
Proceedings of the 2023 Winter Simulation Conference
C. G. Corlu, S. R. Hunter, H. Lam, B. S. Onggo, J. Shortle, and B. Biller, eds.

SF-SFD: STOCHASTIC OPTIMIZATION OF FOURIER COEFFICIENTS TO GENERATE
SPACE-FILLING DESIGNS

Manisha Garg

Department of Mathematics
University of Illinois Urbana-Champaign

Urbana, IL, USA 61801

Tyler H. Chang

Mathematics and Computer Science Division
Argonne National Laboratory

Lemont, IL, USA 60439

Krishnan Raghavan

Mathematics and Computer Science Division
Argonne National Laboratory

Lemont, IL, USA 60439

ABSTRACT

Due to the curse of dimensionality, it is often prohibitively expensive to generate deterministic space-filling
designs. On the other hand, when using naı̈ve uniform random sampling to generate designs cheaply, design
points tend to concentrate in a small region of the design space. Although, it is preferable in many cases
to utilize quasi-random techniques such as Sobol sequences and Latin hypercube designs over uniform
random sampling, these methods have their own caveats especially in high-dimensional spaces. In this
paper, we propose a technique that addresses the fundamental issue of measure concentration by updating
high-dimensional distribution functions to produce better space-filling designs. Then, we show that our
technique can outperform Latin hypercube sampling and Sobol sequences by the discrepancy metric while
generating moderately-sized space-filling samples for high-dimensional problems.

1 INTRODUCTION

Design of experiments is a critical first step in numerous application areas including statistical response
surface methodology (RSM), surrogate-based optimization, and modeling of complex systems (Myers
et al. 2016). To give a few examples, deterministic, random, and quasi-random experimental designs are
generally applied in engineering applications ranging from particle accelerator designs (Neveu et al. 2022),
to high-performance computing (HPC) performance analysis (Wang et al. 2023), and generic blackbox
optimization solvers (Custódio and Madeira 2018; Chang and Wild 2023).

In such applications, a set of design points is generated and evaluated (through simulation or experi-
mentation) to produce an initial data set. This data set is used to fit a surrogate model of the underlying
blackbox process, which is then used for the purpose of approximation or optimization in downstream
applications. The accuracy of the resulting approximation or global convergence of the optimization is
greatly affected by the quality of the initial design of experiments.

To facilitate the initial design, a significant amount of research (Garud et al. 2017; Joe and Kuo 2008;
Johnson et al. 1990) and software (Attia and Ahmed 2023; Lee, Abraham et al. 2015; Virtanen et al. 2020;
Wang and Dowling 2022) are dedicated to generating space-filling experimental designs and intelligent
sampling techniques. While approaches may differ based on specific applications, in the context of surrogate
modeling and design optimization for deterministic processes, a space-filling design will constitute data
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sample locations. These locations are typically obtained from a simply-bounded subset of Rd , which we
will refer to as the design space. Then the problem is that of generating data samples that guarantee
accuracy and representation across a large percentage of the design space. One challenge for generating
design of experiments is that the deterministic techniques such as those in Myers et al. (2016), Ch. 3 & 4
require exponentially many samples with increasing dimension.

It is known that the need for computational resources increases exponentially with the number of
samples and the dimensionality of data. Although, with the advent of high performance computers, it is
sometimes possible to fulfill the computational necessity for moderate dimensions, the concentration of
measure still prevalent in high dimensions is rather tricky to handle (Gorban and Tyukin 2017). Therefore,
favorable properties in high-dimensions is a prime requirement in generation of space-filling designs. These
designs are often based upon quasi-random and low-discrepancy sequences that attempt to produce random
samples . While these techniques are cheap and effective, they only address the fundamental challenge of
measure collapse in high-dimensions heuristically.

In this paper, we propose a novel technique (SF-SFD) for generating high-dimensional distribution
functions. Our technique is designed to generate probability distribution functions (pdfs) that are as robust
as possible against measure collapse. One can sample from these pdfs to produce high-dimensional space-
filling designs with high probability. To achieve this, we will optimize the Fourier coefficients of the pdf
in order to minimize the expected statistical discrepancy of each sample. This approach directly addresses
the collapse of the underlying distribution and produces better space-filling designs in high dimensions
than other randomized methods on a limited budget.

The remainder of this paper is organized as follows. In Section 2 we will provide additional information
on techniques for design of experiments and metrics for assessing their quality. We conclude that for the
class of problems that we are interested in, randomized and quasi-randomized methods are most appropriate.
In Section 3 we will explain how a concentration of measure makes randomized techniques ineffective for
high-dimensional problems. In Section 4 we will introduce a novel method for tuning pdfs in order to slow
the concentration of measure. In Section 5 we will provide some initial results showing that our method can
succeed beyond random sampling, and even becomes more effective than other state-of-the-art techniques
in very high-dimensional design spaces. In Section 6 we will summarize these results and summarize the
next steps for this work.

2 BACKGROUND

Existing experimental design methods can be broadly categorized as adaptive methods, which utilize
response values when selecting sample points, and non-adaptive methods, which do not. It is well-known
that adaptive search methods are often more efficient in practice, when only considering the accuracy in
solving a given task as a function of the number of samples taken. Well-known adaptive search techniques
include, DIRECT (Jones et al. 1993), Bayesian optimization (Garnett 2023), and various forms of active
learning (Sapsis and Blanchard 2022). However, non-adaptive methods are useful in situations where large
batches are needed (e.g., pre-planning batched chemistry experiments); can be used to multi-start local
modeling and optimization techniques; and are used to initialize many adaptive techniques (e.g., Latin
hypercubes to start Bayesian optimization). Therefore, our focus in this paper is limited to non-adaptive
methods, which should be considered separately.

The goal of non-adaptive methods in the space-filling design setting is to obtain a design X consisting
of n points from a simply-bounded d−dimensional region of R. Without loss of generality, we assume
that we are sampling from the unit cube [0,1]d . Since the response values of the samples are not available
at this time, the utility of a sample is measured purely by how well it fills the space. Therefore, it should
(approximately) solve

max
{X :X⊂[0,1]d ,|X |=n}

T (X ) or min
{X :X⊂[0,1]d ,|X |=n}

T (X ), (1)
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where T (·) is a design optimality criteria, and n is the sample size. The nature of T (·) determines whether
the problem is to maximize or minimize. Common examples of design optimality criteria T (·) include

1. the discrepancy of the sample (should be minimized) (Joe and Kuo 2008),
2. the A, E, or D-optimality score of the information matrix (should be maximized) (Attia and Ahmed

2023; Wang and Dowling 2022), and
3. geometry-based criteria such as maximin (maximized) and minimax (minimized) distance criteria

(Johnson et al. 1990; Pronzato 2017).

In this work, the sample size n will typically be in the hundreds. There are numerous applications where n
may be larger or smaller, but this is an appropriate range for many real-world design optimization problems
such as those listed in Section 1 (Chang and Wild 2023; Custódio and Madeira 2018; Neveu et al. 2022;
Wang et al. 2023).

The A, E, and D optimality criteria are based on information theory, and generally require access
to the Fisher information matrix. Therefore, many existing techniques for generating samples based on
these criteria are model-based and not applicable for our blackbox setting (Wang et al. 2023). Geometric
distance-based criteria, such as maximin distance, can be related to properties of the Fisher information
matrix, but are easier to compute for a generic surrogate modeling method. However, such designs can
still be combinatorially expensive to generate in high dimensions due to their connection to Delaunay
triangulations (Pronzato 2017). All of these optimality criteria are commonly used in the field of optimal
experimental design, where the location of each design point is posed as a variable in an optimization
problem (Attia and Ahmed 2023). Although these techniques are appropriate when n is small in applications
such as sensor placement, these techniques are difficult to scale for our target application.

In this paper we will mainly focus on capturing the effect of measure concentration. While additional
details about measure concentration can be found in section 3, in brief, we are concerned with the phenomenon
where uniformly distributed random samples congregate to a small region of the sample space. As this
behavior reflects through the imbalance in the density function, discrepancy of a sample is an appropriate
metric to capture it (Kuipers and Niederreiter 1974). Precisely, let Y be an infinite sequence of points in
[0,1]d , and let YN denote the first N points in Y . Then

DN(Y) = sup
B∈J

∣∣∣∣ |{yi : yi ∈ B and yi ∈ YN}|
N

−µ(B)
∣∣∣∣ , (2)

where µ(·) is the Lebesgue measure in Rd and J is the set of all Lebesgue measurable subsets of [0,1]d .
The sequence Y is said to be low-discrepancy if limN→∞ DN(Y) = 0, and the discrepancy DN(·) is often

used as a measure of a finite sample’s uniformity. When used as a measure of uniformity, a discrepancy
Dn(X ) that is close to 1 corresponds to an imbalance in the distribution of X in [0,1]d , while a discrepancy
close to 0 corresponds to a general uniformity of X in [0,1]d . Since it is desirable to fill all areas of
the design region when sampling, low-discrepancy samples are considered better, and many optimization
libraries use low-discrepancy sequences, such as the Sobol sequence (Balandat et al. 2020; Custódio and
Madeira 2018) as a substitute for uniform-random sampling.

Moreover, as it is impossible to compute the exact discrepancy as it is defined in (2), various approxi-
mations of the discrepancy are utilized in the literature. One may refer to Kuipers and Niederreiter (1974)
for further details. We use L2 discrepancy for our approach, which is a special case of the Lp discrepancy
defined as

Lp(X ) :=
(∫

[0,1]d

∣∣∣∣ |X ∩ [0,x)|N
−µ ([0,x))

∣∣∣∣p

dx
)(1/p)

where 1≤ p < ∞.
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In this work, we use the centered L2 discrepancy of Hickernell (1998)

LC
2 (X ) =

(
13
12

)d

− 2
n

n

∑
i=1

d

∏
k=1

(
1+

1
2
|xi,k−0.5|− 1

2
|xi,k−0.5|2

)
+

1
n2

n

∑
i=1

n

∑
j=1

d

∏
k=1

(
1+

1
2
|xi,k−0.5|+ 1

2

∣∣x j,k−0.5
∣∣− 1

2

∣∣xi,k− x j,k
∣∣2)

where xi and x j are points inX , and xi,k indicates the kth component of xi. Note that although the discrepancy
should take a value between 0 and 1, LC

2 is an approximation based on numerical quadrature, which can
take on much larger values for ill-spaced samples. In particular, note that when all xi ∈ X are clustered
near the center of the design region [0,1]d (as is often the case during measure collapse), the value of
LC

2 (X ) may approach
(13

12

)d−1. This is an important observation since we will observe large values of
LC

2 (X ) in Section 5.
Many techniques have been implemented to produce samples of low discrepancy (Sobol 1967; Wong

et al. 1997). In practice, the randomized Sobol sequence (Bratley and Fox 1988; Joe and Kuo 2003; Joe
and Kuo 2008) is most commonly used in RSM applications (Custódio and Madeira 2018). However,
for the Sobol sequence and other low-discrepancy sequences, performance can still degrade drastically for
sample sizes that are overly small with respect to the dimension, or for sample sizes that are not multiples
of some preferred size (e.g., powers of 2).

Therefore, many RSM applications use the heuristic of Latin hypercube sampling (Neveu et al. 2022;
Chang and Wild 2023; Müller 2017). This is even typically recommended as a means to start adaptive
sampling techniques, such as Bayesian optimization (Garnett 2023, Ch. 9.3). While Latin hypercube sampling
is effective in practice, it is essentially generates samples that are stratified over a single dimension, which is
useful for single-variable analysis. However, there are no guarantees of uniformity over multiple dimensions,
and analyses based on Latin hypercubes may miss multivariate interactions. Therefore, Latin hypercubes
are only considered optimal when they have been optimized with respect to another design optimality
criteria, such as A, E, or D optimality, which is a combinatorially hard problem (Viana 2016).

2.1 Summary and Key Challenges

It is well-known that as the dimension of the space grows, the number of samples needed to construct
an accurate statistical, numerical, or machine learning model also grows exponentially. This challenge is
known as the curse of dimensionality. Therefore, for a fixed sample size, the quality of the surrogate model
will reduce with increasing dimension, regardless of the sampling technique used due to a reduction in
sample density.

In regimes where n is too large for an optimal experimental design and d is too large for a deterministic
design of experiments, applications typically resort to Sobol sequences (Custódio and Madeira 2018) or
Latin hypercube designs (Chang and Wild 2023; Müller 2017). Both of these techniques are generally seen
as approximations to uniform random sampling with better high-dimensional properties. However, none
of these directly address the fundamental issue, which is the collapse of the measure in high dimensions.

In our case, when a sample point xi is drawn uniformly from [0,1]d , its squared distance to the center
of the design space is given by ∥xi− 1

2∥
2
2 = ∑

d
k=1 (xi,k− 1

2)
2. So for each component k = 1, . . ., d,

E

[(
xi,k−

1
2

)2
]
=

∫ 1

0

(
x− 1

2

)2

dx =
1
3
− 1

2
+

1
4
=

1
12

and the variance of the expected value is a finite constant ν .
Thus, by the central limit theorem (CLT), for all xi ∈X , E[∥xi− 1

2∥
2
2] =

d
12 with variance ν

d . So, xi will

concentrate on a sphere of radius
√

d
12 centered at (0.5, . . . ,0.5)⊤ with vanishing standard deviation as d

increases. For large values of d, this will leave both the center and corners of the design space empty.
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This motivates the need for a technique that directly addresses this issue of measure collapse and scales
to larger samples in moderate to high dimensional design spaces. In the following section, we will explain
how the measure collapses for high-dimensional samples and what can be done to address this issue in the
context of sampling for surrogate modeling.

3 CONCENTRATION OF MEASURE IN HIGH DIMENSIONS

Consider a random variable X in Rd and let the probability density function (pdf) be given as p(x). Say, we
seek to write the exact expression for the pdf. Traditionally, one would begin by writing the characteristic
function C(t,X) for the random variable X which is achieved by applying a Fourier transform on the random
variable X and writing a series expansion on the Fourier transform (Adeniran et al. 2020). Particularly, in
the case when X corresponds to continuous Lebesgue measure, the characteristic function is written as

C(t,X) = E
[
eitX]= ∫ [

eitX]dµ, (3)

where µ ∈Rd is a Lebesgue measure on a d dimensional vector space. The precise derivation of the density
from this point requires evaluating the inversion of the characteristic function through the Levy’s inversion
formulae (Hewitt 1953). This precise expression is given as

p(x) =
∫

e−itE[eitX ]dt, (4)

where p(x) describes the probability density function (pdf). Solving the integral on the right hand side
would provide the pdf of Gaussian. To solve the integral (4), we must expand e−itE[eitX ] expansion applied
on the expected value of eitX . Therefore, the quality of the pdf estimation depends on the availability of
samples from X . In the scenario when d→ ∞, the volume will concentrate (Gorban and Tyukin 2017),
which means that the samples from X will describe a small region from the high dimensional space. In
other words, the volume of a cube that was well spread across different areas becomes concentrated towards
as a sphere around the origin point as detailed in the previous section.

This phenomenon leads to two scenarios, first, the estimation of E
[
eitX

]
does not change for different

samples of X as the concentrated volume will provide the same samples over and over again. Therefore,
the inversion will provide the same density values for different samples assuming that the inverse is well
defined. Second, the concentration phenomenon leads to a situation where the presence of many zeros or
close to zero values in the data samples will introduces zero modes in E

[
eitX

]
. In the matrix sense, many

of the eigenvalues of E
[
eitX

]
will end up being zero and will lead to singular modes in the density. That

is, the empirical density function will be ill-defined in many regions of the design space. These two issues
prevalent in high dimensions will prohibit the use to uniform sampling because uniform sampling from
the original design space will end up with an ill-defined empirical distribution function.

An alternative avenue is to generate samples more intelligently by considering the density rather than
blind uniform sampling. Towards this end, we will not solve the problem by sampling-based likelihood
estimation like a Monte Carlo approach, but, rather construct a distribution function that is optimized through
an iterative procedure. This distribution function is an approximation of inverse map M−1E

[
eitX ,

]
, on the

design space. In particular, we will write the pdf as a linear combination of individual terms of the Fourier
series with coefficients. Then, we will solve for the coefficients through an iterative optimization approach.
By successively deriving samples and the corresponding pdf, we will attempt to find the approximated
pdf that best explains the distribution of the data. It is our hypothesis that by optimizing the distribution
function instead of the likelihood we will sidestep the impact of measure concentration on sample and the
density will be better defined. In what follows next, we will detail our approach and later describe the
advantages of our method in this domain through a simulation study.
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4 OUR APPROACH

Now that we have established the issue with existing sampling techniques and the issue of measure collapse,
we are ready to propose our solution, which we refer to as the Stochastic Fourier space-filling design (SF-
SFD). In this approach, we create a sample, X , of any size n from a simply bounded d−dimensional space
[0,1]d ⊂Rd . We achieve this by optimizing the Fourier coefficients of the pdf, in order to compensate for
measure collapse at the specified values of n and d.

To measure the collapse of the pdf, we use the centered L2 discrepancy, LC
2 (X ) from Section 2. We

argue that the discrepancy is an appropriate choice of performance metrics since large discrepancy values
are correlated to measure collapse. Additionally, the centered L2 approximation will fail and produce
unrealistically large numbers when points are overly clustered near the origin. Since the radius of our
sphere of concentration (see Section 2) is a small percentage of the total design space, excessively large
discrepancies will be indicative of measure collapse.

At first glance, the fact that we are optimizing our design toward well-known optimality criteria could
be seen as similar to optimal experimental design (Attia and Ahmed 2023; Wang et al. 2023) or Latin
hypercube optimization (Viana 2016). However, we focus on optimizing properties of the underlying pdf
to prevent a collapse of measure, rather than focusing on the placement of individual data points. This
is a key difference, and we believe that the proposed technique will be more scalable while also directly
addressing the underlying issue suffered by naı̈ve randomized techniques. This strategy is motivated by
the connection between measure collapse and singularity of the Fourier transform of the pdf, as discussed
in Section 3.

Our approach can be summarized by the following 3-step process:

1. We create an initial probability distribution function for SF-SFD based on a uniform distribution.
2. We take a discrete Fourier transform (DFT) of the square-roots of the probabilities to obtain tunable

coefficients. See Section 4.1 for further details.
3. Since the DFT is a unitary operator, we can take perturbations on the surface of the unit sphere

in order to generate new (square-root) probability density functions. We will use a constrained
optimization procedure to iteratively generate perturbations to our Fourier coefficients with the
objective of minimizing the expected empirically observed discrepancy of the resulting pdf. See
Section 4.2 for more details.

The process described above is outlined in Algorithm 1, with further details in Sections 4.1 and 4.2.

Algorithm 1 SF-SFD

Let P(1,m) denote the current 1D pdf and Q(1,m) denote
√

P(1,m), as described in Section 4.1;
Let C(1,m) denote the complex-valued FFT of Q(1,m) as described in Section 4.1;
Let θ denote the optimization variables, as described in Section 4.2;
ai is the current number of draws to estimate expected-value, as described in Section 4.2;
Initialize P(1,m) = 1D uniform distribution; Q(1,m), C(1,m), and θ are set accordingly;
while optimization stop conditions not met do

Optimizer iterates to generate perturbation C′(1,m) to C(1,m);
Reverse the process from Section 4.1 to recover the perturbed 1D pdf P′(1,m);
Estimate expected discrepancy by drawing ai iid d-dimensional samples of size n from P′(1,m);
For the next iteration, update: P(1,m)← P′(1,m);
Update Q(1,m), C(1,m), and θ accordingly;
Increment ai if needed;
Return the estimated expected discrepancy to the optimizer for the next iteration;

end while
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4.1 Obtaining the Fourier coefficients

In Step 1 of our three-step process, we start from a uniform distribution on [0,1]d . Ideally, we would
like to optimize the Fourier transform of this d-dimensional distribution function P(d), but this would be
computationally intractable for large values of d. Instead, we make the simplifying assumption that our
distribution function will always be symmetrical in each dimension (in other words, the projection onto
each coordinate axis is identical). This allows us to instead train a one-dimensional distribution function
P(1) and draw d i.i.d. samples from it to obtain a single d-dimensional design point. In order to make the
optimization problem finite, we discretize P(1) into m discrete cells of equal mass p1, . . ., pm. This defines
our one-dimensional probability mass function P(1,m).

Next, let Q(1,m) = {qi}m
i=1, where qi =

√
pi for i = 1, . . ., m. This is the square-root probability mass

function, upon which we now apply a DFT. In this work, we use the unitary form of the DFT such that the 2-
norms are preserved in the Fourier space and through the inverse Fourier transform (IFT) by Parseval’s theorem
(Lax 2002, Theorem 21). Since ∑

m
i=0 |qi|2 = 1, it implies ∑

m
i=0 |ci|2 = 1 where C(1,m) =

[
c0 c1 · · · cm

]
are the complex-valued Fourier coefficients. We can then perturb the coefficients ci for i ∈ {0, . . . ,m} to
obtain c′i such that ∑

m
i=0 |c

′
i|2 = 1 is still satisfied. Once we have the new coefficients for C′(1,m), we can

invert the above process to obtain the updated square-root mass function Q′(1,m), and eventually our updated
one-dimensional mass function P′(1,m). Since we are assuming that the distribution function is symmetric
in all dimensions, we can draw a d-dimensional sample of size n via d× n i.i.d. draws from P′(1,m) to
sample the perturbed d-dimensional pdf.

4.2 Optimization of Fourier Coefficients

In order to tune our pdf using optimization (Step 3 above), we can introduce any perturbation to the
Fourier coefficients, so long as the coefficients have a unit 2-norm. These perturbations on ci can be
chosen to specifically decrease E

[
LC

2 (X )
]
. In order to tune this criteria while maintaining the requirement

that ∑
m
i=0 |c

′
i|2 = 1, we must solve an optimization problem on a (m−1)-dimensional complex unit sphere

(Bloch sphere).
To put this concisely, we are solving the complex-valued optimization problem

min
C(1,m)∈Cm

E

[
LC

2 (X)|X ∼ P(d,m);∑
i
|ci|2 = 1

]
where P(d,m) is a d-dimensional pdf with implicit dependence upon C(1,m), via the process from Section 4.1.

In practice, it is not easy to solve a complex-valued optimization problem with nonlinear (spherical)
constraints. Thus, we represent ci in polar form eliminating the need for the spherical constraint and
complex variables. Specifically, we generate the real-valued Euler angles θi, i = 1, . . ., 2m− 1, which
point to coordinates on the m-dimensional complex sphere. These angles can be optimized by a blackbox
solver subject only to the linear constraints 0≤ θi ≤ 2π , i = 1, . . ., 2m−1. Again, note that because we
assume symmetry in all dimensions, the dimension of the optimization problem depends linearly on m,
but is independent of both d and n.

Recall that we are attempting to generate a distribution function that can be used to produce good
samples of size n in [0,1]d . Thus, our objectives are based on the expected performance of a realized sample
of a pre-specified size n from the resulting distribution. Note that the above is a stochastic problem since
there will be variation in each individual design drawn from our pdf. In order to address this problem, in
this work, we estimate the expected value of each performance measure based on an average over ai designs
of size n drawn from the resulting distribution. In order to guarantee convergence to the true expected
value, we gradually increase our sample size ai with the iteration index i. In this work, we start with a
sample size of a1 = 50 and increase ai by 1 every 10 iterations. This guarantees that the error term in the
stochastic approximation (SA) vanishes in the limit, which is a necessary condition to the convergence of
SA methods (Lai 2003).
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Now that we have posed a bound-constrained optimization problem of moderate dimension, we calculate
LC

2X using the implementation in scipy.stats.qmc (Hickernell 1998; Virtanen et al. 2020). Then we
use the COBYLA implementation in scipy.optimize.minimize for solving this bound-constrained
blackbox optimization problem (Powell 1994; Virtanen et al. 2020). Although COBYLA was originally
proposed as a deterministic solver, due to its similarities to stochastic gradient descent, COBYLA is known
to perform very well for stochastic problems such as this (Shi et al. 2021).

5 RESULTS

To test our method, we compare the expected discrepancy of our final pdf against the expected discrepancy
of a Latin hypercube sample (LHS), Sobol sequence (Sobol), and random sample of size n. In the case of
SF-SFD, we have optimized our pdf using the exact methods described in Section 4. For the discretization
of our mass function, we used a value of m = 10, and for COBYLA we use the default setting in scipy
(Virtanen et al. 2020). For the comparisons, we have used the Latin hypercube sampling and Sobol
sequence implementations from scipy.stats.qmc (Roy et al. 2023). In every case, we average results
over 10 distinct random seeds.

We have performed experiments with sample sizes of n = 100, 200, 300, 400, and 500, and d = 5,
10, 15, 20, 25, and 30. The averaged discrepancies for all four methods at all problem sizes are shown in
Table 1 and the increase in discrepancy with d (averaging over all values of n) is plotted in Figure 1.
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Figure 1: Average discrepancy of generated samples with increasing dimension at linear (left) and logarithmic
(right) scales.

As seen in Figure 1, in low dimensions our method performs similarly to random sampling for the tested
values of n. On the other hand, the Sobol sequence and Latin hypercube samples (LHS) are significantly
better. As the dimension increases, LHS becomes increasingly similar to uniform random sampling, while
the Sobol sequence eventually becomes worse than random sampling as the value of n becomes too sparse
with respect to d. On the other hand, our method performs significantly better than uniform random
sampling in high dimensions, and greatly slows the rate of measure collapse. Based on these results, for
values of n in the low hundreds, our method is preferable when d ≥∼ 20. In Table 1 we see that SF-SFD
overtakes LHS and Sobol sooner for small values of n.

It is worth noting that at these problem sizes, the LC
2 discrepancy approximation becomes extremely

inaccurate due to the bunching of samples near the origin, leaving the corners of the [0,1]d completely
empty. This is reflected in discrepancy approximations that well-exceed one. Even our method suffers from
this issue, but we are able to mitigate the issue in comparison to other techniques. In general, although the
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Dimension Method Sample sizes
100 200 300 400 500

5

SF-SFD 0.0142 0.0071 0.0047 0.0036 0.0029
LHS 0.0042 0.0020 0.0014 0.0010 0.0008
Sobol 0.0017 0.0006 0.0003 0.0002 0.0001
Unif. Rand. 0.0157 0.0078 0.0052 0.0039 0.0031

10

SF-SFD 0.0670 0.0335 0.0226 0.0170 0.0136
LHS 0.0376 0.0179 0.0125 0.0091 0.0073
Sobol 0.0240 0.0100 0.0058 0.0037 0.0025
Unif. Rand. 0.0710 0.0353 0.0236 0.0177 0.0141

15

SF-SFD 0.2259 0.1183 0.0801 0.0607 0.0487
LHS 0.1765 0.0870 0.0578 0.0444 0.0348
Sobol 0.1645 0.0659 0.0395 0.0276 0.0207
Unif. Rand. 0.2520 0.1255 0.0834 0.0627 0.0501

20

SF-SFD 0.6557 0.3628 0.2500 0.1907 0.1549
LHS 0.6688 0.3357 0.2212 0.1665 0.1330
Sobol 0.8618 0.3331 0.1979 0.1386 0.1052
Unif. Rand. 0.8171 0.4089 0.2723 0.2044 0.1636

25

SF-SFD 1.6263 0.9964 0.7221 0.5621 0.4591
LHS 2.2569 1.1541 0.7625 0.5745 0.4564
Sobol 4.4776 1.5757 0.8858 0.6033 0.4514
Unif. Rand. 2.5771 1.2875 0.8578 0.6439 0.5154

30

SF-SFD 3.7137 2.4248 1.8572 1.4976 1.2504
LHS 7.3923 3.7545 2.4905 1.8693 1.4979
Sobol 25.5500 8.0504 4.2211 2.7673 2.0118
Unif. Rand. 7.9939 3.9847 2.6560 1.9928 1.5952

Table 1: Empirical expected value of LC
2 (X ) averaged over 10 random seeds for SF-SFD, Latin hypercube

sampling (LHS), Sobol sequences, and uniform random sampling at various dimensions (d) and sample
sizes (n). All values are rounded to 4 decimal places. The best performing method at each problem size
is emphasized in bold.

measure concentration may be impossible to avoid, we are able to slow the rate of concentration significantly
through SF-SFD’s optimization procedure.

6 CONCLUSION AND FUTURE WORK

In this paper we have proposed a novel method, which we call SF-SFD, for tuning distribution functions
in high-dimensional spaces in order to prevent concentration of measure for a finite sample. We argue that
this technique directly addresses the issue of measure concentration and scales better to large dimensions
than existing heuristic techniques such as Latin hypercube samples and low-discrepancy sequences such
as the randomized Sobol sequence. We use SF-SFD to generate space-filling design at several common
problem dimensions, and show that the average LC

2 discrepancy for our designs grows more slowly than
other techniques as the dimension of the problem becomes extremely large. The experimental results and
analysis presented in this paper can be reproduced by accessing the corresponding GitHub repository at
https://github.com/sfdsampling/sfsfd. The repository contains the necessary code, datasets, and instructions
to replicate the experiments and generate the reported results.

Although initially it is difficult to compete with quasi-random methods such as Sobol sequences or
even Latin hypercubes, for dimensions exceeding twenty, sample sizes of 100−500 are not large enough
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to guarantee reasonable discrepancies with these methods. In fact, for the LC
2 discrepancy approximation

used in this paper, samples become so concentrated that the discrepancy estimates begin to blow up beyond
the reasonable range. While all methods are affected, ours is able to slow this rate of concentration as
much as possible, achieving better performance for sparse data samples in high dimensions. It is worth
noting that although we have only shown samples of size 100−500 in dimensions 20−30 to be sparse
enough to warrant our method, every finite sample size will become relatively sparse in sufficiently high
dimensions due to the curse of dimensionality.

The next step for this work is to also consider other design optimality criteria, such as A, E, and D
optimality and maximin or minimax distances in the formulation of our objective. While these criteria are
not directly related to measure collapse, they are common design optimality criteria in the literature with a
direct connection to surrogate model accuracy. We would also like to prove our method more rigorously by
showing that we can obtain a slower rate of measure concentration for our method. Finally, we will need
to show empirically that “good” designs generated through our method translate to better approximation
performance downstream in real-world applications.
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