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ABSTRACT

Simulation of queueing networks is generally carried out by discrete-event simulation (DES), in which the
simulation time is driven by the occurrence of the next event. However, for large-scale queueing networks,
especially when the network is very busy, keeping track of all events is computationally inefficient. Moreover,
as the traditional DES is inherently sequential, it is difficult to harness the capability of parallel computing.
In this paper, we propose a parallel fast simulation approximation framework for large-scale Markovian
queueing networks, where the simulation horizon is discretized into small time intervals and the system
state is updated according to the events happening in each time interval. The computational complexity
analysis demonstrates that our method is more efficient for large-scale networks compared with traditional
DES. We also show its relative error converges to zero. The experimental results show that our framework
can be much faster than the state-of-the-art DES tools.

1 INTRODUCTION

Simulation of queueing networks is a fundamental approach to studying many real-world systems, such as
call centers, telecommunication networks, and manufacturing systems. Discrete-event simulation (DES)
has emerged as a popular method for queueing networks simulation (Banks et al. 2000). Basically, DES
models the dynamics of a system as a sequence of events over time, and hence the execution time of
the method is proportional to the number of events that must be processed. As a result, for large-scale
systems, particularly those with high activity levels, the number of events can be extremely large, making
the tracking of all the events very time consuming.

To solve this problem, a natural idea is to employ parallel-computing environments. However, paral-
lelizing DES is challenging because it requires a global event list to maintain the correct event order so
that the effects of the event interactions can be captured (Fujimoto 1990). Nonetheless, many studies have
explored parallel DES and proposed two types of algorithms - conservative and optimistic synchronisation
strategies. Conservative strategies (Chandy and Misra 1979; Bryant 1977; Nicol and Riffe 1990) ensure the
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correct events order by blocking processes, but they cannot fully utilize the available parallelism. Optimistic
strategies (Jefferson 1985; Malik et al. 2010; Fujimoto et al. 2017) allow out-of-order event processing,
and use rollback to recover from errors, which are more efficient than conservative strategies. Moreover,
both strategies depend on the inherent parallelism of the system and most of the literature on parallel DES
focus on regular and symmetric network topologies, which are often unrealistic. In contrast, real-world
networks often exhibit scale-free property (Pienta and Fujimoto 2013), which limits the parallelism for
large-scale networks.

The difficulty of parallelizing traditional DES roots in the adoption of next-event time progression. In
DES, once the system state updates, the simulation time jumps directly to the occurrence time of the next
event, assuming no change in the state in-between. As the simulation clock is driven by the occurrence time
of the series of events, this approach is inherently sequential. Alternatively, we can use fixed-increment
time progression to update the simulation time, where the system state updates at equally spaced time-steps
according to the events happening in each time interval (Law and Kelton 2000; Yan and Gong 1999). The
fixed-increment time progression does not track the order of events in the same time interval, leaving room
for enhancing efficiency through parallel simulation.

This paper focuses on simulation of large-scale Markovian queueing networks. We propose a fast
approximation framework which adopts the fixed-increment time progression approach and design parallel
simulation algorithms, an approach that has been applied successfully to the parallel simulation of large-
scale production networks (Wang and Hong 2023). The computational complexity analysis demonstrates
that our algorithms are much more efficient for large-scale networks compared with DES. In addition, we
prove that the approximation error is bounded by a term that is independent of the simulation horizon, and
the relative error converges to zero as the system size increases. We also point out that our framework
is not just a trade-off between accuracy and efficiency. With appropriate size of time interval, both the
simulation speed and accuracy can be guaranteed simultaneously. The experimental results show that the
run-time of the proposed algorithms is superior to DES when the system is large, and the approximation
performance is acceptable with appropriately chosen time intervals.

The rest of this paper is organized as follows. In Section 2, we provide the problem formulation
and introduce the traditional framework of DES. In Section 3, we introduce the parallel approximation
algorithms and compare the complexity of the algorithms with traditional DES algorithms. Preliminary
theoretical analysis of approximation error is given in Section 4. Section 5 presents the numerical results,
followed by a conclusion and future prospects in Section 6.

2 DES OF QUEUEING NETWORKS

This section considers the traditional framework of DES. In particular, Section 2.1 introduces a generic
multi-layer queueing network, and Section 2.2 provides a DES algorithm for simulating the network and
analyzes its computational complexity.

2.1 Problem Formulation

We consider a multi-layer queueing network with n nodes (e.g., the network shown in Figure 1), and node
i represents a service station consisting of mi servers. Assume that the buffer is of infinite capacity, so
there is no limit on the number of customers in the queue. When a customer finishes service at one node,
it can either join another node at the next layer or leave the network according to the routing matrix P.
Each element pi j in the routing matrix denotes the probability of joining node j after completing service
at node i. In this paper we focus on Markovian queueing networks, i.e., the external arrivals of customers
follow Poisson processes, and the service time at each server follows exponential distribution.
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Figure 1: An example of a multi-layer queueing network.

2.2 DES Algorithm and Computational Complexity

As mentioned in Section 1, DES models the dynamics of a system as a sequence of events over time
and maintains a global next-event list to preserve the correct event order. In particular, the next-event list
tracks the time when the next external arrival occurs at each node and the time when the next departure
occurs at each busy server. Figure 2 illustrates the simulation process for the queueing network described
in Section 2.1, which is explained as follows.

First, after initialization, we find the next event on the event list and update the simulation time to
the occurrence time of that event. If the time does not exceed the maximum time horizon, the simulation
continues and the next step depends on the type of the event. If the next event is an arrival, we assign the
customer to a free server at the arrived node, change the server state from idle to busy, determine the time
when the service will complete, update the event list with a new departure; or add the customer to the end
of the waiting queue of the node if all servers are busy. If the next event is a departure, the server who has
just completed the service will accept the next customer in the waiting line, or become idle if there is no
one waiting in the queue. At the same time, we decide where the departing customer will go according to
the routing matrix. If the customer goes to another node, then it triggers an instantaneous internal arrival
event, which will be immediately handled as described above. Otherwise, the customer leaves the system.
Finally, after updating the event list, the simulation proceeds and jumps to the occurrence of the next event.

Based on the above description, we can analyze the complexity of DES. For simplicity, assume the
queueing network is Jacksonian, with m servers for each node; furthermore, the service rate for each server
and the utilization of the network are constant as the network scales up. The computational complexity
of each update in DES depends on the length of the next-event list, which is composed of arrivals and
departures. Since there are n nodes in the network, so the total number of arrival events on the list is at
most n. Meanwhile, as the average number of busy servers in a Jacksonian network is proportional to the
number of servers, the number of departure events on the list is O(mn). Therefore, the average length
of the next-event list is O(mn). To maintain the next-event list, heap is one of the best choices. A heap
is a specialized tree-based data structure that satisfies specific property. In a min heap, the value of a
parent-node is less than or equal to the value of all the son-nodes. The complexity for every update to the
heap-based event list is O(log(mn)) (Leiserson et al. 1994). In addition, as on average there are O(mn)
busy servers, each of which finishes service at a fixed rate, therefore the number of departure events is
O(T mn) for a simulation horizon of T . Since the utilization is assumed to be constant, the number of
arrival events is also O(T mn). To sum up, the time complexity of DES is O(T mn log(mn)).
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Figure 2: DES flowchart of queueing networks.

3 FAST APPROXIMATION TO DES

This section proposes a fast approximation approach to simulate the queueing networks described in
Section 2.1. The basic idea is to adopt fixed-increment time progression, and use parallel processors to
speed up the simulation within the time intervals. In this paper, we focus on the simulation of queue
lengths, but the algorithm can be extended to the simulation of other quantities like sojourn times.

3.1 Approximation Algorithm

Denote Qτ,i to be the queue length of the i-th node at the τ-th time step. Given a fixed time increment h > 0,
we aim to simulate {Qτ,i, i = 1, . . . ,n} at time τh for τ = 0,1, . . . ,T/h. Based on the Markovian property,
for each time step, we update the queue lengths based on their values at the end of the last time interval,
and the number of arrivals and departures during the current time interval. We ignore the information of
the events order and customers routing within each time interval, which has two consequences.

On the one hand, the step-wise update for each node of the queueing network can be carried out
independently, so that we can distribute the computations to parallel processors to speed up the simulation
(see Figure 3 for a graphical illustration of the parallel simulation scheme). To facilitate implementation,
the first step involves initializing a process pool. Subsequently, during each time interval, the main process
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allocates tasks to the sub-processes within the pool and collects the results upon completion of their respective
calculations. Specifically, each sub-process is responsible for calculating the departures of individual nodes,
generating routing results for these departures, and updating the queue length of each corresponding node.
Moreover, the main process handles the task allocation and subsequently collects the results, which are
utilized to calculate the interval arrivals for each node.

Figure 3: Parallel simulation mode.

On the other hand, the loss of information impedes us from exact simulation of the system dynamics;
instead, our algorithm generates upper and lower bounds for the queue lengths, which can be used to
construct approximations to the true values.

To explain how to obtain the upper and lower bounds with limited information, consider the update of
queue length for node i at the τ-th time step in a multi-layer queueing network. Suppose the queue length at
time (τ−1)h is Qτ−1,i, and during the time period between (τ−1)h and τh, there are ain

τ,i arrivals from the
previous layer in the network and aout

τ,i arrivals from the outside. Denote sτ,i, j to be the maximum number of
customers that can be served by the j-th server ( j = 1, · · · ,m j). Notice that without the information on the
order of events, we cannot determine the exact number of departures during this time interval. Therefore,
we push all the new arrivals forward to the end of the time interval and set a maximum capacity for each
server to obtain an upper bound for Qτ,i, while pull all the new arrivals backward to the beginning of
the time interval and assume the service capacity of each server is fully used to obtain a lower bound.
Algorithm 1 exemplifies our approach and generates the upper bound for the queue lengths by setting the
maximum capacity for each server to be 2, and hence the service capacity is used only by the customers in
the queue at the beginning of the time interval, and the number of departures is determined by sampling
from two binomial random variables sequentially.

3.2 Computational Complexity

In our approximation algorithm, the updates for queue lengths of different nodes in each time interval are
assigned to parallel processors, so that the computational time can be controlled to O(1). Therefore, the
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Algorithm 1: Approximation Algorithm

Initialization: Q0,i = 0 (for i = 1, · · · ,n);
for τ = 1 to T/h do

for each node i, assign a separate processor and do
mbusy

τ,i ←min{Qτ−1,i,mi};
m1

τ,i← binomial
(

mbusy
τ,i ,Pr (sτ,i, j ≥ 1)

)
;

Q′
τ,i← Qτ−1,i−mbusy

τ,i ;
m2

τ,i← binomial
(
min

{
m1

τ,i,Q
′
τ,i
}
,Pr (sτ,i, j ≥ 2|sτ,i, j ≥ 1)

)
;

dτ,i← m1
τ,i +m2

τ,i;
Rτ,i←multinomial(dτ,i,Pi);

Collect results of each processor;
for each node i, assign a separate processor and do

ain
τ,i← ∑

k
Rτ,k,i;

Qτ,i← Qτ−1,i−dτ,i +ain
τ,i +aout

τ,i ;

computational complexity of our fast approximation mainly depends on the number of time intervals. For
a fixed h, the number of time intervals in Algorithm 1 is T/h. Therefore, the overall complexity of our
approximation algorithm is O

(T
h

)
. The choice of h controls the tightness of the upper and lower bounds.

According to the preliminary results on error analysis in Section 4, we recommend to set h = o
(

1√
m

)
so

that the relative error of using the upper bound approximation provided by Algorithm 1 converges to 0.
For example, we can choose h = 1√

m log(m)
, and thus the complexity of our algorithm is O

(
T
√

m log(m)
)

.

Table 1 compares the complexity of our algorithm with DES algorithm analyzed in Section 2.2. Owing
to the adoption of parallel computing, the complexity of our algorithm is independent of n. Even if we
consider only the impact of m, the computational complexity of our algorithm is

√
m log(m) times lower,

with the recommended choice of h. The superiority of our method is more significant when the number
of nodes or number of servers in each node is large, which suggests that our method is especially useful
for simulating large scale queueing networks.

Table 1: Complexity comparison

Method Complexity

Parallel Fast Approximation O
(T

h

)
= O

(
T
√

m log(m)
)

with h = 1√
m log(m)

DES-Heap O(T mn log(mn))

4 PRELIMINARY ERROR ANALYSIS

In this section, we aim to show that the relative error of our fast approximation algorithm converges to zero
as the queueing network scales up when the length of time interval is appropriately chosen. For simplicity,
we assume the multi-layer queueing network is Markovian, with external customers arrive according to
Poisson processes, and each server finish a job with exponential distributed time. In addition, we assume
the utilization is constant and less than 1 as the network scales up.

We start our analysis with the simple case when there is only one node. In this case, the queueing
network reduces to a multi-server queue. For a given h and a fixed time point t = τh, let Qτ to be the queue
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length at time t given that the system is initially idle. Denote Qup
τ and Qlow

τ to be the upper bound and lower
bound approximations generated by our approximation algorithm. In another word, Qup

τ is obtained by
assuming customers arrives at the end of each time interval of length h and each server completes at most
2 services during a time interval, while Qlow

τ is obtained by assuming customers arrives at the beginning
of each time interval and the service capacities of all servers are fully used. To facilitate our analysis, we
use Q̃up

τ and Q̃low
τ to denote the upper and lower bounds by assuming the customers arrive at the end and

beginning of each time interval, respectively, but incorporating the full information about when services
are completed. Clearly, we have

E[Qlow
τ ]≤ E[Q̃low

τ ]≤ E[Qτ ]≤ E[Q̃up
τ ]≤ E[Qup

τ ].

For a Markovian multi-server queue, we have the following results on the gaps between these upper and
lower bounds.

E
[
Q̃up

τ

]
−E

[
Q̃low

τ

]
≤ mµh,

E[Qup
τ ]−E[Q̃up

τ ] = o(mh2).

The first inequality is established by noticing that Q̃up
τ and Q̃low

τ are the queue lengths of two systems with
the identical arrival processes except for a delay period of h. The second result is based on the property
that when the service time is exponential distributed, the probability of a server finishes more than two
jobs in a period of h is o(h2). Based on these results, we can prove the convergence of relative error for
our fast approximation algorithm.

Theorem 1 Consider a Markovian multi-server queueing system with m servers. Let Qup
τ be the queue

length generates by Algorithm 1. Assume the service rate µ > 0 and the utility ρ < 1 are fixed, then

(1) Fixing the number of servers m, we have

lim
h→0

E
[
Qup

τ

]
−E [Qτ ] = 0

(2) Setting h = o
(

1√
m

)
, we have

lim
m→∞

E
[
Qup

τ

]
−E [Qτ ]

EQτ

= 0

The part (1) of Theorem 1 is a standard result. And the part (2) carries greater significance as it
pertains to the performance of our method when applied to large-scale queueing networks. This finding
provides evidence that, in the presence of fixed service rate and utility, despite the possibility of the queue
length approximation error being unbounded as the number of servers approaches infinity, the relative error
converges to 0.

Next, we argue that the above convergence result also holds for the multi-layer Jackson queueing
network. It is known that the nodes in a Jackson network can be viewed as interconnected multi-server
queues. Denote Qk

τ to be the queue length of the k-th multi-server queue (k = 1, · · · ,n), then the total
number of customers in the queueing network is

Qτ =
n

∑
k=1

Qk
τ .
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Apply Algorithm 1 to generate the upper bound approximation for Qτ , then the relative error can be bounded
by

E
[
Qup

τ

]
−E [Qτ ]

EQτ

=
∑

n
k=1

(
E[Qk,up

τ ]−E
[
Qk

τ

])
∑

n
k=1 EQk

τ

≤ max
1≤k≤n

E
[
Qk,up

τ

]
−E

[
Qk

τ

]
EQk

τ

Therefore, when the network scales up in a regulated way, the relative error of the upper bound approximation
converges to 0 due to Theorem 1.

Based on the results of approximation error and computational complexity analysis, we can conclude
that our proposed framework is not just a trade-off between accuracy and efficiency. With appropriate
choice of time interval length, the simulation speed and accuracy can be guaranteed simultaneously.

This paper serves as a preliminary study focused on analyzing queue length. However, our framework
exhibits promising potential for simulating a wide range of other performance measures, which we intend
to explore in-depth in future work.

5 NUMERICAL RESULTS

In this section, we test the performances of our proposed algorithms from several different perspectives.
All the computer programs are coded in Python and the experiments are run on a computer with 64 CPU
cores and 512 GB RAM.

Firstly, we compare the run-time of our framework with Ciw, which is one of the-state-of-the-art tools
for simulation of queueing networks (Palmer et al. 2019). Ciw is an open-source tool and it adopts ordinary
lists to maintain the future event list. We modify the code and employ heap to store the event list to achieve
better performance under large-scale networks. Algorithm 1 assigns a dedicated processor to each node
in the network. However, due to limited CPU resources, we have to assign multiple nodes to a single
CPU core. To assess the performance of our algorithm, we conduct experiments on networks with 100
and 1000 nodes, with 5 and 50 cores respectively, which means that 20 nodes share a CPU core. We use
recommended time intervals of 0.2, 0.06, and 0.025 for m = 20, 200, and 1000 respectively. The results
of our tests with different parameters are presented in Table 2.

Table 2: Run-time comparison with DES

Parameters
T 1000

n 100 1000

m 20 200 1000 20 200 1000

Algorithm 1 41.1s 136.1s 323.8s 200.3s 650.8s 1538.4s
DES-Heap 34.6s 499.4s 4395.2s 507.1s 7229.2s 99646.6s

We can see that when n remains constant and m is increased tenfold, the run-time for Algorithm 1
becomes approximately

√
10 times the original run-time, which is consistent with the complexity results

in Table 1. However, it increases as n increases in Table 2 and the run-time of Algorithm 1 is worse than
expected as a whole. The reason is that Algorithm 1 assigns tasks in each interval so that the time spent
transmitting data and assigning tasks accounts for a large proportion of the total run-time, which is not
included in the complexity analysis. Since more CPU cores are utilized for network with 1000 nodes, data
transmission and task assignment take more time, compared with that of 100 nodes. The run time of our
approximation algorithm can be improved with more efficient parallel implementation modes. We have
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tried some ideas and will discuss them in future work. As for DES, we can see that the run-times under
different m and n are also consistent with the complexity analysis. In general, the run-time of the proposed
algorithm is superior than DES when the number of nodes or the server number is large.

Table 2 presents a comparison of the run time between the proposed method and a DES tool. As
for the parallel DES methods introduced in Section 1, the speedups achievable are dependent on the
number of processors and generally lower than the number of processors. For instance, previous literature
reports a speedup of 57 with an optimistic approach on 64 processors and a speedup less than 1 with a
conservative approach on 5 processors (Fujimoto 1993). Our method’s speedup, in contrast, stems not
only from parallelization but also from approximation, enabling us to achieve speedups greater than the
number of processors. As depicted in Table 2, our proposed method demonstrates a speedup of 13.6
with 5 processors and a speedup of 64.8 with 50 processors. Furthermore, it is worth noting that the
existing literature on parallel DES predominantly focuses on regular and symmetric network topologies
and the speedup potential is considerably limited when applied to real-world scale-free networks (Pienta
and Fujimoto 2013). Our method, however, does not impose any requirements for regular or symmetric
network topologies. Consequently, our parallel fast simulation approximation framework exhibits greater
promise as a tool for simulating queueing networks.

Secondly, we evaluate the approximation error of our proposed algorithms on 100-nodes networks with
different number of servers in each node. The time intervals are set to the recommended values. Relative
errors between the average total number of customers in the simulated network and the theoretical value
are calculated and the results are presented in Figure 4. It can be seen that as number of servers increases,
the relative error gradually converges to zero, which is consistent with our theoretical analysis.

Figure 4: Relative errors.

To further evaluate the performance of the approximation algorithms, we plot the queue length distribution
of a node in the network of n = 100, m = 1000 under DES and Algorithm 1. As shown in Figure 5, the
queue length distribution obtained by Algorithm 1 is close to the result of DES.
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Figure 5: Queue length distribution.

6 CONCLUSION

We propose a parallel fast approximation framework for simulating large-scale Markovian queueing networks
in this paper. We prove that the framework is not just a trade-off between accuracy and efficiency. With
the appropriate choice of time interval, simulation speed and accuracy can be guaranteed simultaneously.
The computational complexity analysis demonstrates that our method is much more efficient for large-scale
networks, compared with DES. We provide preliminary theoretical analysis on the asymptotic performance
of the proposed algorithms and show that the relative error converges to 0 as the system scales up. The
experimental results show that our algorithm can be 60 times faster than the-state-of-the-art DES tools
for queueing networks and the approximation performance is acceptable with appropriate time intervals.
Although the proposed framework is already faster than DES for large-scale networks, it can be improved
with more efficient parallel implementation modes in future work, since the time spent transmitting data
and assigning tasks accounts for a large proportion of the total run-time currently.
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