Calibration is a crucial step for model validity, yet its representation is often disregarded. This paper proposes
a two-stage approach to calibrate a model that represents target data by identifying multiple diverse parameter
sets while remaining computationally efficient. The first stage employs a black-box optimization algorithm to
generate near-optimal parameter sets, the second stage clusters the generated parameter sets. Five black-box
optimization algorithms, namely, Latin Hypercube Sampling (LHS), Sequential Model-based Algorithm
Configuration (SMAC), Optuna, Simulated Annealing (SA), and Genetic Algorithm (GA), are tested and
compared using a disease-opinion compartmental model with predicted health outcomes. Results show
that LHS and Optuna allow more exploration and capture more variety in possible future health outcomes.
SMAC, SA, and GA, are better at finding the best parameter set but their sampling approach generates less
diverse model outcomes. This two-stage approach can reduce computation time while producing robust
and representative calibration.

1 INTRODUCTION

Calibration, or parameter estimation to fit a model to data, is essential for ensuring the validity of a model
and model outcomes (e.g., simulation results). Model calibration typically involves four steps: identify the
parameters to be calibrated, select target data to compare with model outcomes, determine a goodness-of-fit
(GOF) measure between target data and model outcomes, and choose parameter search strategies (Vanni
et al. 2011).

Previous research on model calibration considers two main approaches: i) identifying a single optimal
parameter set, and ii) determining a large number of feasible parameter sets. Relying solely on a single
parameter set may not account for uncertainty in the target data and may limit the range of future model
predictions beyond the calibration period. A large number of parameter sets may be a better representation
of uncertainty, but has a high computation cost.

In our previous study (Lee et al. 2021), we developed an agent-based model where we calibrated
the model for 152 days and then predicted policy outcomes for 348 days. During the prediction period,
we conducted a 4-way sensitivity analysis on policy interventions, resulting in over 300 policy scenarios
for each calibration set. Due to the complexity and stochastic nature of the model, each policy run took
around 500 minutes. To mitigate the computational resources needed, we employed a clustering approach,
reducing the number of parameter sets to two. This enabled us to obtain valuable policy insights while
avoiding excessive use of computer resources.

Inspired by our previous study, we propose a two-stage process that we call representative calibration.
This approach aims to identify multiple diverse parameter sets that are both computationally efficient and
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“good enough” to represent the target data. Our calibration approach involves a two-stage process. In the
first stage, we leverage well-known black-box optimization algorithms for parameter search and identify
good-enough parameter sets. In the second stage, we apply a clustering approach to the selected parameter
sets to obtain representative parameter sets. This two-stage approach balances computation efficiency with
sufficient coverage of potential future model outcomes.

In this study, we evaluate the effectiveness of our proposed calibration approach and compare the
performance of several parameter search algorithms. In Section 2, we review relevant literature on model
calibration. Section 3 explains the concept of representation calibration, including black-box optimization
algorithms and clustering. We describe the numerical comparison plan in Section 4.1, and present a
disease-opinion compartmental model (Lee et al. 2023) in Section 4.2 to illustrate the two-stage calibration
process. Finally, we present the study’s findings in Section 5 and provide a discussion in Section 6.

2 LITERATURE REVIEW

In recent years, various calibration techniques have been proposed across different fields such as epidemics,
economics, engineering, and neuroscience. As models become more complex, data availability increases,
and methodology advances, calibration techniques have become more effective and efficient. Most of these
techniques focus on time efficiency and precision of the model to target data, with little attention given to
the robustness or representativeness of the calibration.

Latin hypercube sampling has been commonly used in calibration due to its simplicity and coverage
of a parameter space (Mckay et al. 2000), and is still in use today (Lee et al. 2021; Rao and Brandeau
2022). Black-box optimization methods, such as simulated annealing and genetic algorithms have also
been applied to calibration (Cheng et al. 2006; Dahabreh et al. 2017). Bayesian optimization methods,
such as the Sequential Model-based Algorithm Configuration (SMAC) (Hutter et al. 2011) and Optuna
(Akiba et al. 2019) have been used for hyperparameter tuning and calibration (Kerr et al. 2021; Maurice
et al. 2017). Our study explores these well-known calibration algorithms within the proposed two-stage
representative calibration framework.

Several Bayesian calibration methods address parameter uncertainty by approximating a posterior
distribution. Kerr et al. (2021) used Optuna to calibrate an agent-based epidemiological model. The
study derived a posterior distribution of parameters by using more than 15,000 parameter sets. The top
ten best-fitting parameter sets were used for scenario analyses. Jalal et al. (2021) combined Bayesian
calibration with an artificial neural network as a surrogate model. By generating 10,000 parameter sets,
they derived a posterior distribution of parameters while accounting for data uncertainty through the use of
threshold values. The paper improved accuracy and computation time compared to an importance sampling
algorithm.

A Gaussian process metamodel was used in Xie et al. (2017) to obtain the posterior distribution of
parameters, and quantified a credible interval to account for parameter estimation uncertainty. Unlike our
approach which aims to capture uncertainty of the model, the calibration performance was focused on
reducing the width of credible intervals and prediction intervals. Nevertheless, it remains unclear whether
these approaches represent diverse uncertainty in model outcomes, since the top parameter sets were selected
solely based on GOF measure.

A clustering approach was adopted in Krauledat et al. (2006) to reduce the calibration process for
Brain-Computer Interfaces. The calibration parameters consist of prototypes of a Common Spatial Pattern
algorithm used to classify brain states. Although this study uses clustering for calibration, the focus of the
study is to reuse previously calibrated clustering from previous data for new data. This is slightly different
from our objective in that our main interest lies in efficiently calibrating a model to given data, and then
predicting future trajectories, instead of reusing clustered results to new data.

Most of the algorithms focus on time efficiency and precision of the model to target data. The calibrated
parameter sets are usually presented as each individual parameter’s posterior distribution. Little attention
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has been given to the information or representativeness of the whole calibration parameter space on the
model outcomes.

3 REPRESENTATIVE CALIBRATION

We propose a two-stage process, where the first stage is to optimize the GOF using an optimization
algorithm and the second stage is to apply clustering to the results of the first stage optimization, obtaining
representative parameter sets.

In the first stage, we use a black-box optimization algorithm to search for parameters and identify
parameter sets that minimize the goodness-of-fit measure between model outcomes and target data. The
first stage optimization problem is stated as,

min
x

GOF( f (x),y)

li ≤ xi ≤ ui for i = 1, . . . ,n
(1)

where the target data y is a vector in m dimensions, y = [y1, . . .ym], and the model outcome, f (x), may
also be m-dimensional to correspond to the target data. The calibration parameter vector x = [x1, . . . ,xn]
denotes a calibration parameter set in n dimensions, and typically has lower and upper limits li and ui,
respectively, for i = 1, . . . ,n. The goodness-of-fit measure is defined by the user to be appropriate to the
model and data (e.g., Mean Square Error, Mean Absolute Error, or Total Sum of Squares).

In the second stage, we apply a clustering technique to the parameter sets obtained from the first-stage
to identify representative parameter sets. After identifying the representative parameter sets, the model
is run for a period longer than the calibration period to observe the diversity of predicted future model
trajectories.

3.1 Stage 1: Parameter Search using Black-Box Optimization

This section describes the black-box optimization algorithms used in the first stage of representative calibra-
tion. The algorithms include Latin Hypercube Sampling, Sequential Model-based Algorithm Configuration,
Optuna, Simulated Annealing, and Genetic Algorithm.

3.1.1 Latin Hypercube Sampling (LHS)

Latin hypercube sampling is a quasi-random sampling method that is often favored in computer experiments
because of its simplicity and coverage of the parameter space (Mckay et al. 2000). LHS divides each
parameter into equally probable intervals and samples once from each interval. Such even spacing of
samples reduces sampling variance and can be applied to high-dimensional problems. However, when the
sample size is not large enough, LHS may not be as effective as other algorithms at minimizing GOF.

3.1.2 Sequential Model-based Algorithm Configuration (SMAC)

SMAC is a Bayesian optimization framework that is applied in various areas, ranging from hyperparameter
tuning in machine learning to global optimization of black-box functions (Hutter et al. 2011). SMAC
creates a random forest surrogate model and updates it as the algorithm proceeds. SMAC combines a local
search with random sampling to balance exploration and exploitation (Anastacio and Hoos 2020). Although
SMAC’s Bayesian approach may find near-optimal solutions with a small number of model runs, it may
take a long time to build the random forest, making SMAC appropriate for computationally expensive
models.
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3.1.3 Optuna

Optuna is an optimization framework actively used in hyperparameter tuning that uses a dynamic approach to
explore the search space (Akiba et al. 2019). It employs a combination of sampling and pruning algorithms
to improve the efficiency of the optimization algorithm. The default sampling method for Optuna uses the
Tree-structured Parzen estimator (TPE), which generates two probability density functions for “good” and
“bad” subsets (Bergstra et al. 2011). As default, the median pruning technique is used, which terminates a
model if its best performance is inferior to the median of all model outcomes (Golovin et al. 2017). Similar
to SMAC, Optuna may require only a small number of model runs, but the additional effort required to
build the TPE and median pruning may result in computational overhead.

3.1.4 Simulated Annealing (SA)

Simulated annealing is a metaheuristic global optimization algorithm that randomly samples from a domain
and accepts a candidate point based on a “cooling schedule” that gradually decreases over time (Metropolis
et al. 2004). This approach helps the algorithm escape local minima and find approximate global optima,
which is difficult for other optimization techniques such as gradient descent. However, the performance of
simulated annealing depends on the method for generating sequential points and the tuning of the cooling
schedule.

3.1.5 Genetic Algorithm (GA)

Genetic algorithms are metaheuristic global optimization algorithms that mimic natural evolution by utilizing
the survival of the fittest, selection, and mutation (Holland 1992). GA evaluates solutions based on a fitness
function, selects the best ones, and generates new populations using genetic operators like crossover and
mutation. GA can dynamically change the search process by varying crossover and mutation probabilities,
but it can be computationally expensive for complex problems that require large population sizes and high
numbers of generations. Results can also be sensitive to the initial population.

3.2 Stage 2: Clustering

In the second stage, we reduce the number of parameter sets by clustering a set of good-enough parameter
sets that satisfy a GOF threshold. Our method for determining the optimal number of clusters, inspired by
the elbow method introduced by (Ketchen and Shook 1996), involves identifying the value of K at which
an additional cluster (i.e., increasing the number of clusters from K to K +1) does not lead to a reduction
of more than 5% in the total within-cluster sum of squares (WSS).

Next, the Partition Around Medoids (PAM) algorithm (Kaufman and Rousseeuw 1990) is applied to
identify K-medoid points as representative parameter sets. Unlike the centroid method that calculates the
mean of all points within a cluster, the medoid is the actual point in the cluster that is most centrally located.
It is less susceptible to extreme values that may skew the mean in the centroid approach. Additionally,
since the medoid is an actual data point, it has a more straightforward interpretation and can be more easily
related to the original data.

4 COMPUTATIONAL STUDY

4.1 Experimental Setup

Our computational study aims to explore a two-stage representative calibration process with five different
first-stage optimization algorithms namely, LHS, SMAC, Optuna, SA and GA. We solve the calibration
optimization problem (1) with mean absolute error as our goodness-of-fit measure. We run each algorithm
for 50,000 function evaluations. For each algorithm, instead of executing 50,000 function evaluations in
one run, we run 10 replications of the algorithm with 5,000 function evaluations in each replication. This
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scheme, from our observation from numerical experiment, balances exploration with exploitation to some
extent. For simulated annealing, our numerical experience is that the solution plateaus after about 5,000
function evaluations. So repeating simulated annealing with 10 different starting points (associated with
the initial random seed), we hope to identify more good points. Hence, our experiment runs each algorithm
for 50,000 function evaluations total, but is the result of 10 repetitions with 5,000 function evaluations
each. After the 50,000 function evaluations, we filter the 50,000 points to obtain those with MAE < 2,
which we consider good-enough parameter sets.

In the second stage, we employ the Partition Around Medoids algorithm to identify medoid points that
represent clusters of the good-enough parameter sets. We then simulate the model for 100 days (59 days
for the calibration period and 41 days beyond the calibration period) with the clustered parameter sets and
evaluate the result.

All experiments are performed on a high-performance computing cluster equipped with 10 CPU cores
and 20GB of memory, using an Intel Xeon processor.

4.2 Model Description

For a numerical study, we calibrate a disease-opinion compartmental model. In this section, we define
the parameters to be calibrated, the target data, and the goodness-of-fit measure to evaluate the similarity
between target data and model outcomes.

We illustrate our calibration method using a disease-opinion compartmental model on COVID-19, as
described in (Lee et al. 2023). The model is a deterministic model that uses ordinary differential equations
to represent progression of a disease epidemic and vaccination opinion within a population.

We calibrate thirteen unknown parameters, denoted as x = (x1, . . . ,x13), where each parameter xi has a
lower bound and an upper bound, li ≤ xi ≤ ui, as presented in Table 1. The calibration parameters consist
of four disease-related parameters (x1,x3,x4,x5) and nine opinion-related parameters (x2,x6, . . .x13).

Table 1: 13 calibration parameters (xi) and their corresponding lower bounds (li) and upper bounds (ui).

Parameter (xi) Description Lower bound (li) Upper bound (ui)
x1 Base transmission rate 1.5 2.5
x2 Relative degree of opinion contact compared to physical contact 0.1 0.5
x3 Base mortality rate of reference group (ages 18 to 29 years) 0.0002 0.0003
x4 Average days to lose immunity and become susceptible 150 250
x5 Proportion of initially susceptible individuals 0.4 0.8
x6 Proportion of pro-vaccinators that actively share opinion 0.01 0.05
x7 Emotional judgment importance for vaccination in age group 1 0.01 0.99
x8 Emotional judgment importance for vaccination in age group 2 0.01 0.99
x9 Emotional judgment importance for vaccination in age group 3 0.01 0.99
x10 Emotional judgment importance for vaccination in age group 4 0.01 0.99
x11 Emotional judgment importance for vaccination in age group 5 0.01 0.99
x12 Sensitivity of rational judgement to vaccination probability 0.1 1.0
x13 Sensitivity of emotional judgement to vaccination probability 0.1 1.0

Figure 1 displays the target data y which consists of eight weekly data points from January to February
2023 and comprises five types of data. We use the notation yk,t to represent the target data, where k refers
to the type of health outcome k ∈ {1, . . . ,5} and t denotes each week during the period t ∈ {1, . . . ,8}.
Specifically, k = 1,2, and 3 correspond to the percentage of the population that is vaccinated in age group 0
to 17, 18 to 64, and over 65, respectively; k = 4 denotes the percentage of the population that is infectious;
and k = 5 represents the running cumulative number of deaths. Additionally, we use fk,t(x) to represent
the five model health outcomes at the eight weekly dates, that correspond to the calibration parameter set
x.
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Figure 1: Target data consisting of eight weekly data points on vaccination, infectious, and dead population
from January to February 2023.

Our GOF measure between target data yk,t and model outcomes fk,t(x) is calculated as the sum of
mean absolute errors (MAE), which is then normalized by the average of each target data. We use MAE
instead of mean squared error (MSE) because our normalized measure ranges between 0 to 1, so the
absolute difference provides an estimate of the absolute error, whereas MSE tends to underestimate larger
differences in the 0 to 1 range. The calibration optimization problem is formulated as follows:

min
x

GOF( f (x),y)

GOF( f (x),y) =
5

∑
k=1

8

∑
t=1

| fk,t(x)− yk,t |
ȳk

s.t. li ≤ xi ≤ ui for i = 1, . . . ,13

(2)

where yk,t , fk,t(x) ∈ R for k = 1, . . . ,5 and t = 1, . . . ,8, and ȳk = (1/8)∑
8
t=1 yk,t for k = 1, . . . ,5.

5 RESULTS

5.1 Parameter Search Results using Black-Box Optimization

This section presents the results from the first stage of representative calibration. As shown in Table 2,
SMAC, SA, and GA have a higher number of good enough points (MAE < 2) out of 50,000 points (10 runs
with 5,000 function evaluations each). This indicates that SMAC, SA, and GA can identify good solutions
quickly and more than two-thirds of the solutions found have MAE < 2. The computation time of SMAC
and Optuna is about twice that of LHS, SA, and GA, due to the overhead of computing a random forest
and TPE, respectively.

Table 2: Performance measures for each of five algorithms including, the best incumbent MAE value of
50,000 points, number of good-enough points (MAE < 2) out of 50,000 points, and total computation
time in seconds.

Algorithm LHS SMAC OPTUNA SA GA
Best MAE 1.613 1.350 1.455 1.346 1.378
Number of good enough points (MAE < 2) 318 37,505 7,331 31,562 47,093
Total Time (seconds) 12,157 29,631 13,479 12,296 26,612
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Figure 2 shows the incumbent function values averaged over 10 runs of each algorithm, as well as
the maximum and minimum value over 10 replications represented by vertical bars at selected numbers
of function evaluations. Observe that the result of this plot supports why we did 10 replications of 5,000
function evaluations in each run instead of 50,000 sequential iterations. The plot clearly demonstrates that
the algorithms progress in the initial iterations, followed by a slowdown and eventual plateauing, signifying
a diminishing return on subsequent iterations. Observe that, in Figure 2, SMAC and SA outperform Optuna
and GA in terms of minimizing MAE. Table 2 also shows that the best incumbent MAE value for SMAC
and SA is lower than the others.

Figure 2: Incumbent function value plots for the average, maximum and minimum MAE over 10 runs
of the five algorithms (LHS, Optuna, SMAC, SA, and GA) applied to the disease-opinion compartmental
model.

Figure 3 shows histograms of the two most important parameters, x1 and x2, from the filtered solutions
(MAE < 2) over 50,000 function evaluations from the five algorithms. The distribution of parameter values
within their lower and upper bounds differs by algorithm. LHS provides a spread of possible values over the
lower and upper bound range, whereas SA and GA are highly concentrated around the near-optimal values.
The parameter values from Optuna are nearly as spread out as LHS, but still concentrate on near-optimal
values. The distribution is one aspect of representative parameter sets.
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(a) Histogram of parameter x1

(b) Histogram of parameter x2

Figure 3: Histograms of parameters x1 and x2 illustrate the distribution of good enough solutions (MAE <
2) from all the five algorithms (LHS, Optuna, SMAC, SA, and GA) over all 50,000 function evaluations.

5.2 Clustering Results

The Partition Around Medoids algorithm is used to identify K-medoid points as representative parameter
sets. For each algorithm, the PAM algorithm is applied to the filtered set of good-enough parameter sets
over 50,000 points. We plot the cluster results on the two most important parameters, namely, x1 and x2.
Figure 4 illustrates the clustering of good enough parameter sets from LHS, SMAC, Optuna, SA, and GA.
Each dot in the 2-dimension plot represents a good-enough parameter set, and the large circle represents
the medoid point of a cluster. Since the number of clusters K is determined by observing changes in the
total within-cluster sum of squares, each algorithm has a different number of clusters, as a result, a different
number of medoid points, i.e., LHS has 4 clusters, SMAC has 10 clusters, Optuna has 7 clusters, SA has
12 clusters, and GA has 7 clusters, as shown in Figure 4. In Figure 4, the good-enough points of LHS
and Optuna were scattered over both parameter ranges. On the other hand, points from SMAC, SA, and
GA focus on a narrower range. Additionally, Optuna was able to provide a higher density of good enough
solutions than LHS, with a wide range of representative medoid points. Note that the clustering results
from Figure 4 are plotted for two parameters, x1 and x2, out of thirteen parameters. The visualization of
the nearest medoid in two dimensions does not illustrate the full thirteen dimension space.

5.3 Model Trajectories for 100 Days

Finally, for each black-box optimization algorithm, we run the disease-opinion compartmental model, using
the K-medoid parameter sets for 100 days (59 days used for calibration and 41 days for prediction). We then
evaluate the diversity of model trajectories by plotting health outcomes for each representative parameter
set. Figure 5 presents the five health outcomes from the compartmental model: the vaccinated population
by age group (Figure 5a), infectious population (Figure 5b), and dead population (Figure 5c). In each
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Figure 4: Cluster results on parameters x1 and x2 out of 13 parameters, with medoid points for each
algorithm.

plot, a single line represents the model trajectory using a medoid point for the parameter set. As such,
the number of lines corresponds to the number of clusters from each algorithm. Therefore, LHS, SMAC,
Optuna, SA, and GA have 4, 10, 7, 12, and 7 lines, respectively.

LHS (with 4 medoid points) and Optuna (with 7 medoid points) show diverse results in infectious
population and dead population from the span of the trajectories. The trajectories for the vaccinated
population in the 65+ age group match the target data and are more diverse with SMAC, SA, and GA than
for Optuna and LHS. This is helpful in representing the uncertainty of the target data and impact on health
outcomes. On the other hand, SMAC, SA, and GA, with multiple concentrated medoid points (10, 12, and
7, respectively) tend to show trajectories that lie close to each other.

6 DISCUSSION

In this paper, we evaluate a representative calibration approach that identifies multiple diverse parameter
sets in order to represent the uncertainty of predicted model outcomes while being computationally efficient.
The approach involves a two-stage process, (1) apply black-box optimization algorithms to search for good
parameter sets, then (2) apply a clustering approach to obtain representative parameter sets.

We observe that in the first stage, most algorithms find good-enough solutions that have relatively low
MAE. Considering the best MAE value discovered, SA achieves the lowest MAE, followed by SMAC,
GA, Optuna, and LHS, respectively. SMAC converges to a good value faster in the early iterations, as the
algorithm uses a random forest surrogate model and a Bayesian approach combining a local search and
random sampling. This allows SMAC to find optimal solutions with comparatively few function evaluations.
However, SMAC requires the most computation time as shown in Table 2.

In the cluster analysis from stage 2, each black-box optimization algorithm provides slightly different
cluster formations. The LHS algorithm, which divides each parameter into equally probable intervals,
shows more variety in the solutions. Hence, the solutions from LHS are scattered over the parameter range
and are not concentrated on near-optimal areas. On the other hand, SMAC and SA, which perform the best
in terms of minimizing MAE, provide multiple clusters of solutions, however, the location of each cluster
is in a narrower range of solutions. Optuna also allows more exploration, as evidenced by the histogram
and cluster results.

While SMAC and SA achieved the smallest GOF relatively quickly, we do not necessarily consider the
algorithms as the best calibration method. Our rationale is that the target data has uncertainty so achieving
the sole minimization of GOF may be less crucial for robust modeling. Instead, we aim to identify a broad
range of good-enough parameter sets, as this is more important in enhancing model robustness. Thus, we
find the results from LHS and Optuna more aligned with our goal, as they offer a wider variety of parameter
sets and future trajectories.

We attribute the differences in algorithmic outcomes to the strategies employed for exploration and
exploitation. SMAC and SA excel at exploiting and finding optimal solutions, whereas LHS and Optuna
excel at exploring and uncovering a wide range of good-enough solutions. We recommend that modelers
explore more regions once good-enough solutions are found, which can be achieved through strategies such
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(a) Vacinated population

(b) Infectious population

(c) Dead population

Figure 5: Health outcomes from the disease-opinion compartmental model, (a) vaccinated population, (b)
infectious polulation and (c) dead population, using the medoid parameter sets for all five algorithms, LHS,
Optuna, SMAC, SA, and GA respectively (from left to right).

as having enough different starting points instead of a single long-run, or adjusting algorithmic parameter
settings to explore other regions once a threshold is met.

Another consideration for calibration is the choice of GOF measures. When the target data consists
of multiple types, such as our model’s target data type (i.e, vaccination rates across different age groups,
infectious and dead population), the GOF measure may be aggregated to a single value. In our study, we
assigned equal weights to each target data type. As shown in Figure 5a, the calibration trajectories exhibit
a closer match with the red and blue lines, while relatively less alignment with the green line. Hence,
we recommend modelers to carefully select appropriate GOF aggregate metrics based on their specific
context and priorities. While we aggregated the GOF scores and selected a threshold value (i.e., MAE <
2), when individual target data have different implications, importance, or reliability, it may be advisable
to set different threshold values for each target data type. We will pursue this avenue in the future.

One reason for clustering is to reduce the computation time when performing model analysis. This is
especially beneficial in cases where the computation time of the model after the calibration period is longer
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than the computation time during the calibration period. As an example, in (Lee et al. 2021), the model
runtime for the calibration period (152 days) was approximately 500 minutes, whereas the runtime for the
prediction period (348 days) took over twice that. Additionally, the model was used to analyze 300 policy
scenarios over the prediction period. In this type of situation, it is desirable that a few selected parameter
sets are representative to reflect uncertainty in the target data and corresponding model outcomes.

Limitations exist in our model. While we constrained each calibration parameter with box constraints
(li and ui), this may limit the parameter space. As the choice of these bounds may impact the model
performance, careful consideration is needed in choosing the bounds. While we chose the PAM algorithm
to identify K-medoid point, other clustering algorithms should be explored.

In summary, we propose that modelers consider parameter calibration from various perspectives. Instead
of solely aiming to minimize the goodness-of-fit quickly, they should 1) recognize that data inaccuracies may
exist and allow a certain level of error between the data and model outcomes, 2) formulate the calibration
problem with GOF and threshold to identify a range of good-enough parameter sets, 3) explore a broad
range of parameter sets so that the model captures the variability of possible future trajectories, and 4) find
a sweet spot between exploration and exploitation, wherein exploration promotes broad range of parameter
sets while exploitation enhances accuracy in aligning with the target data.
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