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ABSTRACT

Robust selection of the best (RSB) is an important problem in the simulation area, when there exists
input uncertainty in the underlying simulation model. RSB models this input uncertainty by a discrete
ambiguity set and then proposes a two-layer framework under which the best alternative is defined to
have the best worst-case mean performance over the ambiguity set. In this paper, we adopt a fixed-budget
framework to address the RSB problem. Specifically, in contrast with existing procedures, we develop a
new robust upper-confidence-bound (UCB) procedure, named as R-UCB. We can show that, the R-UCB
procedure successfully inherits the simplicity and convergence guarantee of the traditional UCB procedure.
Furthermore, simulation experiments demonstrate that the R-UCB procedure numerically outperforms the
existing RSB procedures.

1 INTRODUCTION

Ranking and selection (R&S) seeks to select the best alternative from a finite number of alternatives
through repeatedly sampling a simulation model. The best alternative is defined to have the smallest mean
performance. Conventionally, the simulation model as well as its input distributions is assumed to be
known. However, when the input distributions are estimated from real-world data, we may suffer from the
model ambiguity, due to the lack of data or the measurement error. This phenomenon is known as input
uncertainty in the literature. The R&S problem concerning input uncertainty has drawn a lot of attention
over the past few years. Fan et al. (2013) propose a robust selection-of-the-best (RSB) framework which
models the input uncertainty by a discrete ambiguity set and selects the best alternative with the smallest
worst-case mean performance over the ambiguity set. Particularly, this minimax RSB framework involves
two layers, where the inner layer first identifies the worst-case input distribution for each alternative and
then the outer layer compares the worst-case mean performances of alternatives to select the best one. In
addition to R&S under input uncertainty, the RSB framework can be also implemented in other practical
applications. For example, Lesnevski et al. (2007) take the robust perspective to select the portfolio with
the minimum coherent risk measure which represents the maximum expected loss.

To address the RSB problem, a series of procedures have been proposed. Following the convention
of R&S literature (Gabillon et al. 2012; Hunter and Nelson 2017; Hong et al. 2021), we classify existing
RSB procedures into fixed-precision and fixed-budget procedures. Fixed-precision RSB procedures, e.g.,
the two-stage and sequential RSB procedures in Fan et al. (2020), attempt to achieve a pre-specified
probability of correct selection (PCS) using as few simulation budget as possible. Meanwhile, fixed-budget
R&S procedures attempt to optimize the quality of the final selection when the simulation budget is limited.
Representative procedures include Gao et al. (2017) and Zhang and Ding (2016). These two procedures
carefully extend the traditional optimal computing budget allocation (OCBA) and knowledge gradient (KG)
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procedures to adapt themselves to the RSB framework. These extensions inspire us that existing procedures
may be modified and applied to solve the RSB problem. In this paper, our goal is to design a new RSB
procedure under the fixed-budget formulation.

More precisely, we design the new RSB procedure on basis of the upper-confidence-bound (UCB)
procedure (Auer et al. 2002) from the field of multi-armed bandit (MAB), and the reason is two-folded.
Firstly, the UCB procedure is simple to implement and promises to achieve a theoretical convergence. It
works by providing a confidence interval for every arm to represent the uncertainty of the estimated means
and choosing the arm with the highest upper confidence bound to achieve a balance between exploration
and exploitation. No strict assumptions are required on the underlying simulation model (e.g., Gaussian
distribution or bounded domain of simulation samples) and the calculation of confidence interval is often
easy. Secondly but more importantly, there is a close link between R&S and MAB problems. Both of
them stem from Bechhofer (1954) and aim to sequentially allocate the limited simulation budget among
alternatives (or arms) to the most efficient extent. On account of the two reasons above, we think that it is
interesting and promising to exploit a new RSB procedure based on the UCB procedure.

To accomplish this task, we need to overcome at least two challenges. Firstly, the outer and inner
layers of RSB have different intrinsic goals, and henceforth different procedures are required for the two
layers. To make it clear, in the inner layer, what we really care about is the worst-case mean performance of
each alternative rather than the corresponding worst-case input distribution, because the worst-case mean
is then used to guide the outer-layer selection. Meanwhile, the outer-layer problem refers to a classic R&S
problem. Secondly, despite the similarity between R&S and MAB problems, they pursue different targets.
The MAB assumes a regret at each stage whenever the best arm is not pulled, and therefore its target
is to minimize the cumulative regret collected till the terminal stage. By contrast, the R&S assumes no
intermediate regret along the dynamic sampling process, and the target is to minimize the simple regret at
the terminal stage if the best alternative is incorrectly selected. Therefore, the key issue is to separately
modify the traditional UCB procedure to solve the problems in the two layers of the RSB.

Notice that the traditional UCB procedure specifically sets the exploration rate to be a logarithm
function, ensuring that the expected cumulative regret grows in the optimal order. As mentioned above, the
two layers of RSB have different goals from the MAB problem. In our viewpoint, the most straightforward
way is to properly alter the exploration rate in the traditional UCB procedure to make it suitable for solving
the two-layer RSB problem. Driven by this insight, a new UCB procedure is proposed.

The rest of the paper is organized as follows. Section 2 formulates the RSB problem and constructs
the connection between RSB and MAB problems. Section 3 presents the R-UCB procedure and proves its
consistency. Section 4 provides the numerical experiments. Section 5 concludes the paper.

2 PROBLEM STATEMENT

2.1 Fixed-Budget Robust Selection of the Best

Suppose there is a finite set of alternatives S = {s1,s2, . . . ,sk}. Let g(s,ζ ) denote the performance of each
alternative s ∈ S, where ζ is the input parameter following a probability distribution P0. Assume that the
best alternative is defined to have the smallest mean performance, i.e.,

min
s∈S

EP0 [g(s,ζ )].

Typically, g(s,ζ ) is a black-box function and can only be observed via running simulation experiments.
For instance, in a queueing system, s refers to the number of staff, ζ refers to the service time and g(s,ζ )
refers to the waiting time. To drive the simulation, we often need to estimate the input distribution P0 from
the real-world data a priori. Practically, there might be ambiguity in the specification of the true input
distribution P0. In other words, the phenomenon of input uncertainty arises. Following the work of Fan
et al. (2020), we model the input uncertainty by an ambiguity set P = {P1, . . . ,Pm}, which consists of m
possible probability scenarios of P0. Accordingly, the best alternative is re-defined as the alternative with
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the smallest worst-case mean performance over the ambiguity set, i.e.,

min
s∈S

max
P∈P

EP[g(s,ζ )]. (1)

This framework is known as the robust selection of the best (RSB). The RSB framework essentially
contains two layers. The inner layer intends to find the worst-case probability scenario among the m
possible probability scenarios in P for each alternative si ∈ S, and then the outer layer compares the
worst-case probability scenarios of all k alternatives to select the best alternative.

For convenience of presentation, we denote by system (i, j) the pair of alternative si ∈ S and probability
scenario Pj ∈P , and hence there are km systems in total. From each system (i, j), we can collect independent
and identically distributed (i.i.d.) samples Xi j,1,Xi j,2, . . . ,Xi j,l, . . . , with mean µi j = EPj [g(si,ζ )] = E[Xi j,l]

and variance σ2
i j = VarPj [g(si,ζ )] = Var[Xi j,l]. For the simplicity of notation, we assume that, for each

alternative i ∈ S, its associated means are sorted in a descending order, i.e., µi1 ≥ µi2 ≥ . . . ≥ µim, and
the worst-case means of alternatives are sorted in an ascending order,i.e, µk1 ≥ . . . ≥ µ21 > µ11. Then,
by Equation (1), alternative 1 is the unique best alternative and probability scenario 1 is its worst-case
distribution. Therefore, system (1,1) is the best system among all km systems.

To address the RSB problem, we adopt a fixed-budget formulation and let N be the total simulation
budget. Suppose that the budget N is sequentially allocated among systems over multiple stages, each of
which is endowed with only one sample. Particularly, at each stage t ≤ N, a budget allocation decision is
made to tell which system should receive the next-stage sample based on all the past sample information.
For each system (i, j), we use ni j,t to denote the number of samples that have been allocated to system
(i, j) up to stage t and let X̄i j (ni j,t) denote the corresponding sample mean. Then, at the terminal stage N
when the total budget is exhausted, one system, denoted by (î∗, ĵ∗), is recommended as the best system
based on the sample means of all systems, i.e., X̄i j(ni j,N) for all i = 1,2, . . . ,k, j = 1,2, . . . ,m. Back to the
RSB framework, we correspondingly select alternative î∗ as the best alternative.

Apparently, the selected alternative î∗ may not be the true best due the noise of the simulation samples.
We measure the quality of the final selection by the expected opportunity cost (EOC), which refers to the
expected difference of the worst-case means between the selected alternative î∗ and the true best alternative
1, i.e.,

EOC = E[µî∗,1 −µ11].

Our goal is to design an optimal or near-optimal budget allocation procedure that can minimize the EOC
of the final selection using the limited budget N.

2.2 Connection between R&S and MAB

By equation (1), the RSB problem involves two R&S problems due to its two-layer structure. As a building
block, we may separetely consider the R&S problem in each layer. As stated in Section 1, one particular
MAB procedure, i.e., the UCB procedure, could be a potentially powerful procedure to solve the R&S
problem. Before addressing this issue in detail, we would like to first illustrate the connection between
R&S and MAB problems.

The focus of both R&S and MAB problems is on designing a proper allocation strategy that can make
the best use of the limited simulation budget N. What differentiates them from each other is the way
to measure the performance of a given allocation strategy. Notice that, at each stage t ≤ N, if the true
best system is not recommended, a regret r(t) which is defined by the mean gap between the best system
and the recommended system would occur. The MAB problems measure an allocation strategy by the
cumulative regret over all the N stages, namely, R(N) = ∑

N
t=1 r(t). By contrast, R&S problems measure the

final selection by the (simple) single-stage regret r(N) at the terminal stage N. Regardless of the different
measurements used, we see a strong connection between them from the following Lemma.
Lemma 1 (Bubeck et al. 2009) For all functions ε : {1,2, . . .}→R, there exist constants C,D,∆ > 0 such
that
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E[R(n)]⩽Cε(n), E[r(n)]⩾ ∆

2 e−Dε(n).
Lemma 1 reveals an interesting fact on the cumulative regret and the simple regret. The smaller the

expected cumulative regret is, the larger the expected simple regret is. As traditional MAB procedures
are typically designed to minimize the expected cumulative regret, they might result in an undesired large
expected simple regret when the MAB problems are directly applied to address the R&S problem. Therefore,
proper modifications are needed to translate the MAB procedures to solve the R&S problem.

3 ROBUST UCB PROCEDURE

In this section, our main task is to propose a robust UCB (R-UCB) procedure for the RSB problem. Due to
the two-layer structure of the RSB problem, the R-UCB procedure needs to make two allocation decisions
at each stage t ≤ N of the sequential sampling process. Firstly, in the inner layer, the procedure decides the
probability scenario to sample from for each alternative si ∈ S. Secondly, in the outer layer, the procedure
compares the probability scenarios of all k alternatives returned in the inner layer to produce the next-stage
sampling decision. Combining these two allocation decisions, the procedure ultimately determines the
alternative as its associated probability scenario which we will next simulate from.

3.1 Outer Layer: Selection and Minimization

In this section, we start by separately considering the two allocation decisions made in the two layers.
Suppose for now that, at each stage t and for each alternative si ∈ S, a probability scenario Pji

t
or equivalently

system (i, ji
t) has been recommended in the inner layer. Then, the outer layer compares the k systems,

i.e., (1, j1
t ),(2, j2

t ), . . . ,(k, jk
t ), to determine which system will be allocated the next sample. Obviously, the

outer-layer problem performs exactly as a traditional R&S problem.
In solving the outer-layer minimization problem, the UCB procedure chooses to sample the system

with the smallest lower confidence bound of means, i.e.,

(it , jt) = arg min
(i, ji

t):i=1,2...,k

(
X̄i, ji

t
(ni ji

t ,t)−σi, ji
t

√
2

at

ni·,t

)
,

for each alternative i = 1,2, . . . ,k. Here ni·,t = ∑
m
j=1 ni j,t denotes the total simulation budget of all systems

related to alternative i up to stage t and at refers to the exploration rate of the procedure.
Recall that the traditional UCB procedure is designed to minimize the expected cumulative regret in

MAB, as introduced in Section 2.2. It is well known in the literature that the expected cumulative regret
grows in the order no smaller than log t (Auer et al. 2002). To achieve this optimal order, the traditional
UCB procedure typically sets the exploration rate at = log t. However, such an exploration rate is not
suitable for the outer-layer R&S problem whose objective is to minimize the expected simple regret. One
natural way to translate the UCB procedure is by carefully adjusting the exploration rate at in the traditional
UCB. Combined with Lemma 1, it can be understood that, a larger exploration rate leads to a larger
expected cumulative regret and consequentially a smaller expected simple regret. In light of this, we set
the exploration rate at in the order of t.

3.2 Inner Layer: Estimation and Maximization

Notice that, in the RSB problem, our goal is to select the best alternative rather than its corresponding
worst-case probability scenario. Therefore, the inner-layer problem is more like a maximum-estimation
problem rather than a R&S problem. Similar to Section 3.1, we may properly adjust the exploration rate in
the UCB procedure to make it suitable for maximum estimation. Recently, Liu et al. (2019) have discussed
this issue but their goal is to estimate the coherent risk measure of a portfolio. The coherent risk measure
(Artzner et al. 1999), as a measurement of financial risk, represents the expected maximum loss of a
portfolio and it is similar to our inner-layer problem. In their paper, they find that the proper exploration
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rate for maximum estimation should take value in the order ranging from log t to t1/2−δ with 0 < δ < 1/2.
Driven by their result, we set our inner-layer exploration rate for each alternative si as logni., where ni.
denotes the total budget allocated to all systems of alternative si.

3.3 The Procedure

According to the discussion above, we are ready to present our R-UCB procedure as follows. This procedure
starts with an initialization step where we take n0 samples from each system (i, j) and calculate the sample
means X̄i j (n0). Then, the procedure enters a loop. At each stage when the used budget ni j is smaller
than the given total budget N, the procedure recommends a system based on all the past samples and
then simulates one additional sample from this system. When the total budget is exhausted, the procedure
terminates and returns the best alternative.

Procedure 1: ROBUST UCB PROCEDURE

(1) Setup:

Given the total budget N and determine the first-stage sample size n0.

(2) Initiation:

Generate n0 samples from each system (i, j) and calculate its sample mean X̄i j (n0).

Let ni j,t = n0 and t = kmn0.

(3) Inner-layer Selection:

For each alternative si ∈ S, choose the probability scenario jit with the largest upper confidence
bound, which satisfies

jit = argmax
j

(
X̄i j (ni j,t)+σi j

√
2logni.,t

ni j,t

)
,

where ni.,t is the total budget allocated to all systems related to alternative si.

(4) Outer-layer Selection:

Choose the alternative it which satisfies

it = argmin
i

(
X̄i ji

t

(
ni ji

t ,t

)
−σi ji

t

√
2n∗t
ni ji

t ,t

)
, (2)

where n∗t is the total budget allocated to the worst-case probability scenarios of all alternatives.

(5)Update:

Generate one sample from system (it , jt) and update its sample mean. Set nit jt ,t+1 = nit jt ,t +1
and t = t +1.

(6)Stopping Criterion

3651



Wan, Fan, and Hong

When ∑
k
i=1 ∑

m
i=1 ni j,t ≥ N, the procedure is terminated. Return alternative

argmin
i=1,2,...,k

(
max

j=1,2,...,m
X̄i j(ni j,N)

)
as the best alternative.

3.4 Consistency

In this part, we prove the consistency of the R-UCB procedure. Amemiya (1985) points out that when the
sample size increases indefinitely, the estimator will converge to the true value, which is called consistency.
Theorem 1 When the total budget N goes to infinity, the R-UCB procedure will select the true best
alternative with probability 1, i.e., PCS a.s−→ 1 and EOC → 0 as N → ∞.

Proof. To prove Theorem 1, it suffices to prove the following statement: As N goes to infinity, the
budget allocated to each system (i, j) also goes to infinity. It is because, as long as each system is sampled
infinite times, by the Strong Law of Large Numbers (Loève 1977), the sample mean of each system will
ultimately converge to its true mean. This implies that, in the limit as N → ∞, the procedure will select
the true best with probability one and accordingly EOC goes to zero.

Notice that the statement above is guaranteed whenever the following two statements are satisfied:

• Statement 1 (Outer-layer budget allocation): When N goes to infinity, the total budget allocated
to all m systems of alternative si, i.e., ni.,N = ∑

m
j=1 ni j,N , goes to infinity .

• Statement 2 (Inner-layer budget allocation): When ni.,N goes to infinity for each alternative si,
the budget allocated to each system (i, j), i.e., ni j,N , goes to infinity.

Because the justifications for Statements 1 and 2 are nearly the same, we only include the part for
Statement 2 in this proof. Particularly, we justify Statement 2 by contradiction. Suppose that, as N → ∞,
the total simulation budget ni.,N allocated to the systems of alternative si also goes to infinity but there
exists some system (i, j) which only receives a finite simulation budget. Then, according to the inner-layer
sample allocation policy stated in equation (2), the upper confidence bound of system (i, j) would become
infinite. In this situation, system (i, j) will consistently receive samples until its sample size grows to
infinity so that the upper confidence bound becomes finite. Clearly, this leads to a contradiction. Therefore,
Statement 2 is justified.

4 NUMERICAL EXPERIMENTS

In this section, we compare the R-UCB procedure with the existing ROCBA procedure by performing a
series of numerical experiments. We consider the slippage configurations (SC) of the means, i.e.,

[µi j]k×m =


1 0 . . . 0
3 2 . . . 2
...

...
. . .

...
3 2 . . . 2

 .

which is known as the least favorable configuration in the classic R&S literature. The best alternative is
defined as the one with mini max j X̄i j. In other words, alternative 1 is the best alternative. Besides, we
consider three configurations of variances:
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(1) equal variances (EV) with σi j = 8;
(2) increasing variances (IV) with σi j = 8+0.2∗ ( j−1);
(3) decreasing variances (DV) with σi j = 8−1/(1+0.2∗ ( j−1)).

In this section, we would like to investigate how the performances of both procedures are affected by
the total budget N, the number of distributions in the ambiguity set m and the number of alternatives k.
For each combination of N,k,m, we conduct 1000 macro-replications to estimate the PCS and EOC of
both procedures. The first-stage sample size is set as n0 = 10.

First of all, we test the effect of budget N on the performance of both procedures and present the results
in Figure 1. For each configuration of variances, we see that the PCS and EOC achieved by both procedures
exhibit the same trend. In particular, for both procedures, the PCS (EOC) first increases (decreases) to a
certain level and then remains stable as the total budget N grows. Besides, while the ROCBA procedure
performs better than our R-UCB procedure when the budget is relatively small, the R-UCB procedure
surpasses the ROCBA procedure when the sample size reaches approximately 1500. As N further grows,
the PCS of R-UCB converges to nearly 100% whereas that of the ROCBA reaches a level of about 80%.

(a) EV (b) IV (c) DV

Figure 1: PCS and EOC of the R-UCB and ROCBA procedures with varying budget N.

Figure 2 shows the influence of the size of ambiguity set, m, in which the variances are set under EV.
The results for IV and DV are similar and thus we omit them due to the page limit. In this experiment,
we set the total budget as N = (2n0)×km which grows linearly in m. From Figure 2, it can be found that
the PCS increases and the EOC decreases as m increases. Notice that, by the setting of N, the inner-layer
problem of RSB is allocated to a larger simulation budget as m increases, which consequentially leads to
a more accurate estimation for the inner-layer worst-case mean performance and further a higher PCS (or
a lower EOC). Meanwhile, the R-UCB procedure attains a higher PCS and a lower EOC than ROCBA
when m is large. This indicates that, the R-UCB procedure can be served as a useful tool to address the
RSB problem with a relatively large size of ambiguity set.
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Figure 2: PCS and EOC of the R-UCB and ROCBA procedures with varying size of ambiguity set.

Figure 3: PCS and EOC of the R-UCB and ROCBA procedures with varying numbers of alternatives k.

Figure 3 investigates how the change of k affects the PCS and EOC of both procedures. Following
the setting of the simulation budget N in Figure 2, we set N = (2n0)× km. In contrast with Figure 2,
the PCS (EOC) of both procedures reduces (grows) quickly as k increases. It is because, as the number
of alternatives is enlarged, it becomes harder for procedures to select the best alternative correctly. In
addition, when k is small, the R-UCB has a similar performance with the ROCBA. However, as k grows,
R-UCB keeps enjoying a superior performance, i.e., a higher PCS and a lower EOC, than the ROCBA.
This indicates that, the R-UCB might utilize a more efficient sampling allocation policy when k is moderate
or large.
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5 CONCLUSION

This paper studies the R&S problem under input uncertainty, which is called RSB in the literature. Our goal
is to propose a new fixed-budget procedure for solving this problem. Unlike traditional RSB procedures,
our new procedure is based on the famous UCB procedure from the field of MAB, for its simplicity and
theoretical guarantee, and we call it the R-UCB procedure. Due to the two-layer structure of the RSB
problem, the R-UCB procedure naturally consists of two UCB procedures, one for the inner-layer problem
and the other for the outer-layer problem. As the objectives in the two layers are different from that of
the traditional UCB procedure, we carefully modify the exploration rate of the traditional UCB procedure
so that they can meet the objective in each layer. We prove that the new procedure is consistent and
preliminary numerical experiments support its effectiveness.
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