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ABSTRACT

We present a high probability complexity bound for a stochastic adaptive regularization method with
cubics, also known as regularized Newton method. The method makes use of stochastic zeroth-, first- and
second-order oracles that satisfy certain accuracy and reliability assumptions. Such oracles have been used
in the literature by other stochastic adaptive methods, such as trust region and line search. These oracles
capture many settings, such as expected risk minimization, simulation optimization, and others. In this
paper, we give the first high probability iteration bound for stochastic cubic regularization, and show that
just as in the deterministic case, it is superior to other stochastic adaptive methods.

1 INTRODUCTION

We are interested in unconstrained optimization problems of the form

min
x∈Rn

φ(x),

where φ is possibly nonconvex and satisfies the following condition:
Assumption 1 φ is bounded from below by a constant φ ∗, is twice continuously differentiable, and has
globally L-Lipschitz continuous gradient and LH-Lipschitz continuous Hessian.

We present and analyze a stochastic adaptive cubic regularization algorithm for computing a point x such
that ∥∇φ(x)∥ ≤ ε , for some ε > 0, when φ(x) or its derivatives are not computable exactly. Specifically,
we assume access to stochastic zeroth-, first- and second-order oracles, which are defined as follows.

Stochastic zeroth-order oracle (SZO(ε f ,λ ,a)). Given a point x, the oracle computes f (x,Ξ(x)),
where Ξ(x) is a random variable, whose distribution may depend on x, ε f ,λ and a, that satisfies

EΞ(x) [|φ(x)− f (x,Ξ(x))|]≤ ε f and PΞ(x) (|φ(x)− f (x,Ξ(x))|< t)≥ 1− eλ (a−t), (1)

for any t > 0.
We view x as the input to the oracle, f (x,Ξ(x)) as the output and the values (ε f ,λ ,a) as values intrinsic

to the oracle. Thus | f (x,Ξ(x))−φ(x)| is a sub-exponential random variable with parameters (λ ,a), whose
mean is bounded by some constant ε f > 0.

Stochastic first-order oracle (SFO(κg). Given a point x and constants µ1 > 0, δ1 ∈ [0, 1
2), the oracle

computes g(x,Ξ1(x)), such that

PΞ1(x)(∥∇φ(x)−g(x,Ξ1(x))∥ ≤ κgµ1)≥ 1−δ1, (2)
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where Ξ1(x) is a random variable whose distribution may depend on x, µ1, δ1 and κg. We view x, µ1 and
δ1 as inputs to the oracle, while κg is intrinsic to the oracle.

Stochastic second-order oracle (SSO(κH)). Given a point x and constants µ2 > 0, δ2 ∈ [0, 1
2), the

oracle computes H(x,Ξ2(x)), such that

PΞ2(x)(∥∇
2
φ(x)−H(x,Ξ2(x))∥ ≤ κH µ2)≥ 1−δ2, (3)

where Ξ2(x) is a random variable whose distribution may depend on x, µ2, δ2 and κH . The norm on the
matrix is the operator norm. x, µ2 and δ2 are inputs to the oracle, while κH is intrinsic to the oracle.

Wherever possible, we will omit the dependence on x and write Ξ,Ξ1, and Ξ2 instead of Ξ(x),Ξ1(x),
and Ξ2(x), and we will use f (x),g(x) and H(x) to denote the outputs of the stochastic oracles for brevity.

Related work. Several stochastic adaptive optimization methods have been studied in recent years under
various stochastic oracle assumptions, similar to the ones we present above. Specifically, Cartis and
Scheinberg (2018) bounds the expected iteration complexity for an adaptive step search (line search)
method and an adaptive cubic regularization method, with a similar first-order oracle, but with an exact
zeroth-order oracle. In Paquette and Scheinberg (2020), an expected iteration complexity result is derived
for a variant of a step search method under a stochastic zeroth-order oracle. In Jin et al. (2021), the results
of Paquette and Scheinberg (2020) are strengthened under a somewhat more restrictive zeroth-order oracle,
which is similar to the SZO in this paper, and a high probability complexity bound is derived.

Similarly, in Bandeira et al. (2014), and Gratton et al. (2018), a trust region method is analyzed
under essentially SFO and SSO, but with an exact zeroth-order oracle. Later in Chen et al. (2018) and
Blanchet et al. (2019) an expected complexity bound is derived for a trust region method with a stochastic
zeroth-order oracle. In Cao et al. (2022) a high probability iteration complexity bound for first- and
second-order stochastic trust region methods is derived under the same oracles we use. Recently, the same
oracles were used within a stochastic quasi-Newton method in Menickelly et al. (2023), and a stochastic
SQP-based method for nonlinear equality constrained problems in Berahas et al. (2023).

Adaptive regularization with cubics (ARC) methods are theoretically superior alternatives to line
search and trust region methods, when applied to deterministic smooth functions, because of their optimal
complexity of O(ε−3/2) vs O(ε−2) for finding ε stationary points (Cartis et al. 2011c; Cartis et al.
2011a). There are many variants of adaptive cubic regularization methods under various assumptions and
requirements on the function value, gradient, and Hessian estimates. Specifically, in Cartis et al. (2011b),
Liu et al. (2018), Bellavia et al. (2019), Wang et al. (2019), Kohler and Lucchi (2017), Park et al. (2020),
the oracles are assumed to be deterministically bounded, with adaptive magnitude or errors. In Cartis and
Scheinberg (2018), Bellavia and Gurioli (2022), Bellavia et al. (2022), Bellavia et al. (2020), bounds on
expected complexity are provided under exact or deterministically bounded zeroth-order oracle and the
gradient and Hessian oracles similar to SFO and SSO. A cubicly regularized method in a fully stochastic
setting is analyzed in Tripuraneni et al. (2018). The method is not adaptive, relying on the knowledge
of the Lipschitz constants of ∇φ(x), and therefore not requiring a zeroth-order oracle at all. However,
the results in that paper are simply derived assuming that stochastic gradient and Hessian estimates are
sufficiently accurate at each iteration. The final complexity bound only applies with probability that this
holds true. No expected complexity bound can thus be derived.

Our contributions. In this work we provide the first high probability analysis of a stochastic ARC method
(SARC) that allows 1. Stochastic function estimates that can have arbitrarily large errors, and 2. Stochastic
gradient and Hessian approximations whose error is bounded by an adaptive quantity with sufficiently high
probability, but otherwise can be arbitrarily large. To the best of our knowledge, our work is the first to
derive an iteration complexity bound that matches the deterministic iteration complexity of O(ε−3/2) in
this setting with an overwhelmingly high probability. We show that our variant of stochastic ARC, while
more general than those in prior literature, still maintains its optimal iteration complexity.

The analysis presented here extends the stochastic settings and high probability results in Jin et al.
(2021) and Cao et al. (2022) to the framework in Cartis and Scheinberg (2018). However, this extension
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is far from trivial, as it requires careful modification of most of the elements of the existing analysis. We
point out these modifications in the appropriate places in the paper.

The oracles used in this paper are essentially the same as in Jin et al. (2021) and Cao et al. (2022).
However, our assumption on the oracles is a bit stronger in this paper than in these two previous works.
In particular, we assume that SFO and SSO are implementable for arbitrarily small values of µ1 and µ2,
respectively. In contrast, the analysis in Jin et al. (2021) and Cao et al. (2022) allows for the case when
these oracles cannot be implemented for arbitrarily small error bounds. We will discuss further in the paper,
that even though SARC may impose small values of µ1 and µ2, this happens only with small probability.

We do not discuss the numerical performance of our method in this paper. Although deterministic
implementations of ARC can be competitive with trust-region and line search methods when implemented
with care, their efficiency in practice is highly dependent on the subproblem solver used. We expect similar
behavior in the stochastic case and leave this study as a subject of future research.

2 STOCHASTIC ADAPTIVE REGULARIZATION METHOD WITH CUBICS (SARC) WITH
PROBABILISTIC SECOND-ORDER MODELS

The Stochastic Adaptive Regularization with Cubics (SARC) method is presented below as Algorithm 1.
At each iteration k, given gradient estimate gk, Hessian estimate Hk, and a regularization parameter σk > 0,
the following model is approximately minimized with respect to s to obtain the trial step sk:

mk(xk + s) = φ(xk)+ sT gk +
1
2

sT Hks+
σk

3
∥s∥3. (4)

The constant term φ(xk) is never computed and is used simply for presentation purposes. In the case of
SARC, gk and Hk are computed using SFO and SSO so as to satisfy certain accuracy requirements with
sufficiently high probability, which will be specified in Section 3. We require the trial step sk to be an
“approximate minimizer" of mk(xk + s) in the sense that it has to satisfy:

(sk)
T gk +(sk)

T Hksk +σk∥sk∥3 = 0 and (sk)
T Hksk +σk∥sk∥3 ≥ 0 (5)

and
∥∇mk(xk + sk)∥ ≤ η min{1,∥sk∥}∥gk∥, (6)

where η ∈ (0,1) is a user-chosen constant. The conditions are typical in the literature, e.g., in (Cartis et al.
2011c) and can be satisfied, for example, using algorithms in (Cartis et al. 2011b; Carmon and Duchi
2019) to approximately minimize the model (4), as well as by any global minimizer of mk(xk + s).

As in any variant of the ARC method, once sk is computed, the trial step is accepted (and σk is decreased)
if the estimated function value of x+k = xk + sk is sufficiently smaller than that of xk, when compared to the
model value decrease. We call these iterations successful. Otherwise, the trial step is rejected (and σk is
increased). We call these iterations unsuccessful. In the case of SARC, however, function value estimates
are obtained via SZO and the step acceptance criterion is modified by adding an "error correction" term
of 2ε ′

f . This is because function value estimates have an irreducible error, so without this correction term,
the algorithm may always reject improvement steps.

3 DETERMINISTIC PROPERTIES OF ALGORITHM 1

Algorithm 1 generates a stochastic process and we will analyze it in the next section. First, however, we
state and prove several lemmas that establish the behavior of the algorithm for every realization.

A key concept that will be used in the analysis is the concept of a true iteration. Let ek = | f (xk)−φ(xk)|
and e+k = | f (x+k )−φ(x+k )|.
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Algorithm 1: Stochastic Adaptive Regularization with Cubics (SARC)
Input: Oracles SZO(ε f ,λ ,a), SFO(κg) and SSO(κH); initial iterate x0, parameters γ ∈ (0,1),

θ ∈ (0,1), δ1,δ2 ∈ [0, 1
2), σmin > 0, η ∈ (0,1), µ ≥ 0,ε ′

f > 0 and σ0 ≥ σmin.
Repeat for k = 0,1, . . .

1. Compute a model trial step sk: Generate gk = g(xk,ξ
1
k ) and Hk = H(xk,ξ

2
k ) using SFO(κg)

and SSO(κH) with ( µ

σk
,δ1), and (

√
µ

σk
,δ2) as inputs, respectively. Compute a trial step sk that

satisfies (5) and (6) with parameters η and σk at xk.
2. Check sufficient decrease: Let x+k = xk + sk. Compute function value estimations f (xk) =

f (xk,ξk) and f (x+k ) = f (x+k ,ξ
+
k ) using the SZO(ε f ,λ ,a), and set

ρk =
f (xk)− f (x+k )+2ε ′

f

m(xk)−mk(x+k )
, (7)

3. Update the iterate: Set

xk+1 =

{
x+k if ρk ≥ θ [successful iteration]
xk, otherwise [unsuccessful iteration]

(8)

4. Update the regularization parameter σk: Set

σk+1 =

{
max{γσk,σmin} if ρk ≥ θ
1
γ
σk, otherwise.

Definition 1 (True iteration) We say that iteration k is true if

∥∇φ(xk)−gk∥ ≤ κg max
{

µ

σk
,∥sk∥2

}
, ∥(∇2

φ(xk)−Hk)sk∥ ≤ κH max
{

µ

σk
,∥sk∥2

}
(9)

and ek + e+k ≤ 2ε
′
f .

Remark 1 We will show in Lemma 6 that by using SFO and SSO with the respective inputs, µ1 =
µ

σk
in

(2) and µ2 =
√

µ

σk
in (3), each iteration of Algorithm 1 satifies (9) with probability at least 1− δ1 − δ2.

However, we note that the probabilistic requirement of (9) can be implied by more relaxed inputs that use
µ1 = max{ µ

σk
,∥sk∥2} in (2), and µ2 = max{ µ

σk∥sk∥ ,∥sk∥} in (3), instead of µ1 =
µ

σk
and µ2 =

√
µ

σk
. Since sk

depends on the output of the oracles, implementing such a relaxed version is not trivial, and may require
modification of Algorithm 1. We leave it as a subject of future research.

We will now prove a sequence of results that hold for each realization of Algorithm 1, and are essential
for the complexity analysis. The two key results are Corollary 1 and Lemma 5, where Corollary 1 shows
that until an ε-stationary point is reached, every true iteration with large enough σk is successful, and
Lemma 5 establishes the lower bound on function improvement on true and successful iterations. Lemmas 1
to 4 lay the building blocks for them: On every successful iteration, the function improvement is lower
bounded in terms of the norm of the step (Lemma 1). There is a threshold value of σk where any true
iteration is either always successful or results in a very small step (Lemma 2). When an iteration is true
and the step is not very small, the norm of the step is lower bounded in terms of ∥∇φ(x+k )∥ (Lemma 3).
Until an ε-stationary point is reached, the step cannot be too small on true iterations (Lemma 4).
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Lemma 1 (Improvement on successful iterations) Consider any realization of Algorithm 1. For each
iteration k, we have

mk(xk)−mk(x+k )≥
1
6

σk∥sk∥3. (10)

On every successful iteration k, we have

f (xk)− f (xk+1)≥
θ

6
σk∥sk∥3 −2ε

′
f , (11)

which implies

φ(xk)−φ(xk+1)≥
θ

6
σk∥sk∥3 − ek − e+k −2ε

′
f . (12)

Proof. The proof is similar to the proof of Lemma 3.3 in Cartis et al. (2011b). Clearly, (11) follows
from (10) and the sufficient decrease condition (7)-(8):

f (xk)− f (x+k )+2ε ′
f

mk(xk)−mk(x+k )
≥ θ ,

and (12) follows from the definition of ek and e+k .
It remains to prove (10). Combining the first condition on step sk in (5), with the model expression

for s = sk, we can write

mk(xk)−mk(x+k ) =
1
2
(sk)

T Hksk +
2
3

σk∥sk∥3.

The second condition on sk in (5) implies (sk)
T Hksk ≥ −σk∥sk∥3. Together with the above equation, we

obtain (10).

Lemma 2 (Large σk guarantees success or small step) Let Assumption 1 hold. For any realization of
Algorithm 1, if iteration k is true, and if

σk ≥ σ̄ =
2κg +κH +L+LH

1− 1
3 θ

, (13)

then iteration k is either successful or produces sk such that ∥sk∥2 < µ

σk
.

Proof. Clearly, if ρk −1 ≥ 0, then k is successful by definition. Let us consider the case when ρk < 1;
then if 1−ρk ≤ 1−θ , k is successful. We have from (7), that

1−ρk =
mk(xk)−mk(x+k )− f (xk)+ f (x+k )−2ε ′

f

mk(xk)−mk(x+k )
.

Notice that:

mk(xk)−mk(x+k )− f (xk)+ f (x+k )−2ε
′
f = f (x+k )−

(
f (xk)+ sT

k gk +
1
2

sT
k Hksk +

σk

3
∥sk∥3

)
−2ε

′
f

≤ φ(x+k )−
(

φ(xk)+ sT
k gk +

1
2

sT
k Hksk +

σk

3
∥sk∥3

)
−2ε

′
f + ek + e+k

≤ φ(x+k )−φ(xk)− sT
k gk −

1
2

sT
k Hksk −

σk

3
∥sk∥3.
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The second to last inequality follows from the definition of ek and e+k , and the last inequality due to the
iteration being true.

Taylor expansion and Cauchy-Schwarz inequalities give, for some τ ∈ [xk,x+k ],

φ(x+k )−φ(xk)− sT
k gk − 1

2 sT
k Hksk − σk

3 ∥sk∥3

= [∇φ(xk)−gk]
T sk +

1
2(sk)

T [∇2φ(τ)−∇2φ(xk)]sk +
1
2(sk)

T [∇2φ(xk)−Hk]sk − 1
3 σk∥sk∥3

≤ ∥∇φ(xk)−gk∥ · ∥sk∥+ 1
2∥∇2φ(τ)−∇2φ(xk)∥ · ∥sk∥2 + 1

2∥(∇
2φ(xk)−Hk)sk∥ · ∥sk∥− 1

3 σk∥sk∥3

≤ (κg +
κH
2 )max

{
µ

σk
,∥sk∥2

}
∥sk∥+

(LH
2 − 1

3 σk
)
∥sk∥3

where the last inequality follows from the fact that the iteration is true and hence (9) holds: ∥∇φ(xk)−gk∥≤
κg max

{
µ

σk
,∥sk∥2

}
and ∥(∇2φ(xk)−Hk)sk∥ ≤ κH max

{
µ

σk
,∥sk∥2

}
and from Assumption 1. So as long

as ∥sk∥2 ≥ µ

σk
, we have

mk(xk)−mk(x+k )− f (xk)+ f (x+k )−2ε
′
f ≤
(

κg +
κH

2
+

LH

2
− 1

3
σk

)
∥sk∥3 =(6κg+3LH +3κH −2σk)

1
6
∥sk∥3,

which, together with (10), gives that 1−ρk ≤ 1−θ when σk satisfies (13).

Note that for the above lemma to hold, σ̄ does not need to include L in the numerator. However, we
will need another condition on σ̄ later that will involve L; hence for simplicity of notation we introduced
σ̄ above to satisfy all necessary bounds.
Lemma 3 (Lower bound on step norm in terms of ∥∇φ(x+k )∥) Let Assumption 1 hold. For any realization
of Algorithm 1, if k is a true iteration we have

max
{
∥sk∥2,

µ

σk

}
≥ 1−η

σk +(1− θ

3 )σ̄
∥∇φ(x+k )∥. (14)

Proof. The triangle inequality, the equality ∇mk(xk + s) = gk +Hks+σk∥s∥s and condition (6) on sk
together give

∥∇φ(x+k )∥ ≤ ∥∇φ(x+k )−∇mk(x+k )∥+∥∇mk(x+k )∥
≤ ∥∇φ(x+k )−gk −Hksk∥+σk∥sk∥2 +η min{1,∥sk∥}∥gk∥.

(15)

Recalling Taylor expansion of ∇φ(x+k ): ∇φ(x+k ) = ∇φ(xk)+
∫ 1

0 ∇2φ(xk + tsk)skdt, and applying triangle
inequality again, we have

∥∇φ(x+k )−gk −Hksk∥ ≤ ∥∇φ(xk)−gk∥+
∥∥∥∫ 1

0 [∇
2φ(xk + tsk)−∇2φ(xk)]skdt

∥∥∥+∥∇2φ(xk)sk −Hksk∥

≤ (κg +κH)max
{

µ

σk
,∥sk∥2

}
+ 1

2 LH∥sk∥2,

where to get the second inequality, we also used (9) and Assumption 1. We can bound ∥gk∥ as follows:

∥gk∥ ≤ ∥gk −∇φ(xk)∥+∥∇φ(xk)−∇φ(x+k )∥+∥∇φ(x+k )∥ ≤ κg max
{

µ

σk
,∥sk∥2

}
+L∥sk∥+∥∇φ(x+k )∥.

Thus finally, we can bound all the terms on the right hand side of (15) in terms of ∥sk∥2 and using the fact
that η ∈ (0,1) we can write

(1−η)∥∇φ(x+k )∥ ≤ (2κg +κH)max
{

µ

σk
,∥sk∥2

}
+(L+LH +σk)∥sk∥2

≤ (2κg +κH +L+LH +σk)max
{

µ

σk
,∥sk∥2

}
,

which is equivalent to (14).
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Lemma 4 (Lower bound on step norm until ε-accuracy is reached) Let Assumption 1 hold. Consider any
realization of Algorithm 1. Let ε satisfy

µ ≤ 1−η

1+ (1− θ

3 )σ̄

σmin

ε. (16)

Then on each true iteration k such that ∥∇φ(x+k )∥ ≥ ε , we have

∥sk∥2 ≥ µ

σk
.

Proof. If iteration k is true and ∥∇φ(x+k )∥> ε , then by Lemma 3:

max
{
∥sk∥2,

µ

σk

}
≥ 1−η

σk +(1− θ

3 )σ̄
∥∇φ(x+k )∥>

1−η

σk +(1− θ

3 )σ̄
ε,

but since
µ ≤ 1−η

1+ (1− θ

3 )σ̄

σmin

ε,

so
µ

σk
≤ 1−η

σk +
(1− θ

3 )σ̄σk
σmin

ε ≤ 1−η

σk +(1− θ

3 )σ̄
ε.

Hence, we must have

∥sk∥2 >
1−η

σk +(1− θ

3 )σ̄
ε ≥ µ

σk
.

Corollary 1 (True iteration with large σk must be successful) Let Assumption 1 hold. Consider any
realization of Algorithm 1. Let ε satisfy (16) and

σk ≥ σ̄ =
2κg +κH +L+LH

1− 1
3 θ

,

then if iteration k is true and ∥∇φ(x+k )∥> ε , then iteration k is successful.

Proof. The result is straightforward by applying Lemma 2 and 4.

Lemma 5 (Minimum improvement achieved by true and successful iterations) Let Assumption 1 hold.
Consider any realization of Algorithm 1. Let ε satisfy (16). Then on each true and successful iteration k
for which ∥∇φ(xk+1)∥> ε , we have

φ(xk)−φ(xk+1)≥
θ

6
(1−η)3/2 σk

(σk +(1− θ

3 )σ̄)3/2
∥∇φ(xk+1)∥3/2 − ek − e+k −2ε

′
f

≥ θ

6
(1−η)3/2 σmin

(σk +(1− θ

3 )σ̄)3/2
∥∇φ(xk+1)∥3/2 − ek − e+k −2ε

′
f ,

where σ̄ is defined in (13).
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Proof. Combining Lemma 3, 4, inequality (12) from Lemma 1 and the definition of successful iteration
in Algorithm 1 we have, for all true and successful iterations k,

φ(xk)−φ(xk+1)≥
θ

6
σk∥sk∥3 − ek − e+k −2ε

′
f

≥ θ

6
(1−η)3/2 σk

(σk +(1− θ

3 )σ̄)3/2
∥∇φ(xk+1)∥3/2 − ek − e+k −2ε

′
f .

Using the fact that σk ≥ σmin, the result follows.

We can now use these important properties of Algorithm 1 to show that stochastic process that the
algorithm generates fits into the framework analyzed in Jin et al. (2021).

4 STOCHASTIC PROPERTIES OF ALGORITHM 1

Algorithm 1 generates a stochastic process. Let Mk denote the collection of random variables
{

Ξk,Ξ
+
k ,Ξ

1
k ,Ξ

2
k

}
,

whose realizations are
{

ξk,ξ
+
k ,ξ 1

k ,ξ
2
k

}
. Let {Fk : k ≥ 0} denote the filtration generated by M0,M1, . . . ,Mk.

At iteration k, Xk denotes the random iterate, Gk is the random gradient approximation, Hk is the random
Hessian approximation, Σk is the random model regularization parameter. Sk is the step computed for the
random model, f (Xk,Ξk) and f (X+

k ,Ξ+
k ) are the random function estimates at the current point and the

candidate point, respectively.
Conditioned on Xk and Σk, the random quantities Gk and Hk are determined by Ξ1

k and Ξ2
k re-

spectively. The realization of Sk depends on the realizations of Gk and Hk. The function estimates
f (Xk,Ξk) and f (X+

k ,Ξ+
k ) are determined by Ξk,Ξ

+
k , conditioned on Xk and X+

k . In summary, the
stochastic process

{(
Gk,Hk,Sk, f (Xk,Ξk), f (X+

k ,Ξ+
k ),Xk,Σk

)}
generated by the algorithm, with realiza-

tion
{(

gk,Hk,sk, f (xk,ξk), f (x+k ,ξ
+
k ),xk,σk

)}
, is adapted to the filtration {Fk : k ≥ 0}.

We further define Ek := | f (Xk,Ξk)−φ(Xk)| and E+
k := | f (X+

k ,Ξ+
k )−φ(X+

k )|, with realizations ek and
e+k . Let Θk := 1{iteration k is successful}, and let Ik := 1{iteration k is true}. The indicator random
variables Θk and Ik are clearly measurable with respect to the filtration Fk.

The next lemma shows that by construction of the algorithm, the stochastic model mk at iteration k is
“sufficiently accurate" with probability at least 1−δ1 −δ2.
Lemma 6 The indicator variable

Jk = 1

{
∥∇φ(Xk)−g(Xk,Ξ

1
k(Xk))∥ ≤ κg max

{
µ

Σk
,∥Sk∥2

}
, and

∥(∇2
φ(Xk)−H(Xk,Ξ

2
k(Xk)))Sk∥ ≤ κH max

{
µ

Σk
,∥Sk∥2

}}
satisfies the following submartingale-like condition

P(Jk = 1 | Fk−1)≥ 1−δ1 −δ2.

Proof. By the properties of oracles SFO and SSO and the choices of the inputs for them in step 1 of
the algorithm, we have:

P
(
∥∇φ(Xk)−g(Xk,Ξ

1
k(Xk))∥ ≤ κg

µ

Σk
| Fk−1

)
≥ 1−δ1, (17)

and

P
(
∥(∇2

φ(Xk)−H(Xk,Ξ
2
k(Xk)))∥ ≤ κH

√
µ

Σk
| Fk−1

)
≥ 1−δ2. (18)
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Inequality (17) implies

P
(
∥∇φ(Xk)−g(Xk,Ξ

1
k(Xk))∥ ≤ κg max

{
µ

Σk
,∥Sk∥2

}
| Fk−1

)
≥ 1−δ1,

and inequality (18) implies

P
(
∥(∇2

φ(Xk)−H(Xk,Ξ
2
k(Xk)))Sk∥ ≤ κH max

{
µ

Σk
,∥Sk∥2

}
| Fk−1

)
≥ 1−δ2.

Thus, we conclude that P(Jk = 1 | Fk−1)≥ 1−δ1 −δ2 by the union bound.

Recall Definition 1 and that we denote the event of iteration k being true by indicator random variable
Ik. It is crucial for our analysis that P(Ik = 1 | Fk−1)≥ p > 1

2 for all k. We will later combine Lemma 6
with the properties of SZO for a bound on δ1 +δ2 to ensure p > 1

2 .
The iteration complexity of our algorithm is defined as the following stopping time.

Definition 2 (Stopping time) For ε > 0, Tε := min
{

k :
∥∥∇φ(X+

k )
∥∥≤ ε

}
+ 1, the iteration complexity of

the algorithm for reaching an ε-stationary point. We will refer to Tε as the stopping time of the algorithm.
It is important to note that even if for some iteration k,

∥∥∇φ(X+
k )
∥∥ ≤ ε , this iteration may not be

successful and thus ∥∇φ(Xk+1)∥ may be greater than ε . This is a consequence of the complexity analysis
of cubic regularization methods that measure progress in terms of the gradient at the trial point and not at
the current iterate, and thus is not specific to SARC. The stopping time is thus defined as the first time at
which the algorithm computes a point at which the gradient of φ is less than ε .

It is easy to see that Tε is a stopping time of the stochastic process with respect to Fk. Given a level of
accuracy ε , we aim to derive a bound on the iterations complexity Tε with overwhelmingly high probability.
In particular, we will show the number of iterations until the stopping time Tε is a sub-exponential random
variable, whose value (with high probability) scales as O(ε−3/2), similarly to the deterministic case. Towards
that end, we define stochastic process Zk to measure the progress towards optimality.
Definition 3 (Measure of Progress) For each k ≥ 0, let Zk ≥ 0 be a random variable measuring the progress
of the algorithm at step k: Zk = φ(Xk)−φ ∗, where φ ∗ is a lower bound of φ .

Armed with these definitions, we will be able to state properties of the stochastic process generated
by Algorithm 1, which lead to the desired bounds on Tε . These properties hold under certain conditions
on the parameters used by Algorithm 1. We state these conditions here.

Assumption 2 Define u = ε ′
f − ε f and K = C max{ 1

λ
, ln(2)

a }, C is a universal constant and p = 1− δ1 −
δ2 − exp

(
−min

{
u2

2K2 ,
u

2K

})
.

(a) ε ′
f > ε f ,

(b) δ1 +δ2 are chosen sufficiently small so that p > 1
2 ,

(c)

ε > max

1+ (1− θ

3 )σ̄

σmin

1−η
µ,

((2− θ

3 )σ̄)

1−η

(
24ε ′

f

(p− 1
2)θσmin

) 2
3

 . (19)

Remark 2 Assumption 2 (c) gives a lower bound on the best accuracy the algorithm can achieve given
the accuracy parameters related to the stochastic oracles SFO/SSO and SZO. Specifically, ε ′

f is lower
bounded by ε f , which is the "irreducible" error of the zeroth-order oracle. We observe that, if ε ′

f ≈ ε f then

the term involving the error of the zeroth-order oracle in the lower bound of ε for SARC is O(ε
2
3
f ), which

is better dependency than those of SASS in Jin et al. (2021) and the stochastic trust region algorithms in
Cao et al. (2022), where ε is lower bounded by O

(√
ε f
)
.
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The dependence of ε on µ has a somewhat more complicated interpretation: µ can be chosen arbitrarily
by the algorithm, as long as oracles SFO/SSO can deliver appropriate accuracy. Recall that in the algorithm,
the accuracy input µ1 for SFO is µ

σk
and the accuracy input µ2 for SSO is

√
µ

σk
. If σk is bounded from

above by a constant, then essentially ε is proportional to the best accuracy required of SFO during the
algorithm procedure and it is proportional to the square of the best accuracy required of SSO during the
algorithm procedure. This dependency is the same as in deterministic inexact algorithms as well as in Jin
et al. (2021) and the stochastic trust region algorithms in Cao et al. (2022). We will comment on the
existence of the upper bound on σk after our main complexity result.

The following theorem establishes key properties of the stochastic process generated by Algorithm 1,
that are essential for the convergence analysis. Similar properties used in Jin et al. (2021) obtain high
probability iteration complexity for a stochastic step search method. To be consistent with the notation in
Jin et al. (2021), we define the random variable Ak := 1

Σk
, with realization αk =

1
σk

, and a constant ᾱ = 1
σ̄

.

Theorem 2 Let Assumptions 1 and 2 hold. For ᾱ = 1
σ̄

and the following non-decreasing function h :R→R:

h(α) =
θ

6
(1−η)3/2 σmin

( 1
α
+

(1− θ

3 )

ᾱ
)3/2

ε
3/2,

the following hold for all k < Tε −1:

(i) P(Ik = 1 | Fk−1)≥ p for all k. (Conditioning on the past, each iteration is true with probability at
least p.)

(ii) If Ak ≤ ᾱ and Ik = 1 then Θk = 1. (True iterations with sufficiently small αk are successful.)
(iii) If IkΘk = 1 then Zk+1 ≤ Zk −h(Ak)+4ε ′

f . (True, successful iterations make progress.)

(iv) h(ᾱ)>
4ε ′f
p− 1

2
. (The lower bound of potential progress for an iteration with parameter ᾱ .)

(v) Zk+1 ≤ Zk +2ε ′
f +Ek +E+

k for all k. (The “damage” at each iteration is bounded.)

Proof. Part (i) follows from the assumptions on p and the definition of the true iteration.
Part (ii) follows directly from Corollary 1.
Part (iii) follows from Lemma 5.
Part (iv) follows from the definitions of ᾱ , h(α), and inequality (19). Specifically, plugging in the defini-

tions of ᾱ and h(·), one can show that the inequality h(ᾱ)≥ 4ε ′f
p− 1

2
is equivalent to ε >

((2− θ

3 )σ̄)

1−η

(
24ε ′f

(p− 1
2 )θσmin

) 2
3
,

which holds by Assumption 2.
Part (v) has exactly the same proof as that of Proposition 1 part (v) in (Jin et al. 2021) and is easily

derived from the step acceptance condition of Algorithm 1.

5 HIGH PROBABILITY ITERATION COMPLEXITY RESULT

In Jin et al. (2021) a high probability bound on Tε is derived for a stochastic process with properties stated
in Theorem 2. Thus, we can simply apply this theorem here. We first observe that

EΞ [exp{τ(E(x)−E[E(x)])}]≤ exp
(

τ2ν2

2

)
, ∀τ ∈

[
0,

1
b

]
,

with ν = b = K, where K =C max{ 1
λ
, ln(2)

a }, C is a universal constant. This follows from (1) of SZO by
applying Proposition 2.7.1 of Vershynin (2018). Another minor modification of the result in Jin et al.
(2021) is that it now applies to the event of Tε ≤ t +1 instead of the event of Tε ≤ t, due to the different
definitions of the stopping time.
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Theorem 3 Suppose Assumptions 1 and 2 hold for Algorithm 1, then we have the following bound on

the iteration complexity: for any s ≥ 0, p̂ ∈
(

1
2 +

4ε ′f +s
c1ε3/2 , p

)
, and t ≥ R

p̂− 1
2−

4ε ′f +s

c1ε3/2

, we have

P(Tε ≤ t +1)≥ 1− exp
(
−(p− p̂)2

2p2 t
)
− exp

(
−min

{
s2t

8K2 ,
st

4K

})
,

where c1 = θ

6 (1 − η)3/2 σmin
((2− θ

3 )σ̄)3/2 , K = C max{ 1
λ
, ln(2)

a }, C is a universal constant, R = φ(x0)−φ∗

c1ε3/2 +

max
{
− lnα0+ln σ̄

2lnγ
,0
}

, with p and σ̄ as defined previously.

Remark 3 The following are some remarks about Theorem 3.

1. Theorem 3 shows the iteration complexity of Algorithm 1 is O(ε−3/2) with overwhelmingly high
probability, which matches the deterministic counterpart.

2. The SARC algorithm encounters an ε-stationary point in a finite number of iterations with probability
1. This is a direct consequence of the Borel–Cantelli lemma.

3. Since the probabilities of the failure events {Tε > t + 1} are exponentially decaying for all t ≥
Θ(ε−3/2), this implies a complexity bound of O(ε−3/2) in expectation for SARC.

5.1 Upper Bound on σk

While the penalty parameters Σk form a stochastic process, this process has nice properties. Specifically it
is upper bounded by a one-sided geometric random walk. This random walk is analyzed in Jin et al. (2023)
and it is shown that for any given number of iterations t, and for γ chosen appropriately dependent on t,
max1≤k≤t{σk} ≤ O(σ̄) with high probability. A consequence of this fact is that with high probability, for
Algorithm 1, there exists a lower bound on all of the accuracy requirements µ1 and µ2, which are inputs
to the oracles SFO and SSO as in (2) and (3). This, in turn, can give rise to a total "sample" complexity
bound for Algorithm 1. For examples of such analyses, we refer the reader to Jin et al. (2023).
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