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ABSTRACT

Driven by critical challenges in biomanufacturing, including high complexity and high uncertainty, we
propose global optimization methods on the policy-augmented Bayesian network (PABN), characterizing
risk- and science-based understanding of underlying bioprocess mechanisms, to guide the optimal control.
We first develop a sequential optimization algorithm based on deep kernel learning (DKL) for PABN with
general state transition dynamics, which can learn the spatial dependence of mean response through a
deep neural network. In addition, to improve the interpretability and computational efficiency of policy
optimization, a global metamodel is introduced to guide linear Gaussian PABN optimization, which explicitly
accounts for the correlation of input-to-output pathways obtained under different candidate policies. Our
empirical study provides the ablation analysis and the interpretation analysis of the DKL, and also shows
that both proposed approaches demonstrate promising performance compared to the standard Bayesian
optimization with Gaussian process.

1 INTRODUCTION

The biopharmaceutical manufacturing industry plays an important role in supporting public health and
economic growth. However, biomanufacturing faces several critical challenges, including high complexity,
high variability, and very limited process observations (Hong et al. 2018). The trajectory dynamics in the
biomanufacturing processes are determined by sophisticated time-varying mechanisms, which are highly
complex and variable (Kasemiire et al. 2021). Due to the long analytical testing times required for
biopharmaceutical materials, historical process data are often very limited, which makes the modeling and
control of biomanufacturing processes challenging (Gottschalk et al. 2012).

Existing biomanufacturing process modeling methodologies can be categorized into two classes: first-
principle models and data-driven models. First-principle models rely on ordinary or partial differential
equations (ODEs/PDEs) based mechanistic models representing the dynamics of bioprocesses (Luo et al.
2021). Compared to the black-box simulation model (Cheng et al. 2023), they are often built on the
scientific understanding of the causal relationships between the key factors in the bioprocesses. However,
first-principle models often cannot provide good predictions due to the limitations of existing scientific
understanding. In addition, they are usually deterministic and ignore model estimation uncertainty. Data-
driven models aim to build general statistical and machine learning models based on real-world data (Park
et al. 2021). The main drawback of data-driven models is that they are not easily interpretable and often
require sufficient historical data (Del Rio-Chanona et al. 2019).

Driven by these challenges and limitations of existing methodologies, Zheng et al. (2023) propose
the policy-augmented Bayesian network (PABN), which represents the causal interactions and dynamics
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within and between different unit operations to guide bioprocess control. It is a hybrid (“mechanistic +
statistical") model that can leverage existing kinetic models and facilitate learning from data. Such temporal
graphical models with linear Gaussian dependencies are often called Kalman filters, and their nonlinear
variants are called extended Kalman filters (Koller and Friedman 2009). The Kalman filter and its variants
are widely applied to obtain good de-noising estimation and filtering when the system model has small
uncertainty. However, compared to the PABN model, they may perform poorly in the presence of limited
data and large model uncertainty (Yi and Zorzi 2021). Also, they often focus on the state estimation and
ignore the policy optimization. Therefore, we model the biomanufacturing process as PABN suggested by
Zheng et al. (2023).

To search for the optimal control policy, Zheng et al. (2023) introduce a projected stochastic gradient
ascent approach to maximize the expected cumulative reward over the space of parametric policies. However,
the state transition function of the PABN considered in their study is linear, and the gradient-based policy
optimization method can only guarantee local convergence. Bayesian optimization (BO) considers the
problem of finding a global optimum of an unknown objective function (Frazier 2018). Astudillo and
Frazier (2021) propose a Bayesian optimization approach for function networks, where each function takes
the output of its parent nodes as input. Although the structure of function network is similar to PABN,
their study assumes that the function in each layer of the network is known, which cannot be directly
applied in biomanufacturing. Bowden et al. (2021) introduce a deep kernel Bayesian optimization approach,
which adopts the deep kernel combining classical kernel with the deep neural network. However, Bayesian
optimization with the deep kernel has not been explored in the context of simulation optimization, and there
is limited investigation into the impact of neural network structure and interpretation of the deep kernel.

In this study, we aim to find the global optimal policy in PABN. We first consider the PABN with
general nonlinear state transition functions and propose a Bayesian optimization approach to search for the
optimal policy parameters. The classical kernel function used in the Gaussian process (GP) metamodel only
depends on the distance between candidate solutions, which makes it difficult to capture the global spatial
interdependence within PABN. Instead, we adopt the deep kernel, which learns the spatial interdependence
of PABN through a deep neural network. Compared with the standard GP assisted Bayesian optimization,
it takes advantage of the flexibility and expressive power of neural networks to explore the general spatial
interdependence of the mean response. We also explore the impact of the neural network architecture and the
interpretation of the output from the deep kernel, which shows that the spatial covariance learned by the deep
kernel is associated with the pathway similarity under different candidate policies. However, since the deep
kernel learning (DKL) does not incorporate the dynamics of PABN explicitly, it may lack interpretability.
Therefore, we propose another interpretable policy optimization approach for linear Gaussian PABN. Built
on a predictor of the mean response derived explicitly to account for input-output pathway correlation and
the global interdependency of PABN, this approach can achieve global convergence with fewer samples.
By reusing the calculations, the computational cost can be reduced significantly.

The paper is organized as follows. In Section 2, we introduce the general PABN model. We propose
the DKL-based sequential optimization for general PABN in Section 3. In Section 4, we focus on the
linear Gaussian PABN, derive an interpretable global metamodel predictor, and develop the optimization
algorithm which can improve interpretability and computational efficiency. Then, we study the empirical
performance of two proposed approaches in Section 5 and conclude this paper in Section 6.

2 GENERAL POLICY-AUGMENTED KNOWLEDGE GRAPH

In this section, we first review the PABN introduced in Zheng et al. (2023). A typical biomanufacturing
system consists of multiple unit operations, including upstream fermentation and downstream purification
to meet quality requirements; see Figure 1. The outputs of the biomanufacturing system (e.g., drug quality
and productivity) are impacted by many interacting factors. In general, these factors can be divided into
critical process parameters (CPPs) and critical quality attributes (CQAs). For the purpose of this discussion,
one can consider CQAs as the “states” of the process, e.g., the concentrations of biomass. CPPs can be
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Figure 1: An illustration of a PABN with arrows representing interactions from Zheng et al. (2023).

viewed as “actions” (such as feeding strategies) that need to be controlled to optimize the manufacturing
output metrics. We use ssst =

(
s1

t , ...,s
n
t
)

and aaat =
(
a1

t , ...,a
m
t
)

to denote, respectively, the state and action
vectors at time t, where 1≤ t ≤H with H representing the planning horizon. The dimensions of the state
and action variables may be time-dependent, but for simplicity, we keep them constant in this study.

In general, the dynamics of the state in a bioprocess can be characterized by ODE/PDE-based kinetic
models. Suppose that ssst evolves according to the ordinary differential equation dssst

dt = ft(ssst ,aaat), where
ft(ssst ,aaat) encodes the causal interdependencies between various CPPs (i.e., ssst) and CQAs (i.e., aaat) in period
t. Suppose that the functional form of ft(ssst ,aaat ;wwwt) is known, with unknown parameters wwwt estimated from
data. Built on the prior knowledge of the existing PDE/ODE-based kinetics, Zheng et al. (2023) introduced
the state transition hybrid model, i.e.,

ssst+1 = ft(ssst ,aaat ;βββ t)+eeet+1, (1)

where the residual eeet+1 is a random vector representing the uncontrollable factors. Suppose that the residuals
follow a multivariate Gaussian distribution, i.e., eee = (eee>1 ,eee

>
2 , . . . ,eee

>
H)∼N (000,V), where vi j in ith row and

jth column of V denotes covariance between the ith component and the jth component of eee. Then the
distribution of the entire trajectory τττ = (sss1,aaa1,sss2,aaa2, ...,sssH) of the stochastic decision process (SDP) can
be written as p(τττ) = p(sss1)∏

H−1
t=1 p(ssst+1 | ssst ,aaat)p(aaat). Let www = {{βββ t}H−1

t=1 ,V} denote the model parameters.

Given the historical data D =
{

τττ(n)
}R

n=1, the posterior distribution of model parameters, p(www|D), quantifies
the model parameter estimation uncertainty.

At each time t, the decisions are selected according to aaat = πt (ssst ;θθθ t), where the policy πt maps the
state vector ssst into the space of all possible action values and θθθ t represents the policy parameters. The
parametric policy πθθθ = {πt}H−1

t=1 is the collection of these mappings over the entire planning period and
is fully characterized by θθθ = {θθθ t}H−1

t=1 . Let the reward function at each t-th period be rt(ssst ,aaat) and the
random cumulative reward earned by following the policy specified by θθθ during the planning period be
r(θθθ) = ∑

H
t=1 rt(ssst ,aaat), the expected cumulative reward for the given model parameters www can be written as

J(θθθ ;www) = Eeee [r(θθθ)|sss0,www]. Our goal is to obtain the optimal policy accounting for both model uncertainty
and inherent stochasticity, i.e.,

θθθ
∗ = argmax

θθθ∈P
J (θθθ) with J (θθθ) = Ewww [J (θθθ ;www)] , (2)

with the expectation taken over the posterior distribution of www given the historical data D . Recall that
J (θθθ ;www) is an expected value over the stochastic uncertainty. The objective J (θθθ) in (2) takes an additional
expectation to account for model uncertainty. For linear state transition and policy functions, Zheng et al.
(2023) introduce the policy-augmented Bayesian network (PABN) as illustrated in Figure 1.
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3 POLICY OPTIMIZATION WITH DKL FOR GENERAL PABN

In this section, we consider the policy optimization for general PABN. The objective function J (θθθ)
usually has a complex form, which lacks properties like convexity and linearity, and its evaluation is often
noisy. Therefore, gradient descent policy optimization methods can get stuck in local optimum (Chau
et al. 2014). Bayesian optimization methods have gained considerable attention in the global optimization
of complex stochastic systems (Sun et al. 2014). They sequentially optimize a Gaussian process (GP),
characterizing the belief of the objective function, by balancing exploration and exploitation to guarantee
the global convergence. However, the GP metamodel with classical kernels like the RBF and Matérn kernel
are stationary, i.e., the spatial correlation or covariance function depends only on the distance between the
inputs. Thus, they are unable to learn the spatial interdependence of the PABN model from the data.

To overcome this limitation, we develop a sequential optimization algorithm with DKL, which combines
deep learning with the nonparametric benefit of GP (Wilson et al. 2016). Let r(θθθ) denote the simulation
output of the mean response J (θθθ) = Ewww,eee [r(θθθ)] at any feasible candidate policy specified by θθθ , i.e.,
r(θθθ) = M(θθθ)+ ε(θθθ), where M(θθθ) is a GP with zero mean characterizing the prior knowledge of the
unknown mean response surface J (θθθ). The term ε(θθθ) represents the simulation error, which follows
the normal distribution with mean zero and variance σ2(θθθ) and captures the randomness from intrinsic
stochasticity.

Let kB(·, ·|γγγB) denote the classical kernel like the RBF kernel with hyperparameters γγγB. In DKL, we
transform the input θθθ by g(θθθ ,γγγN), which is a deep neural network with parameters γγγN . The covariance of
the mean response J (θθθ) and J (θθθ ′) becomes

kD(θθθ ,θθθ
′|γγγN ,γγγB) = kB(g(θθθ ,γγγN),g(θθθ ′,γγγN)|γγγN ,γγγB),

where γγγN and γγγB are the hyperparameters that need to be learned from simulation results. The deep kernel
kD(·, ·) incorporates more flexibility than the classical kernel, which can improve the predictive power of
GP. It is used to learn the performance similarity of J (θθθ) at evaluated and unevaluated policy parameters
with a well-trained neural network. This means that the candidate policies have high covariance not only
because of their short spatial distance, but also because of similar dynamics in the PABN model. Therefore,
the modified kernel can characterize more general spatial interdependencies in the PABN model and it can
be used to guide the exploration and the exploitation more effectively in the solution space.

Given k design points {θθθ (i)}k
i=1 and their simulated results {r̂(i)}k

i=1, we can jointly learn the parameters
γγγ = {γγγN ,γγγB} by maximizing the log likelihood, which is defined as

LL =−1
2

r̂rr>(KKKγγγ +ΣΣΣε)
−1r̂rr− 1

2
log |KKKγγγ +ΣΣΣε |−

k
2

log2π,

where KKKγγγ is the covariance matrix between the mean response at the design points, ΣΣΣε =

diag{σ2(θθθ (1)),σ2(θθθ (2)), . . . ,σ2(θθθ (k))}, and r̂rr = (r̂(1), r̂(2), . . . , r̂(k)) is the vector of simulation outputs at
design points. The derivative of the log marginal likelihood with respect to the parameter γγγ is:

∂LL
∂γγγ

=
∂LL
∂KKKγγγ

∂KKKγγγ

∂γγγ
, where

∂LL
∂KKKγγγ

=
1
2
((KKKγγγ +ΣΣΣε)

−1r̂rrr̂rr>(KKKγγγ +ΣΣΣε)
−1− (KKKγγγ +ΣΣΣε)

−1).

Through the chain rule of gradient calculation and gradient descent for negative log likelihood, the kernel
parameters γγγ can be trained. Let kkkγγγ(θθθ) denote the covariance vector between θθθ and simulated design points,
a sequential optimization procedure based on DKL is shown in Algorithm 1.

The structure of the deep kernel depends on the complexity of the PABN model. The deep kernel with
a more complex architecture has more representation power and more flexibility. However, it can result in
overfitting with limited evaluations and a high computational burden. In practice, we need to restrict the
number of layers and hidden units. In addition, to reduce the computational time due to the training of γγγ ,
a periodic update strategy can be adapted. We can update γγγ when several new data are collected. Though
the sequential optimization algorithm with DKL can learn the spatial interdependence of the PABN from
simulated data, it cannot incorporate the transition dynamics explicitly and therefore, lacks interpretability.
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Algorithm 1: GP with Deep Kernel Learning
Input: PABN model, initial # of design points B0, # of iterations B.
1. Sample B0 design points from the design space and simulate their performance r̂rr;
2. Learn the optimal kernel parameters γγγ by maximizing the log likelihood LL;
3. for b = 1, . . . ,B do

Find the point θθθ ∗ that maximize the acquisition function h:
θθθ ∗ = argmaxθθθ h(µ(θθθ),σ2(θθθ)), where
µ(θθθ) = kkkγγγ(θθθ)(KKKγγγ +ΣΣΣε)

−1r̂rr and σ2(θθθ) = kγγγ(θθθ ,θθθ)−kkkγγγ(θθθ)(KKKγγγ +ΣΣΣε)
−1kkkγγγ(θθθ)

>;
Run a simulation following the policy θ ∗θ ∗θ ∗ and then update the design points and r̂rr;
Update the optimal kernel parameters γγγ;

4. Return the point θθθ ∗ that maximize the posterior mean response, i.e., θθθ ∗ = argmaxθθθ µ(θθθ).

4 POLICY OPTIMIZATION FOR LINEAR GAUSSIAN PABN

To overcome the limitation of the DKL-based optimization, in this section, we develop an interpretable
policy optimization method and study the linear Gaussian PABN to derive analytical results. The linear state
transition model assumption is valid for bioprocesses with online monitoring, i.e., monitoring frequency
on a faster time scale than the evolution of bioprocess dynamics.

4.1 Method Description

In linear Gaussian PABN (Zheng et al. 2023), we assume that ft is linear. Let βββ s
t denote the n×n matrix

whose ( j,k)-th element is the linear coefficient β
jk

t corresponding to the effect of state s j
t on the next state

sk
t+1. Similarly, let βββ a

t be the m×n matrix of coefficients representing the effects of each component of aaat
on each component of ssst+1. Then, the stochastic process dynamics in equation (1) can be expressed as

ssst+1 = µµµ
s
t+1 +(βββ s

t )
> (ssst −µµµ

s
t )+(βββ a

t )
> (aaat −µµµ

a
t )+eeet+1,

where µµµs
t = (µ1

t , . . . ,µ
n
t ), µµµa

t = (λ 1
t , . . . ,λ

m
t ) and eee = (eee>1 ,eee

>
2 , . . . ,eee

>
H) ∼ N (000,V). The list of model

parameters is denoted by www = (µµµs,µµµa,βββ ,VVV ), where µµµs = {µµµs
t}H

t=1, µµµa = {µµµa
t }H−1

t=1 , βββ = {(βββ a,βββ s)}H−1
t=1 . The

unknown model parameters www can be estimated from data. We also focus on linear policy and reward
functions, i.e., aaat = µµµa

t +θθθ>t (ssst −µµµs
t ), and rt (ssst ,aaat) = mt +bbb>t aaat +ccc>t ssst , where θθθ t is an n×m coefficient

matrix. The linear reward is often used in biomanufacturing; see for example Martagan et al. (2016).
Then, given model parameters www, the cumulative reward r(θθθ |www) becomes,

r (θθθ |www) =
H

∑
t=1

rt(ssst ,aaat |www) = m+
H

∑
t=1

ααα tR1,t−1(sss0−µµµ
s
1)+

H

∑
t=1

ααα t

(
t

∑
i=1

Ri,t−1eeei

)
,

where Ri,t = ∏
t
j=i

[(
βββ s

j

)>
+
(

βββ a
j

)>
θθθ>j

]
represents the product of pathway coefficients from time step

i to t and Ri,i−1 = In×n is the n× n identity matrix. Let ααα t = bbb>t θθθ>t +ccc>t . Then we have r (θθθ |www) ∼
N (E[r(θθθ |www)],Var[r(θθθ |www)]). The mean of r(θθθ |www) and the covariance between r(θθθ |www) and r(θ ′θ ′θ ′|www) are

E[r(θθθ |www)] = m+
H

∑
t=1

ααα tR1,t−1(sss0−µµµ
s
1),

Cov
[
r(θθθ |www),r(θ ′θ

′
θ
′|www)
]
= Cov

[
H

∑
t=1

ααα t

(
t

∑
i=1

RRRi,t−1eeei

)
,

H

∑
t=1

ααα
′
t

(
t

∑
i=1

RRR′i,t−1eee′i

)]

=
H

∑
i=1

H

∑
j=1

[
RRRiCov(eeei,eee′j)RRR

′>
j

]
=RRRVRRR

′>,

(3)

3557



Zhao, Xie, and Luo

Algorithm 2: Pathway Correlation based Optimization for Linear Gaussian PABN
Input: initial # of design points B0, # of iterations B, # of model parameters L.
1. Sample L model parameters {www`}L

`=1;
2. Sample B0 design points from the design space and simulate their performance with {www`}L

`=1;
3. for b = 1, . . . ,B do

Find the point θθθ (0)∗ = argmax
θθθ (0) ¯̄µ(0), where µ̄(0)(www`) is calculated using Algorithm 3;

Simulate the performance of θθθ (0)∗ and update the design points and their performance;
4. Return the point θθθ (0)∗ = argmax

θθθ (0) ¯̄µ(0).

where RRRi = ∑
H
t=i ααα tRi,t−1 is a 1×n matrix representing the overall pathway coefficient from time step i to

the cumulative reward, and RRR = (RRR1,RRR2, . . . ,RRRH) Then the reward becomes r (θθθ |www) = m+RRR1(sss0−µµµs
1)+RRReee.

Suppose we need to assess the expected reward of a candidate policy specified by θθθ (0). Given k design
points θθθ (1),θθθ (2), . . . ,θθθ (k) and model parameters www, let r(i) denote the cumulative reward of θθθ (i), we have

rrr =
(
r(0),r(1), . . . ,r(k)

)>
= m+

(
RRR(0)

1 ,RRR(1)
1 , . . . ,RRR(k)

1

)>
(sss0−µµµ

s
1)+

(
RRR(0),RRR(1), . . . ,RRR(k)

)>
eee.

As eee∼N (000,VVV ), we have (r(0),r(1), . . . ,r(k))>∼N (µµµ,ΣΣΣ), where µi =m+RRR(i)
1 (sss0−µµµs

1) is the ith component
of µµµ and σi j =RRR(i)VVVRRR( j)> is the component at the ith row and jth column of ΣΣΣ. If we partition the µµµ and

ΣΣΣ as µµµ =

(
µ0
µµµ1

)
,ΣΣΣ =

(
σ00 ΣΣΣ01
ΣΣΣ10 ΣΣΣ11

)
, given k design points and their evaluations r̂rr = (r̂(1), . . . r̂(k)) under www,

where r̂(i) = m+RRR1(sss0−µµµs
1)+RRReee(i), the predictive distribution of r(0) is N (µ̄(0)(www), σ̄ (0)(www)), where

µ̄
(0)(www) = µ0 +ΣΣΣ01ΣΣΣ

−1
11 (r̂rr−µµµ1) and σ̄

(0)(www) = σ00−ΣΣΣ01ΣΣΣ
−1
11 ΣΣΣ10. (4)

Similar to the Bayesian optimization, equation (4) provides the predictive mean for the performance
of any given policy θθθ . However, it incorporates the spatial interdependence with the analytical covariance,
i.e., equation (3), which represents the pathway similarity between any two candidate policies. As a
result, equation (4) serves as a more interpretable predictor compared to the predictive mean in Bayesian
optimization. It can also contribute to the interpretation of deep kernel learning as shown in Section 5.
Although equation (3) can be optimized directly, it does not offer the same level of insight into the learning
process of the deep kernel.

Now suppose that for each design point θθθ (i), we have evaluations for r(i). We can calculate µ̄(0)(www`)

for `= 1,2, . . . ,L, respectively. The sample mean estimation of expected cumulative reward J
(
θθθ (0)

)
is

¯̄µ(0) = 1
L ∑

L
`=1 µ̄(0)(www`), where www` ∼ p(www|D) for `= 1,2, . . . ,L, accounting for model uncertainty. The next

point to be evaluated θθθ (0)∗ is the feasible point with the largest ¯̄µ(0), i.e.

θθθ
(0)∗ = argmax

θθθ (0) ¯̄µ(0). (5)

Then we can run additional L simulations on θθθ (0)∗ with different model parameters and repeat the procedure
(4) to (5) until the total simulation budget is exhausted. The complete process is shown in Algorithm 2.

4.2 Algorithm for Predictive Mean Calculation

In this section, we provide an efficient algorithm to calculate the predictive mean in equation (4) in
Algorithm 3. For a given point θθθ (0) to be predicted, we firstly need to calculate all the pathway coefficients
R(0)

t1,t2 to obtain R(0). As R(0)
t1,t2 can be calculated by reusing the calculation of R(0)

t1+1,t2 , we can recursively

calculate the R(0)
t1,t2 , which reduces the computational cost by a factor of O(H) in step 1 compared to the

brute force algorithm without reusing the calculation. Next, we need to calculate the updated ΣΣΣ between
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Algorithm 3: Calculate the Predictive Mean Given Model Parameters www

Input: point to be predicted θθθ (0), the model parameters of the linear Gaussian PABN model
www =

{
βββ s

1:H−1,βββ
a
1:H−1,µµµ

s
1:H ,µµµ

a
1:H−1,VVV

}
, existing design points θθθ (1), . . . ,θθθ (k) and their evaluations

r̂rr under www, the pathway coefficients of jth design point RRR( j), covariance matrix between design
points ΣΣΣ, the rewards coefficients bbb1:H and ccc1:H , R(0)

i+1,i = In×n for i = 1,2, . . . ,H.
1. Calculate all the pathway coefficients to the cumulative reward at θθθ (0):
for t2 = 1,2, . . . ,H do

for t1 = t2, . . . ,1 do
R(0)

t1,t2 = (βββ s
t1 +θθθ

(0)
t1 βββ a

t1)
>R(0)

t1+1,t2 ;
for i = 1, . . . ,H do

RRR(0)
i = 0;

for t = i, . . . ,H do
RRR(0)

i =RRR(0)
i +(θθθ

(0)
t bbbt +ccct)

>RRR(0)
i,t−1;

2. Calculate the updated covariance matrices: RRR(0) = (RRR(0)
1 ,RRR(0)

2 , . . . ,RRR(0)
H )

σσσ0 j =RRR(0)VVVRRR( j) for j = 0,1, . . . ,k, Σ01 = (σ01,σ02, . . .σ0k), ΣΣΣ11 =ΣΣΣ, ΣΣΣ =

(
σ00 ΣΣΣ01
ΣΣΣ10 ΣΣΣ11

)
3. Update the inverse of the covariance matrices:

vk+1 = σ00−ΣΣΣ01ΣΣΣ
−1
11 ΣΣΣ10, gk+1 =−v−1

k+1ΣΣΣ
−1
11 ΣΣΣ10, ΣΣΣ−1 =

(
ΣΣΣ
−1
11 +gk+1g>k+1vk+1 gk+1

g>k+1 v−1
k+1

)
;

4. Calculate the predictive mean at θθθ (0): µ̄(0)(www) = µ0 +ΣΣΣ01ΣΣΣ
−1
11 (r̂rr−µµµ1)

θθθ (0) and the design points. As the pathway coefficient R(i) of the evaluated point i has already been
calculated during the previous update, we can reuse the results. Therefore, in step 2, we can reduce
the computational cost of calculating R(i). In step 3, for the inverse of the current covariance matrix

ΣΣΣ, we have ΣΣΣ =

(
ΣΣΣ11 ΣΣΣ10
ΣΣΣ01 σ00

)
, ΣΣΣ−1 =

(
ΣΣΣ
−1
11 +gk+1g>k+1vk+1 gk+1

g>k+1 v−1
k+1

)
, where gk+1 =−v−1

k+1ΣΣΣ
−1
11 ΣΣΣ10 and

vk+1 = σ00−ΣΣΣ01ΣΣΣ
−1
11 ΣΣΣ10. Compared to the direct inverse which costs O(k3), the computational cost now

becomes O(k2), which can save O(k) cost. The computational cost is O(H2n2(m+n)), O(kH2n2), and O
(
k2
)

in steps 1 to 3, respectively. Therefore, the overall computational complexity is O(H2n2(m+n))+O
(
k2
)
.

Proposition 1 The cost to compute the predictive mean µ̄(0) is O(H2n2(m+n))+O
(
k2
)

for Algorithm 3
and O(kH3n2(m+n))+O

(
k3
)

for brute force algorithm without reusing.
The storing and reusing method shares the similar idea with the message passing, which utilizes the

graph structure to achieve fast computation. The major difference is that the message passing is used for
the marginalization and inference of the probability distribution in the general graphical model, however,
the storing and reusing method is used for the computation of the covariance for the linear Gaussian PABN.

5 EMPIRICAL STUDY

For the empirical results, we first present three experiments for the ablation analysis and the interpretation
analysis of DKL in Section 5.1. Basically, Experiment 1 presents the impact of the number of layers on
the performance of the DKL. Experiment 2 shows that the covariance learned by the DKL can capture
the performance similarity between different candidate policies. Experiment 3 further illustrates that the
DKL can potentially learn the pathway similarity of the PABN model. Then in Section 5.2, we compare
the performance of the DKL-based method and the pathway correlation based method with the standard
BO in optimizing general PABN and linear Gaussian PABN, respectively.
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For the general PABN model in this study, the transition function is set to be f (ssst ,aaat ;wwwt) = βββ s
t (ssst +

αααs
t sin(ssst))+βββ a

t (aaat +αααa
t sin(aaat))+mmmt , where the model parameters wwwt = {βββ s

t ,ααα
s
t ,βββ

a
t ,ααα

a
t ,mmmt}. It involves

both the monotonicity term as well as the nonlinearity term. The policy and reward functions are set to be
linear. The dimension of actions m = 1, the dimension of states n = 3, and the time horizon H = 3, which
leads to a 6-dimensional optimization problem. The feasible region of the policy parameters is chosen by
constraining each individual policy parameter to an interval. For the linear PABN model, the transition
function is linear, and the problem size is also set to be 6 dimensions with n = 3, m = 1 and H = 3.

5.1 Ablation Study and Interpretation Analysis

We first investigate the impact of the number of layers in the neural network of the deep kernel for the
general PABN in Experiment 1. In specific, we simulate the performance of 100 candidate policies as
the training set, which are selected by Latin Hypercube Sampling (LHS). Additionally, we simulate the
performance of another 20 policy parameters as the test set, which are also chosen by LHS. The Gaussian
processes with different deep kernels of varying numbers of layers are used to fit the training set. Then
they are evaluated in terms of the mean squared error (MSE) on the test set. For the neural network in the
deep kernel, we fix the number of nodes in the input layer, the hidden layer, and the output layer to be
6, 50, and 2. All the activation functions are set to be ReLU. The number of layers is set to 0 (classical
kernel), 1 (shallow kernel), 4 (deep kernel), and 20 (very deep kernel), respectively.

Table 1 shows the MSEs with 95% confidence intervals (CI) of deep kernels with different numbers
of layers. The results are estimated based on 10 macro-replications. We can see the MSE first decreases
as the number of layers increases and then increases when the number of layers becomes 20 (i.e., very
deep kernel). As the number of layers increases, the deep kernel provides more flexibility and therefore
improves the fitting power of the Gaussian process metamodel. However, when the number of layers
becomes excessively high, the Gaussian process may overfit the noisy simulation outputs, especially during
the early stages or iterations of Bayesian optimization.

Table 1: MSE with 95% CI of the deep kernels with different number of layers.

Number of Layers MSE Half Length of CI
0 3392.79 1245.68
1 2892.81 977.90
4 827.55 279.87

20 1410.99 274.23

In Experiment 2, we aim to show that the deep kernel can learn more complex information about spatial
interdependence than a pure classical kernel. Notice that the classical kernel measures the closeness or
similarity of the policy parameters in the original space and assumes that the policy parameters close to
each other are likely to exhibit similar performance. However, the deep kernel learns the embedding of
the policy parameters, which maps the policy parameters into the new space and measures the similarity
of the policy parameters in the new space. Therefore, it incorporates not only the closeness of the policy
parameters but also the similarity of the resulting graphical structure of PABN. In Experiment 2, we choose
the RBF kernel as the classical kernel, and the architecture of the neural network in DKL is set as a
6-layer fully connected neural network with (6, 50, 50, 50, 50, 2) nodes. The design points used to train
the Gaussian process metamodel with the deep kernel and the classical kernel are selected by LHS, and
the number of points is set to 1000. Subsequently, we sample 20 test points by LHS and calculate the
covariance and the absolute difference of the true objective function estimated by side experiments.

One representative result in Experiment 2 is shown in Figure 2. The x-axis is the absolute difference of
the true objective function between a fixed test point θθθ 0 and each remaining test point θθθ i. Meanwhile, the
y-axis represents the covariance between the performance of θθθ 0 and the performance of each remaining
test point θθθ i, obtained from the deep kernel and the RBF kernel, respectively. It is clear that the covariance
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(a) Covariance of deep kernel (b) Covariance of RBF kernel

Figure 2: Covariance obtained from two kernels against the absolute difference of the true objective value.

Table 2: PCC between the learned covariance and the absolute difference of true objective value.

Pearson Correlation Coefficient P-value
Deep Kernel -0.41 7.58e−18
RBF Kernel -0.04 0.34

obtained from the deep kernel is negatively correlated with the absolute difference of the objective function,
i.e., two input points with similar performances have high covariance, indicating that the deep kernel
effectively measures the similarity between the performances of test points. However, this pattern cannot
be observed from the covariance obtained using the RBF kernel since the RBF kernel cannot learn the
similarity except distance. Notably, we can see that the covariance obtained from the RBF kernel is
significantly smaller than the covariance obtained from the deep kernel since the test points generated by
LHS are uniformly spread throughout the policy parameter space, resulting in considerable distance between
them. We also calculate the Pearson correlation coefficients (PCC) (McNamara et al. 2014) between the
covariance of the performances of test points and the absolute difference of the true objective function for
both the deep kernel and the RBF kernel in Table 2, which validates the above conclusion.

To further interpret what can be learned by deep kernel learning, we consider the Gaussian process
metamodel with deep kernel and RBF kernel for the linear PABN model. The construction of the training
set and test set follows the procedure outlined in Experiment 2. The architecture of the neural network in
DKL is set to be a 6-layer fully connected neural network with (6, 50, 50, 50, 50, 2) nodes. We calculate
the learned covariance between the performances of the test policy parameters obtained from the deep
kernel and the RBF kernel, respectively. Then we calculate the Pearson correlation coefficient between the
learned covariance and the true covariance, which is estimated by equation (3). The results of Experiment 3
are presented in Table 3. It is evident that the covariance function learned by DKL exhibits a significant
positive linear correlation with the true covariance of the linear PABN. The true covariance of linear PABN,
which captures the pathway similarity in the graphical model. Therefore, DKL demonstrates the ability to
learn the similarity of the resulting graphical structure of the PABN for the Gaussian process metamodel,
i.e., the spatial interdependence of the performance over the feasible space of policy parameters. As a

Table 3: PCC between the learned covariance and the estimated true covariance of the linear PABN.

Pearson Correlation Coefficient P-value
Deep Kernel 0.32 2.42e−10
RBF Kernel 0.05 0.35
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(a) Upper confidence bound (b) Expected improvement

Figure 3: The convergence behaviors of the mean objective and 95% CI for general PABN.
result, the deep kernel can benefit both the prediction of the mean response surface and the exploration of
the unevaluated policy parameters.

5.2 Optimization

In this section, we present the performance of the DKL-based method (i.e., Algorithm 1) in optimizing
general PABN as well as the performance of the pathway correlation based method (i.e., Algorithm 2) in
optimizing linear Gaussian PABN. We compare both methods with the standard BO method in Wang et al.
(2020) in terms of empirical convergence rate and running time.

We first compare the DKL-based method with the standard BO method in optimizing the general
PABN model. For DKL based optimization, we apply the RBF kernel as the classical kernel kB(·, ·). The
architecture of the neural network is fully connected with (6, 50, 50, 50, 50, 2) nodes. The activation
function is the ReLU function. For standard BO, the kernel is also set to be an RBF kernel. The acquisition
functions used in both methods are upper confidence bound (UCB) and expected improvement (EI). The
initial points are selected with LHS, and the number is set to be 30.

In Figure 3, we demonstrate the true objective value obtained at each iteration for both the DKL-based
optimization method and the standard BO. We plot the mean performance of both methods by solid lines
and the 95% confidence intervals (CI) by shaded areas, which are estimated over 10 macro-replications.
The actual optimal objective function value J∗ is estimated by randomly sampling policy parameters from
the feasible space with a sample size of 1× 106. We can see that the DKL based optimization method
converges to the global optimum within 100 iterations, while the standard BO method converges after
around 300 iterations. It can also be observed that DKL-based optimization exhibits robust performance
across different acquisition functions. The running times after iterations 50, 100, and 200 for both methods
are recorded in Table 4. The DKL-based optimization is more time-consuming than standard BO as it
involves the training of a neural network. However, as the optimization progresses, the time difference due
to training the neural network becomes less significant compared to the overall running time.

Next, we compare the pathway correlation based method proposed in Section 4 with standard BO
for linear Gaussian PABN optimization. In the pathway correlation based method, to optimize ¯̄µ , we use

Table 4: Running times of the DKL-based optimization and the standard BO for general PABN.

DKL-UCB Standard BO-UCB DKL-EI Standard BO-EI
iter = 50 12.47s 5.66s 15.57s 6.78s
iter = 100 37.83s 18.06s 41.16s 19.98s
iter = 200 78.19s 56.19s 80.32s 57.43s
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Figure 4: Mean objective value obtained with 95% CI at each iteration for linear Gaussian PABN.

Table 5: Running times of proposed, brute force and standard BO algorithm for linear Gaussian PABN.

Proposed Brute Force Standard BO
iter = 10 2.84s 84.93s 0.40s
iter = 50 16.12s 417.87s 4.33s
iter = 100 36.07s 1038.73s 17.79s

a quasi-Newton method, the limited-memory Broyden–Fletcher–Goldfarb–Shanno for bound-constrained
problems (L-BFGS-B) algorithm with multiple start points. We first compare the speed of convergence
for both methods. The mean performance as well as the 95% confidence intervals are shown in Figure 4,
which are estimated from 10 macro-replications. The actual optimal objective function value J∗ is estimated
by randomly sampling policy parameters from the feasible space with a sample size of 1×106. We can
see that the proposed pathway correlation based method attains the optimal objective value with less than
20 iterations. However, the standard BO converges to the optimal objective value after 100 iterations,
which is more sample inefficient than our method. Therefore, we can leverage the structural information
and the transition pathway of stochasticity in PABN to improve the optimization. We also compare the
time efficiency of the proposed pathway correlation based method with the brute force implementation,
which does not adapt the storing and reusing strategy, and the standard BO. The running times averaged
over 10 macro replications after various iterations are recorded in Table 5. Compared to the brute force
implementation, our method can be more efficient with the reuse of previous calculations. Compared to the
standard BO, our method is relatively slower, but as the iterations increase, the gap becomes less significant.

6 CONCLUSION

In this paper, we propose the global optimization methods for the PABN hybrid model in biomanufacturing.
For general PABN, a DKL-based sequential optimization algorithm is developed, which can learn the spatial
interdependence of PABN. Empirical experiments provide the ablation study and interpretation analysis of
DKL. The results show that the DKL-based method works better than the standard BO method. To achieve
interpretable optimization, we utilize the pathway correlation information explicitly in linear Gaussian
PABN optimization, which empirically converges faster. In the future research, we will consider to design
deep kernels and acquisition functions tailored to the policy optimization of PABN models that involve
highly heterogeneous noise. Additionally, we will develop an interpretable optimization method for PABN
with general transition functions.
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