Proceedings of the 2023 Winter Simulation Conference
C. G. Corlu, S. R. Hunter, H. Lam, B. S. Onggo, J. Shortle, and B. Biller, eds.

POLICY-AUGMENTED BAYESIAN NETWORK OPTIMIZATION WITH
GLOBAL CONVERGENCE

Junkai Zhao Wei Xie
Jun Luo
Antai College of Economics and Management Mechanical and Industrial Engineering
Shanghai Jiao Tong University Northeastern University
1954 Huashan Road 360 Huntington Avenue
Shanghai, 200030, China Boston, MA 02115, USA

ABSTRACT

Driven by critical challenges in biomanufacturing, including high complexity and high uncertainty, we
propose global optimization methods on the policy-augmented Bayesian network (PABN), characterizing
risk- and science-based understanding of underlying bioprocess mechanisms, to guide the optimal control.
We first develop a sequential optimization algorithm based on deep kernel learning (DKL) for PABN with
general state transition dynamics, which can learn the spatial dependence of mean response through a
deep neural network. In addition, to improve the interpretability and computational efficiency of policy
optimization, a global metamodel is introduced to guide linear Gaussian PABN optimization, which explicitly
accounts for the correlation of input-to-output pathways obtained under different candidate policies. Our
empirical study provides the ablation analysis and the interpretation analysis of the DKL, and also shows
that both proposed approaches demonstrate promising performance compared to the standard Bayesian
optimization with Gaussian process.

1 INTRODUCTION

The biopharmaceutical manufacturing industry plays an important role in supporting public health and
economic growth. However, biomanufacturing faces several critical challenges, including high complexity,
high variability, and very limited process observations (Hong et al. 2018). The trajectory dynamics in the
biomanufacturing processes are determined by sophisticated time-varying mechanisms, which are highly
complex and variable (Kasemiire et al. 2021). Due to the long analytical testing times required for
biopharmaceutical materials, historical process data are often very limited, which makes the modeling and
control of biomanufacturing processes challenging (Gottschalk et al. 2012).

Existing biomanufacturing process modeling methodologies can be categorized into two classes: first-
principle models and data-driven models. First-principle models rely on ordinary or partial differential
equations (ODEs/PDEs) based mechanistic models representing the dynamics of bioprocesses (Luo et al.
2021). Compared to the black-box simulation model (Cheng et al. 2023), they are often built on the
scientific understanding of the causal relationships between the key factors in the bioprocesses. However,
first-principle models often cannot provide good predictions due to the limitations of existing scientific
understanding. In addition, they are usually deterministic and ignore model estimation uncertainty. Data-
driven models aim to build general statistical and machine learning models based on real-world data (Park
et al. 2021). The main drawback of data-driven models is that they are not easily interpretable and often
require sufficient historical data (Del Rio-Chanona et al. 2019).

Driven by these challenges and limitations of existing methodologies, Zheng et al. (2023) propose
the policy-augmented Bayesian network (PABN), which represents the causal interactions and dynamics

979-8-3503-6966-3/23/$31.00 ©2023 IEEE 3553

Zhao, Xie, and Luo

within and between different unit operations to guide bioprocess control. It is a hybrid (“mechanistic +
statistical") model that can leverage existing kinetic models and facilitate learning from data. Such temporal
graphical models with linear Gaussian dependencies are often called Kalman filters, and their nonlinear
variants are called extended Kalman filters (Koller and Friedman 2009). The Kalman filter and its variants
are widely applied to obtain good de-noising estimation and filtering when the system model has small
uncertainty. However, compared to the PABN model, they may perform poorly in the presence of limited
data and large model uncertainty (Yi and Zorzi 2021). Also, they often focus on the state estimation and
ignore the policy optimization. Therefore, we model the biomanufacturing process as PABN suggested by
Zheng et al. (2023).

To search for the optimal control policy, Zheng et al. (2023) introduce a projected stochastic gradient
ascent approach to maximize the expected cumulative reward over the space of parametric policies. However,
the state transition function of the PABN considered in their study is linear, and the gradient-based policy
optimization method can only guarantee local convergence. Bayesian optimization (BO) considers the
problem of finding a global optimum of an unknown objective function (Frazier 2018). Astudillo and
Frazier (2021) propose a Bayesian optimization approach for function networks, where each function takes
the output of its parent nodes as input. Although the structure of function network is similar to PABN,
their study assumes that the function in each layer of the network is known, which cannot be directly
applied in biomanufacturing. Bowden et al. (2021) introduce a deep kernel Bayesian optimization approach,
which adopts the deep kernel combining classical kernel with the deep neural network. However, Bayesian
optimization with the deep kernel has not been explored in the context of simulation optimization, and there
is limited investigation into the impact of neural network structure and interpretation of the deep kernel.

In this study, we aim to find the global optimal policy in PABN. We first consider the PABN with
general nonlinear state transition functions and propose a Bayesian optimization approach to search for the
optimal policy parameters. The classical kernel function used in the Gaussian process (GP) metamodel only
depends on the distance between candidate solutions, which makes it difficult to capture the global spatial
interdependence within PABN. Instead, we adopt the deep kernel, which learns the spatial interdependence
of PABN through a deep neural network. Compared with the standard GP assisted Bayesian optimization,
it takes advantage of the flexibility and expressive power of neural networks to explore the general spatial
interdependence of the mean response. We also explore the impact of the neural network architecture and the
interpretation of the output from the deep kernel, which shows that the spatial covariance learned by the deep
kernel is associated with the pathway similarity under different candidate policies. However, since the deep
kernel learning (DKL) does not incorporate the dynamics of PABN explicitly, it may lack interpretability.
Therefore, we propose another interpretable policy optimization approach for linear Gaussian PABN. Built
on a predictor of the mean response derived explicitly to account for input-output pathway correlation and
the global interdependency of PABN, this approach can achieve global convergence with fewer samples.
By reusing the calculations, the computational cost can be reduced significantly.

The paper is organized as follows. In Section 2, we introduce the general PABN model. We propose
the DKL-based sequential optimization for general PABN in Section 3. In Section 4, we focus on the
linear Gaussian PABN, derive an interpretable global metamodel predictor, and develop the optimization
algorithm which can improve interpretability and computational efficiency. Then, we study the empirical
performance of two proposed approaches in Section 5 and conclude this paper in Section 6.

2 GENERAL POLICY-AUGMENTED KNOWLEDGE GRAPH

In this section, we first review the PABN introduced in Zheng et al. (2023). A typical biomanufacturing
system consists of multiple unit operations, including upstream fermentation and downstream purification
to meet quality requirements; see Figure 1. The outputs of the biomanufacturing system (e.g., drug quality
and productivity) are impacted by many interacting factors. In general, these factors can be divided into
critical process parameters (CPPs) and critical quality attributes (CQAs). For the purpose of this discussion,
one can consider CQAs as the “states” of the process, e.g., the concentrations of biomass. CPPs can be

3554

Zhao, Xie, and Luo

Hi+l + rHl+2

Upstream Fermentation Process Downstream Purification Process

Figure 1: An illustration of a PABN with arrows representing interactions from Zheng et al. (2023).

viewed as “actions” (such as feeding strategies) that need to be controlled to optimize the manufacturing
output metrics. We use §; = (s,l,...,s;’) and a; = (atl,...,a;”) to denote, respectively, the state and action
vectors at time ¢, where 1 <t < H with H representing the planning horizon. The dimensions of the state
and action variables may be time-dependent, but for simplicity, we keep them constant in this study.

In general, the dynamics of the state in a bioprocess can be characterized by ODE/PDE-based kinetic
models. Suppose that s; evolves according to the ordinary differential equation % = fi(ss,a,), where
f:(s;,a;) encodes the causal interdependencies between various CPPs (i.e., s;) and CQAs (i.e., a;) in period
t. Suppose that the functional form of f;(s,,a,;w,) is known, with unknown parameters w; estimated from
data. Built on the prior knowledge of the existing PDE/ODE-based kinetics, Zheng et al. (2023) introduced

the state transition hybrid model, i.e.,

Se+1 = fi(se,aiB0) + e, (1
where the residual e, | is a random vector representing the uncontrollable factors. Suppose that the residuals
follow a multivariate Gaussian distribution, i.e., e = (e ,e, ,...,e;) ~ A4 (0,V), where v;; in ith row and

jth column of V denotes covariance between the ith component and the jth component of e. Then the
distribution of the entire trajectory T = (s1,a;,82,az,...,8y) of the stochastic decision process (SDP) can

be written as p(T) = p(s;) H,H:}l p(Si1 | 8,a)pay). Letw = {{B,}f{:’ll,V} denote the model parameters.

Given the historical data 7 = {T(”) }’1::1 , the posterior distribution of model parameters, p(w|Z), quantifies
the model parameter estimation uncertainty.

At each time ¢, the decisions are selected according to a; = m (s;;0;), where the policy 7, maps the
state vector s, into the space of all possible action values and 0, represents the policy parameters. The
parametric policy Ty = {th}fi]1 is the collection of these mappings over the entire planning period and
is fully characterized by @ = {0,}7!. Let the reward function at each ¢-th period be r(s,,a,) and the
random cumulative reward earned by following the policy specified by 0 during the planning period be
r(0) =Y | r.(s;,a;), the expected cumulative reward for the given model parameters w can be written as
J(O;w) =E,[r(0)|so,w]. Our goal is to obtain the optimal policy accounting for both model uncertainty
and inherent stochasticity, i.e.,

0" :arggéa;/(e) with ¢ (0) =E, [J(0;w)], 2)
with the expectation taken over the posterior distribution of w given the historical data &. Recall that
J (@;w) is an expected value over the stochastic uncertainty. The objective _# (0) in (2) takes an additional
expectation to account for model uncertainty. For linear state transition and policy functions, Zheng et al.
(2023) introduce the policy-augmented Bayesian network (PABN) as illustrated in Figure 1.

3555

Zhao, Xie, and Luo

3 POLICY OPTIMIZATION WITH DKL FOR GENERAL PABN

In this section, we consider the policy optimization for general PABN. The objective function _# ()
usually has a complex form, which lacks properties like convexity and linearity, and its evaluation is often
noisy. Therefore, gradient descent policy optimization methods can get stuck in local optimum (Chau
et al. 2014). Bayesian optimization methods have gained considerable attention in the global optimization
of complex stochastic systems (Sun et al. 2014). They sequentially optimize a Gaussian process (GP),
characterizing the belief of the objective function, by balancing exploration and exploitation to guarantee
the global convergence. However, the GP metamodel with classical kernels like the RBF and Matérn kernel
are stationary, i.e., the spatial correlation or covariance function depends only on the distance between the
inputs. Thus, they are unable to learn the spatial interdependence of the PABN model from the data.

To overcome this limitation, we develop a sequential optimization algorithm with DKL, which combines
deep learning with the nonparametric benefit of GP (Wilson et al. 2016). Let r(0) denote the simulation
output of the mean response ¢ (0) = E,,.[r(0)] at any feasible candidate policy specified by 0, i.e.,
r(@) =M(0)+€(0), where M(0) is a GP with zero mean characterizing the prior knowledge of the
unknown mean response surface _# (0). The term £(@) represents the simulation error, which follows
the normal distribution with mean zero and variance 62(0) and captures the randomness from intrinsic
stochasticity.

Let kp(-,-|Ys) denote the classical kernel like the RBF kernel with hyperparameters ¥p. In DKL, we
transform the input @ by g(@,¥x), which is a deep neural network with parameters ¥y. The covariance of
the mean response _# (0) and _# (0’) becomes

kp(0,0'yn,y8) = ks(g(0,¥n).8(0",¥N)|YN, VB),

where ¥y and ¥p are the hyperparameters that need to be learned from simulation results. The deep kernel
kp(-,-) incorporates more flexibility than the classical kernel, which can improve the predictive power of
GP. It is used to learn the performance similarity of _¢# (@) at evaluated and unevaluated policy parameters
with a well-trained neural network. This means that the candidate policies have high covariance not only
because of their short spatial distance, but also because of similar dynamics in the PABN model. Therefore,
the modified kernel can characterize more general spatial interdependencies in the PABN model and it can
be used to guide the exploration and the exploitation more effectively in the solution space.

Given k design points {8 }%_| and their simulated results {#()}¥_,, we can jointly learn the parameters
Y= {Yn,¥s} by maximizing the log likelihood, which is defined as

1 1 k
LL = —E?T<Ky+28)7li'— Elog ‘Kfy‘i‘z:g’ — ElogZﬂ?,

where K, is the covariance matrix between the mean response at the design points, X, =

diag{c2(8()),c%(81),...,6%(0W)}, and # = (#1),#?) ... #¥)) is the vector of simulation outputs at
design points. The derivative of the log marginal likelihood with respect to the parameter ¥ is:

JLL JLLOJKy JLL 1

= , where —— = —

dy JKy dy oK, 2

Through the chain rule of gradient calculation and gradient descent for negative log likelihood, the kernel

parameters ¥ can be trained. Let ky(0) denote the covariance vector between 6 and simulated design points,

a sequential optimization procedure based on DKL is shown in Algorithm 1.

The structure of the deep kernel depends on the complexity of the PABN model. The deep kernel with

a more complex architecture has more representation power and more flexibility. However, it can result in

overfitting with limited evaluations and a high computational burden. In practice, we need to restrict the

number of layers and hidden units. In addition, to reduce the computational time due to the training of ¥,

a periodic update strategy can be adapted. We can update ¥ when several new data are collected. Though

the sequential optimization algorithm with DKL can learn the spatial interdependence of the PABN from

simulated data, it cannot incorporate the transition dynamics explicitly and therefore, lacks interpretability.

(Ky+Ze) "7 (Ky+2Ze) ' — (Ky+Ze)).

3556

Zhao, Xie, and Luo

Algorithm 1: GP with Deep Kernel Learning

Input: PABN model, initial # of design points By, # of iterations B.
1. Sample By design points from the design space and simulate their performance #;
2. Learn the optimal kernel parameters ¥ by maximizing the log likelihood LL;
3.forb=1,....Bdo
Find the point 8* that maximize the acquisition function #:
0" = argmaxgh(u(0),0%(0)), where
1(8) = ky(0)(Ky +E¢)~'# and 62(0) = ky(6,0) —ky(8) (Ky +Ze) 'ky(8) T
Run a simulation following the policy 6* and then update the design points and #;

Update the optimal kernel parameters ¥;
4. Return the point @* that maximize the posterior mean response, i.e., 0* = argmaxq 1 (0).

4 POLICY OPTIMIZATION FOR LINEAR GAUSSIAN PABN

To overcome the limitation of the DKIL-based optimization, in this section, we develop an interpretable
policy optimization method and study the linear Gaussian PABN to derive analytical results. The linear state
transition model assumption is valid for bioprocesses with online monitoring, i.e., monitoring frequency
on a faster time scale than the evolution of bioprocess dynamics.

4.1 Method Description

In linear Gaussian PABN (Zheng et al. 2023), we assume that f; is linear. Let B¢ denote the n x n matrix

whose (j,k)-th element is the linear coefficient [3, corresponding to the effect of state s/ on the next state
sf ;- Similarly, let B¢ be the m x n matrix of coefficients representing the effects of each component of a;
on each component of s, 1. Then, the stochastic process dynamics in equation (1) can be expressed as

s =R+ B (s —p)+ B (@ —p) e,
where pf = (u!,....1"), p¢ = (A',...,A™) and e = (elT,ezT, e,TI) JV(O V). The list of model

parameters is denoted by w = (u*,u?, B, V), where p® = {ps} |, po = {uo}"1, B = {(B*,B*)},'. The

unknown model parameters w can be estimated from data. We also focus on linear policy and reward

functions, i.e., a; = u¢+ 0, (s, —), and r; (s;,a;) = m; +b/a, +c/s;, where 0, is an n x m coefficient

matrix. The linear reward is often used in biomanufacturing; see for example Martagan et al. (2016).
Then, given model parameters w, the cumulative reward r(0|w) becomes,

H H t
r(@w) = Zrzst,at!w m+ZatR1,I_1(sO—ui)+Zaz(ZRi,z_lez),
t=1 =1 i=1

T T
where R;; = ;:i [(ﬁj) + (ﬁ;‘) 07} represents the product of pathway coefficients from time step

i totand R;;; =1,., is the n x n identity matrix. Let @, = b0 +c¢. Then we have r(8|w) ~
A (E[r(6|w)], Var[r(6|w)]). The mean of r(6|w) and the covariance between r(6|w) and r(6'|w) are

E[r(0jw)] =m—+ i o Ry ;1 (s0 — 1Y),

t=1

Hlat (iR” 1e,>,ia (_ﬁR, 1e>] 3)

Cov [r(8|w), r(6'|w)] = Cov

3557

Zhao, Xie, and Luo

Algorithm 2: Pathway Correlation based Optimization for Linear Gaussian PABN

Input: initial # of design points By, # of iterations B, # of model parameters L.
1. Sample L model parameters {w,}5_,;
2. Sample By design points from the design space and simulate their performance with {wz}éle;
3.forb=1,....Bdo
Find the point 00 — argmaxe<o>ft(0), where [ZL(O) (wy) is calculated using Algorithm 3;
Simulate the performance of 8()* and update the design points and their performance;
4. Return the point 8V = argmax ().

where R; = Y1, oR;; 1 is a 1 x n matrix representing the overall pathway coefficient from time step i to

the cumulative reward, and R = (R{,R;, ...,Ry) Then the reward becomes r (0|w) = m+R;(so — 1t}) + Re.
Suppose we need to assess the expected reward of a candidate policy specified by 8(°). Given k design

points 8. 03 ... @) and model parameters w, let () denote the cumulative reward of 8(), we have

r=(r0,) =y (RORY,RP) (50—)+ (RO.RD,.RO) e

LRy

Ase~ A (0,V), wehave (rO, r(D r0NT ~ 4 (u,X), where y; = m+RY) (so — p7) is the ith component

of 1 and o;; = RVVRU)T is the component at the ith row and jth column of E. If we partition the y and

Yaspu= (NO) L= <GOO 201>, given k design points and their evaluations # = (f"(l), . f(k)) under w,
My Lo Zn

where #) = m+ Ry (so — 13) +Re'), the predictive distribution of +* is .4 (1(*)(w), 5 (w)), where

gOw) = +E0Z; (F—p1) and 6(w) = 690 —Zo1Z; ' Zio. 4)

Similar to the Bayesian optimization, equation (4) provides the predictive mean for the performance
of any given policy 8. However, it incorporates the spatial interdependence with the analytical covariance,
i.e., equation (3), which represents the pathway similarity between any two candidate policies. As a
result, equation (4) serves as a more interpretable predictor compared to the predictive mean in Bayesian
optimization. It can also contribute to the interpretation of deep kernel learning as shown in Section 5.
Although equation (3) can be optimized directly, it does not offer the same level of insight into the learning
process of the deep kernel.

Now suppose that for each design point 0(), we have evaluations for). We can calculate ,EL(O) (wy)
for £=1,2,...,L, respectively. The sample mean estimation of expected cumulative reward _# (6(0)) is
a0 = 1Yh 19 (wy), where wy ~ p (w|2) for £ =1,2,...,L, accounting for model uncertainty. The next
point to be evaluated 8(©* is the feasible point with the largest 1?0, i.e.

0 = argmaxg (o) [l), 5)

Then we can run additional L simulations on 0(©)* with different model parameters and repeat the procedure
(4) to (5) until the total simulation budget is exhausted. The complete process is shown in Algorithm 2.

4.2 Algorithm for Predictive Mean Calculation

In this section, we provide an efficient algorithm to calculate the predictive mean in equation (4) in
Algorithm 3. For a given point 8% to be predicted, we firstly need to calculate all the pathway coefficients

R,(ﬁ 32 to obtain R, As R,(R 32 can be calculated by reusing the calculation of Rt(loi 1ty

calculate the R,(IOL, which reduces the computational cost by a factor of O(H) in step 1 compared to the
brute force algorithm without reusing the calculation. Next, we need to calculate the updated ¥ between

we can recursively

3558

Zhao, Xie, and Luo

Algorithm 3: Calculate the Predictive Mean Given Model Parameters w

Input: point to be predicted 8(), the model parameters of the linear Gaussian PABN model
w={B3 .y 1Bl 1.y ey, V }. existing design points 81, ...,0%) and their evaluations
under w, the pathway coefficients of jth design point RY), covariance matrix between design
points ¥, the rewards coefficients b;.;; and ¢y.p, RE?LI. =l fori=1,2,... H.
1. Calculate all the pathway coefficients to the cumulative reward at 0.
forr,=1,2,....H do
forty =1,...,1do
R = (B B TRY)
fori=1,....H do
REO) =0;
fort=i,...,H do
| R =R" +(6"b,+c;) 'R ;

i i ir—1°

2. Calculate the updated covariance matrices: RO = (REO),RS)), . 7RI(T?))

.)N
Oo; :R(O)VR(J) for j=0,1,... Lk, Loi = (0'01,6()2, . G()k), X=X X= <g()0 201>
10 211
3. Update the inverse of the covariance matrices:
_] ee _ i+ 1oy
Vir1 = 0600 — 201 X110, gkr1 = —Vkilznlzlo, = (i ng%lng s glfql ;
8k+1 Vik+1
4. Calculate the predictive mean at 8(): i) (w) = o + X X' (7 — 1)

0 and the design points. As the pathway coefficient R®) of the evaluated point i has already been
calculated during the previous update, we can reuse the results. Therefore, in step 2, we can reduce
the computational cost of calculating R(). Iln step 3, for the inverse of the current covariance matrix
— T
¥, we have X = (Zir Zo), = (i +gk?gk+lvk+l gﬁl), where g1 = —v, ! £,/ Z10 and
o1 000 8k+1 Vit1 e
Vir1 = 000 —20121’112‘.10. Compared to the direct inverse which costs O(k%), the computational cost now
becomes O(k?), which can save O(k) cost. The computational costis O(H?n?(m+n)), O(kH?n*), and O (k)
in steps 1 to 3, respectively. Therefore, the overall computational complexity is O(H?n?(m+n)) +O (k2).

Proposition 1 The cost to compute the predictive mean fi(?) is O(H?n?(m+n))+0O (k*) for Algorithm 3
and O(kH>n*(m+n)) +O (k*) for brute force algorithm without reusing.

The storing and reusing method shares the similar idea with the message passing, which utilizes the
graph structure to achieve fast computation. The major difference is that the message passing is used for
the marginalization and inference of the probability distribution in the general graphical model, however,
the storing and reusing method is used for the computation of the covariance for the linear Gaussian PABN.

5 EMPIRICAL STUDY

For the empirical results, we first present three experiments for the ablation analysis and the interpretation
analysis of DKL in Section 5.1. Basically, Experiment 1 presents the impact of the number of layers on
the performance of the DKL. Experiment 2 shows that the covariance learned by the DKL can capture
the performance similarity between different candidate policies. Experiment 3 further illustrates that the
DKL can potentially learn the pathway similarity of the PABN model. Then in Section 5.2, we compare
the performance of the DKL-based method and the pathway correlation based method with the standard
BO in optimizing general PABN and linear Gaussian PABN, respectively.

3559

Zhao, Xie, and Luo

For the general PABN model in this study, the transition function is set to be f(s;,a;;w;) = B¥(s; +
o’sin(s;)) + B%(a; + a¢sin(a;)) +m,, where the model parameters w, = {B{, &, B¢, &%, m,}. It involves
both the monotonicity term as well as the nonlinearity term. The policy and reward functions are set to be
linear. The dimension of actions m = 1, the dimension of states n = 3, and the time horizon H = 3, which
leads to a 6-dimensional optimization problem. The feasible region of the policy parameters is chosen by
constraining each individual policy parameter to an interval. For the linear PABN model, the transition
function is linear, and the problem size is also set to be 6 dimensions with n =3, m =1 and H = 3.

5.1 Ablation Study and Interpretation Analysis

We first investigate the impact of the number of layers in the neural network of the deep kernel for the
general PABN in Experiment 1. In specific, we simulate the performance of 100 candidate policies as
the training set, which are selected by Latin Hypercube Sampling (LHS). Additionally, we simulate the
performance of another 20 policy parameters as the test set, which are also chosen by LHS. The Gaussian
processes with different deep kernels of varying numbers of layers are used to fit the training set. Then
they are evaluated in terms of the mean squared error (MSE) on the test set. For the neural network in the
deep kernel, we fix the number of nodes in the input layer, the hidden layer, and the output layer to be
6, 50, and 2. All the activation functions are set to be ReLU. The number of layers is set to O (classical
kernel), 1 (shallow kernel), 4 (deep kernel), and 20 (very deep kernel), respectively.

Table 1 shows the MSEs with 95% confidence intervals (CI) of deep kernels with different numbers
of layers. The results are estimated based on 10 macro-replications. We can see the MSE first decreases
as the number of layers increases and then increases when the number of layers becomes 20 (i.e., very
deep kernel). As the number of layers increases, the deep kernel provides more flexibility and therefore
improves the fitting power of the Gaussian process metamodel. However, when the number of layers
becomes excessively high, the Gaussian process may overfit the noisy simulation outputs, especially during
the early stages or iterations of Bayesian optimization.

Table 1: MSE with 95% CI of the deep kernels with different number of layers.

Number of Layers MSE Half Length of CI

0 3392.79 1245.68
1 2892.81 977.90
4 827.55 279.87
20 1410.99 274.23

In Experiment 2, we aim to show that the deep kernel can learn more complex information about spatial
interdependence than a pure classical kernel. Notice that the classical kernel measures the closeness or
similarity of the policy parameters in the original space and assumes that the policy parameters close to
each other are likely to exhibit similar performance. However, the deep kernel learns the embedding of
the policy parameters, which maps the policy parameters into the new space and measures the similarity
of the policy parameters in the new space. Therefore, it incorporates not only the closeness of the policy
parameters but also the similarity of the resulting graphical structure of PABN. In Experiment 2, we choose
the RBF kernel as the classical kernel, and the architecture of the neural network in DKL is set as a
6-layer fully connected neural network with (6, 50, 50, 50, 50, 2) nodes. The design points used to train
the Gaussian process metamodel with the deep kernel and the classical kernel are selected by LHS, and
the number of points is set to 1000. Subsequently, we sample 20 test points by LHS and calculate the
covariance and the absolute difference of the true objective function estimated by side experiments.

One representative result in Experiment 2 is shown in Figure 2. The x-axis is the absolute difference of
the true objective function between a fixed test point @y and each remaining test point 8;. Meanwhile, the
y-axis represents the covariance between the performance of 8y and the performance of each remaining
test point 8;, obtained from the deep kernel and the RBF kernel, respectively. It is clear that the covariance

3560

Zhao, Xie, and Luo

le—8
Y L]
0.0015{ ° ° 4
L]
L] L]
0.00101 * 3
—_ ° L4 -
s . 2
S 0.00051 ¢ < 2
<2 o <
0.0000 ¢ 11
L]
—0.00051 ° L4 ° 01 e eoco .- ° oo ° o o ° °
0 20 40 60 80 100 0 20 40 60 80 100
|Jo — Til [Jo = Til
(a) Covariance of deep kernel (b) Covariance of RBF kernel

Figure 2: Covariance obtained from two kernels against the absolute difference of the true objective value.

Table 2: PCC between the learned covariance and the absolute difference of true objective value.

Pearson Correlation Coefficient P-value
Deep Kernel -0.41 7.58e — 18
RBF Kernel -0.04 0.34

obtained from the deep kernel is negatively correlated with the absolute difference of the objective function,
i.e., two input points with similar performances have high covariance, indicating that the deep kernel
effectively measures the similarity between the performances of test points. However, this pattern cannot
be observed from the covariance obtained using the RBF kernel since the RBF kernel cannot learn the
similarity except distance. Notably, we can see that the covariance obtained from the RBF kernel is
significantly smaller than the covariance obtained from the deep kernel since the test points generated by
LHS are uniformly spread throughout the policy parameter space, resulting in considerable distance between
them. We also calculate the Pearson correlation coefficients (PCC) (McNamara et al. 2014) between the
covariance of the performances of test points and the absolute difference of the true objective function for
both the deep kernel and the RBF kernel in Table 2, which validates the above conclusion.

To further interpret what can be learned by deep kernel learning, we consider the Gaussian process
metamodel with deep kernel and RBF kernel for the linear PABN model. The construction of the training
set and test set follows the procedure outlined in Experiment 2. The architecture of the neural network in
DKL is set to be a 6-layer fully connected neural network with (6, 50, 50, 50, 50, 2) nodes. We calculate
the learned covariance between the performances of the test policy parameters obtained from the deep
kernel and the RBF kernel, respectively. Then we calculate the Pearson correlation coefficient between the
learned covariance and the true covariance, which is estimated by equation (3). The results of Experiment 3
are presented in Table 3. It is evident that the covariance function learned by DKL exhibits a significant
positive linear correlation with the true covariance of the linear PABN. The true covariance of linear PABN,
which captures the pathway similarity in the graphical model. Therefore, DKL demonstrates the ability to
learn the similarity of the resulting graphical structure of the PABN for the Gaussian process metamodel,
i.e., the spatial interdependence of the performance over the feasible space of policy parameters. As a

Table 3: PCC between the learned covariance and the estimated true covariance of the linear PABN.

Pearson Correlation Coefficient P-value
Deep Kernel 0.32 2.42e — 10
RBF Kernel 0.05 0.35

3561

Zhao, Xie, and Luo

J
250 7=~ --

2001
150
S100 -

50 A

—— Deep Kernel Learning
—— Standard BO =50 1 —— Standard BO

—— Deep Kernel Learning

100 200 300 400 500 100 200 300 400 500
Iterations Iterations

(a) Upper confidence bound (b) Expected improvement
Figure 3: The convergence behaviors of the mean objective and 95% CI for general PABN.

result, the deep kernel can benefit both the prediction of the mean response surface and the exploration of
the unevaluated policy parameters.

5.2 Optimization

In this section, we present the performance of the DKL-based method (i.e., Algorithm 1) in optimizing
general PABN as well as the performance of the pathway correlation based method (i.e., Algorithm 2) in
optimizing linear Gaussian PABN. We compare both methods with the standard BO method in Wang et al.
(2020) in terms of empirical convergence rate and running time.

We first compare the DKL-based method with the standard BO method in optimizing the general
PABN model. For DKL based optimization, we apply the RBF kernel as the classical kernel kg(-,-). The
architecture of the neural network is fully connected with (6, 50, 50, 50, 50, 2) nodes. The activation
function is the ReLLU function. For standard BO, the kernel is also set to be an RBF kernel. The acquisition
functions used in both methods are upper confidence bound (UCB) and expected improvement (EI). The
initial points are selected with LHS, and the number is set to be 30.

In Figure 3, we demonstrate the true objective value obtained at each iteration for both the DKL-based
optimization method and the standard BO. We plot the mean performance of both methods by solid lines
and the 95% confidence intervals (CI) by shaded areas, which are estimated over 10 macro-replications.
The actual optimal objective function value J* is estimated by randomly sampling policy parameters from
the feasible space with a sample size of 1 x 10°. We can see that the DKL based optimization method
converges to the global optimum within 100 iterations, while the standard BO method converges after
around 300 iterations. It can also be observed that DKL-based optimization exhibits robust performance
across different acquisition functions. The running times after iterations 50, 100, and 200 for both methods
are recorded in Table 4. The DKL-based optimization is more time-consuming than standard BO as it
involves the training of a neural network. However, as the optimization progresses, the time difference due
to training the neural network becomes less significant compared to the overall running time.

Next, we compare the pathway correlation based method proposed in Section 4 with standard BO
for linear Gaussian PABN optimization. In the pathway correlation based method, to optimize [i, we use

Table 4: Running times of the DKL-based optimization and the standard BO for general PABN.
DKL-UCB Standard BO-UCB DKL-EI Standard BO-EI

iter = 50 12.47s 5.66s 15.57s 6.78s
iter = 100 37.83s 18.06s 41.16s 19.98s
iter = 200 78.19s 56.19s 80.32s 57.43s

3562

Zhao, Xie, and Luo

300
J

250 1

200~

150 +

100 ~

50 -

—— Proposed
=50~ —— Standard BO

0 25 50 75 100 125 150 175 200
Iterations
Figure 4: Mean objective value obtained with 95% CI at each iteration for linear Gaussian PABN.

Table 5: Running times of proposed, brute force and standard BO algorithm for linear Gaussian PABN.

Proposed Brute Force Standard BO

iter = 10 2.84s 84.93s 0.40s
iter = 50 16.12s 417.87s 4.33s
iter = 100 36.07s 1038.73s 17.79s

a quasi-Newton method, the limited-memory Broyden—Fletcher—Goldfarb—Shanno for bound-constrained
problems (L-BFGS-B) algorithm with multiple start points. We first compare the speed of convergence
for both methods. The mean performance as well as the 95% confidence intervals are shown in Figure 4,
which are estimated from 10 macro-replications. The actual optimal objective function value J* is estimated
by randomly sampling policy parameters from the feasible space with a sample size of 1 x 10%. We can
see that the proposed pathway correlation based method attains the optimal objective value with less than
20 iterations. However, the standard BO converges to the optimal objective value after 100 iterations,
which is more sample inefficient than our method. Therefore, we can leverage the structural information
and the transition pathway of stochasticity in PABN to improve the optimization. We also compare the
time efficiency of the proposed pathway correlation based method with the brute force implementation,
which does not adapt the storing and reusing strategy, and the standard BO. The running times averaged
over 10 macro replications after various iterations are recorded in Table 5. Compared to the brute force
implementation, our method can be more efficient with the reuse of previous calculations. Compared to the
standard BO, our method is relatively slower, but as the iterations increase, the gap becomes less significant.

6 CONCLUSION

In this paper, we propose the global optimization methods for the PABN hybrid model in biomanufacturing.
For general PABN, a DKL-based sequential optimization algorithm is developed, which can learn the spatial
interdependence of PABN. Empirical experiments provide the ablation study and interpretation analysis of
DKL. The results show that the DKIL-based method works better than the standard BO method. To achieve
interpretable optimization, we utilize the pathway correlation information explicitly in linear Gaussian
PABN optimization, which empirically converges faster. In the future research, we will consider to design
deep kernels and acquisition functions tailored to the policy optimization of PABN models that involve
highly heterogeneous noise. Additionally, we will develop an interpretable optimization method for PABN
with general transition functions.

3563

Zhao, Xie, and Luo

REFERENCES

Astudillo, R., and P. Frazier. 2021. “Bayesian Optimization of Function Networks”. Advances in Neural Information Processing
Systems 34:14463-14475.

Bowden, J., J. Song, Y. Chen, Y. Yue, and T. Desautels. 2021. “Deep Kernel Bayesian Optimization”. Technical Report No.
LLNL-CONF-819001, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States).

Chau, M., M. C. Fu, H. Qu, and I. O. Ryzhov. 2014. “Simulation Optimization: A Tutorial Overview and Recent Developments
in Gradient-Based Methods”. In Proceedings of the Winter Simulation Conference 2014, edited by A. Tolk, S. Y. Diallo,
I. O. Ryzhov, L. Yilmaz, S. J. Buckley, and J. A. Miller, 21-35. Institute of Electrical and Electronics Engineers, Inc.

Cheng, Z., J. Luo, and R. Wu. 2023. “On the Finite-Sample Statistical Validity of Adaptive Fully Sequential Procedures”.
European Journal of Operational Research 307(1):266-278.

Del Rio-Chanona, E. A., X. Cong, E. Bradford, D. Zhang, and K. Jing. 2019. “Review of Advanced Physical and Data-
Driven Models for Dynamic Bioprocess Simulation: Case Study of Algae—Bacteria Consortium Wastewater Treatment”.
Biotechnology and Bioengineering 116(2):342-353.

Frazier, P. 1. 2018. “Bayesian Optimization”. In Recent Advances in Optimization and Modeling of Contemporary Problems,
255-278. INFORMS.

Gottschalk, U., K. Brorson, and A. A. Shukla. 2012. “The Need for Innovation in Biomanufacturing”. Nature Biotechnol-
ogy 30(6):489-492.

Hong, M. S., K. A. Severson, M. Jiang, A. E. Lu, J. C. Love, and R. D. Braatz. 2018. “Challenges and Opportunities in
Biopharmaceutical Manufacturing Control”. Computers & Chemical Engineering 110:106-114.

Kasemiire, A., H. T. Avohou, C. De Bleye, P.-Y. Sacre, E. Dumont, P. Hubert, and E. Ziemons. 2021. “Design of Experiments
and Design Space Approaches in the Pharmaceutical Bioprocess Optimization”. European Journal of Pharmaceutics and
Biopharmaceutics 166:144—154.

Koller, D., and N. Friedman. 2009. Probabilistic Graphical Models: Principles and Techniques. MIT Press.

Luo, Y., V. Kurian, and B. A. Ogunnaike. 2021. “Bioprocess Systems Analysis, Modeling, Estimation, and Control”. Current
Opinion in Chemical Engineering 33:100705.

Martagan, T., A. Krishnamurthy, and C. T. Maravelias. 2016. “Optimal Condition-Based Harvesting Policies for Biomanufacturing
Operations with Failure Risks”. IIE Transactions 48(5):440—461.

McNamara, C. G., A. Tejero-Cantero, S. Trouche, N. Campo-Urriza, and D. Dupret. 2014. “Dopaminergic Neurons Promote
Hippocampal Reactivation and Spatial Memory Persistence”. Nature Neuroscience 17(12):1658-1660.

Park, S.-Y., C.-H. Park, D.-H. Choi, J. K. Hong, and D.-Y. Lee. 2021. “Bioprocess Digital Twins of Mammalian Cell Culture
for Advanced Biomanufacturing”. Current Opinion in Chemical Engineering 33:100702.

Sun, L., L. J. Hong, and Z. Hu. 2014. “Balancing Exploitation and Exploration in Discrete Optimization via Simulation through
a Gaussian Process-Based Search”. Operations Research 62(6):1416-1438.

Wang, H., S. H. Ng, and X. Zhang. 2020. “A Gaussian Process Based Algorithm for Stochastic Simulation Optimization
with Input Distribution Uncertainty”. In Proceedings of the Winter Simulation Conference 2020, edited by K.-H. G. Bae,
B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, 2899-2910. Institute of Electrical and
Electronics Engineers, Inc.

Wilson, A. G., Z. Hu, R. Salakhutdinov, and E. P. Xing. 2016. “Deep Kernel Learning”. In Artificial Intelligence and Statistics,
370-378. PMLR.

Yi, S., and M. Zorzi. 2021. “Robust Kalman Filtering under Model Uncertainty: The Case of Degenerate Densities”. IEEE
Transactions on Automatic Control 67(7):3458-3471.

Zheng, H., W. Xie, I. O. Ryzhov, and D. Xie. 2023. “Policy Optimization in Dynamic Bayesian Network Hybrid Models of
Biomanufacturing Processes”. INFORMS Journal on Computing 35(1):66—82.

AUTHOR BIOGRAPHIES

JUNKAI ZHAO is a Ph.D. student in the Antai College of Economics and Management at Shanghai Jiao Tong University.
His research interest is simulation optimization. His email address is zhaojunkai @sjtu.edu.cn.

WEI XIE is an assistant professor in Mechanical and Industrial Engineering at Northeastern University. Her research inter-
ests include AI/ML, computer simulation, data analytics, and stochastic optimization. Her email address is w.xie @northeastern.edu.

JUN LUO is a professor in the Antai College of Economics and Management at Shanghai Jiao Tong University. His primary
research interests are simulation optimization and statistical learning. His email address is jluo_ms@sjtu.edu.cn.

3564

mailto://zhaojunkai@sjtu.edu.cn
mailto://w.xie@northeastern.edu
mailto://jluo_ms@sjtu.edu.cn

	INTRODUCTION
	General Policy-augmented Knowledge Graph
	Policy Optimization with DKL for General PABN
	Policy Optimization for Linear Gaussian PABN
	Method Description
	Algorithm for Predictive Mean Calculation

	Empirical Study
	Ablation Study and Interpretation Analysis
	Optimization

	CONCLUSION

