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ABSTRACT

Adaptive sampling-based trust-region optimization has emerged as an efficient solver for nonlinear and
nonconvex problems in noisy derivative-free environments. This class of algorithms proceeds by iteratively
constructing local models on objective function estimates that use a carefully chosen number of calls
to the stochastic oracle. In this paper, we introduce a refined version of this class of algorithms that
reuses the information from previous iterations. The advantage of this approach is reducing computational
burden without sacrificing consistency or work complexity to attain the same level of optimality, which
we demonstrate through numerical results using the SimOpt library.

1 INTRODUCTION

We pursue solving unconstrained stochastic optimization (SO) of a nonconvex, smooth, bounded-below
function f : IRd → IR defined in IRd. The problem is of the form

min
x∈IRd

{
f(x) := E[F (x, ξ)] =

∫
Ξ
F (x, ξ)dP

}
, (1)

where F : IRd × Ξ → IR is a function defined on a probability space (Ξ,F , P ). To estimate f(x), we
generate independent and identically distributed copies of the random variable F (x, ξ) using a Monte Carlo
simulation to obtain the sample average F̄ (x, n) = n−1

∑n
i=1 F (x, ξi). We also estimate the variance of

the function value at x with σ̂2
F (x, n) = (n − 1)−1

∑n
i=1(F (x, ξi) − F̄ (x, n))2. We assume access to

zeroth-order stochastic oracles, meaning that direct derivative information from the Monte Carlo simulation
is unattainable. Consequently, to solve (1) using a model-based method such as trust-region optimization
(TRO) (Conn et al. 2000), we must implicitly approximate the gradient with a local model.

TRO has gained widespread popularity as a solver for nonlinear and nonconvex problems, especially in
settings with stochastic noise (Sun and Nocedal 2023; Cao et al. 2022; Chen et al. 2018; Shashaani et al.
2018; Chang et al. 2013). The random sequence of iterates {Xk} recommended by a single run of TRO in
a stochastic setting, as described for Problem (1), leverages local approximations of the function and their
minimizers within neighborhoods of dynamic sizes. In a derivative-free setting, the approximation is often
done with interpolation or regression using estimated function values at adjacent points around the incumbent
solution. A less explored feature of TRO is that the information from previous iterations can be reused for
parsimonious model and iterate updating. In particular, design points and the observations at those points
evaluated in the previous iterations can be reused to save computation. We explore the effect of intuitive
“reuse” strategies within a class of adaptive sampling based TRO algorithms for derivative-free settings,
called ASTRO-DF. ASTRO-DF has the ability to operate with dependence between model and function
values albeit with strong consistency and convergence rates (Shashaani et al. 2018; Ha and Shashaani 2023).
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Overview of this algorithm and standing definitions are laid out in Section 2. Reusing previous points
and their queried oracle values can lead to decrease in the overall function evaluations required for each
iteration; this is particularly useful in cases where evaluating the function is computationally expensive.
However, reusing points may not always result in a faster convergence within the constraints of a limited
budget; we will discuss this further in Section 3. In fact, there are examples to suggest that aggressive reuse
of information can hinder the algorithm’s consistency instead of improving its performance. The particular
setting for effective reuse in ASTRO-DF discussed in Section 4 will safeguard practical consistency and
efficiency with promising numerical investigations summarized in Section 5.

2 ASTRO-DF: ADAPTIVE SAMPLING TRUST REGION OPTIMIZATION DERIVATIVE-FREE

In the realm of stochastic derivative-free optimization methods, ASTRO-DF is one with proven almost
sure convergence to a first-order critical point (Shashaani et al. 2018). ASTRO-DF additionally enjoys
O(ϵ−2) ϵ-optimal expected iteration complexity, defined as Tϵ := min{k : ∥▽f(Xk)∥ ≤ ϵ} (Ha and
Shashaani 2023), and Õ(ϵ−4) ϵ-optimal expected work complexity, defined as Wϵ :=

∑Tϵ
k=1Wk, with Wk

tracking the total calls to the stochastic oracle during iteration k (Ha et al. 2023). Importantly, because
the consistency and complexity results of ASTRO-DF do not require the independence of models, they are
ideal for previous iterations’ information reuse.

ASTRO-DF operates akin to its deterministic TRO counterpart. It evaluates the function at a set of
design points Xk around the incumbent Xk, fits a model Mk(·) on those evaluated values, and find its
minimizer X̃k+1 inside a trust region of size ∆k, i.e., B(Xk; ∆k). Different from the deterministic setting,
ASTRO-DF obtains efficiency by introducing an adaptive sampling scheme that determines the appropriate
number of oracle calls at each visited point. The crux of this scheme lies in allocating the computational
effort based on a measure of optimality gap such as ∥▽f(Xk)∥, which ASTRO-DF tracks with the trust
region radius ∆k almost surely. As a result, more effort is dedicated to points closer to first-order critical
regions. We will proved more details on the adaptive sampling rule in Section 2.2 but before that we review
important definitions in Section 2.1 to facilitate the understanding of the components within ASTRO-DF.

2.1 Notation and Definition

Throughout the paper, we will use capital letters for random objects, bold font for vectors, script font for
sets and sigma-fields, and san serif font for matrices.
Definition 1 (stochastic interpolation models). Let Φ(x) = (ϕ0(x), ϕ1(x), . . . , ϕq(x)) be a polynomial
basis on Rd. With p = q = d(d+ 3)/2, X(0)

k := Xk, and the design set Xk := {X(i)}pi=1 ⊂ B(Xk; ∆k),
we find βk = (βk,i, i = 1, 2, . . . , p) such that

M(Φ,Xk)βk = F̄ (Xk, N(Xk)), (2)

where

M(Φ,Xk) =


ϕ1(X

(0)
k ) ϕ2(X

(0)
k ) · · · ϕq(X

(0)
k )

ϕ1(X
(1)
k ) ϕ2(X

(1)
k ) · · · ϕq(X

(1)
k )

...
...

...
...

ϕ1(X
(p)
k ) ϕ2(X

(p)
k ) · · · ϕq(X

(p)
k )

 , F̄ (Xk, N(Xk)) =


F̄ (X

(0)
k , N(X

(0)
k ))

F̄ (X
(1)
k , N(X

(1)
k ))

...
F̄ (X

(p)
k , N(X

(p)
k ))

 .

The matrix M(Φ,Xk) is nonsingular if the set Xk is poised in B(Xk; ∆k). A set Xk is Λ−poised in
B(Xk; ∆k) if Λ ≥ maxi=0,...,pmaxz∈B(Xk;∆k) |li(z)|,where li(z) are the Lagrange polynomials. If there
exists a solution to (2), then the function Mk : B(Xk; ∆k) → R, defined as Mk(x) =

∑p
j=0 βk,jϕj(x)

is a stochastic polynomial interpolation of estimated values of f on B(Xk; ∆k). In particular, if
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Gk :=
[
βk,1 βk,2 · · · βk,d

]⊺ and Hk is a symmetric d × d matrix with elements uniquely defined
by (βk,d+1, βk,d+2, . . . , βk,p), then we can define the stochastic quadratic model Mk : B(Xk; ∆k) → R, as

Mk(x) = βk,0 + (x−Xk)
⊺Gk +

1

2
(x−Xk)

⊺Hk(x−Xk). (3)

Definition 2 (stochastic quadratic models with diagonal Hessians) A special case of (3) is when the
Hessian has only diagonal values, i.e., Hk = diag(Hk,1, Hk,2, . . . ,Hk,d) ∈ Rd×d. In the stochastic
quadratic interpolation model with diagonal Hessian, p = 2d, the model (3) contains 2d + 1 unknowns,
and 2d+ 1 function value estimations are needed to uniquely determine Gk and Hk with interpolation set
X cb
k = {Xk,Xk + e1∆k, . . . ,Xk + ed∆k,Xk − e1∆k, . . . ,Xk − ed∆k} contained in B(Xk; ∆k), with

ei as the i-th unit vector and Φ(x) := (1, x1, x2, . . . , xd, x
2
1, x

2
2, . . . , x

2
d). With X cb

k as the design set, βk

is guaranteed to exist. Hence, Hk,i = βk,d+i < ∞ for all i = 1, 2, . . . , d. In this case, Mk(x) is said to
be a stochastic quadratic model of f on B(Xk; ∆k) with a diagonal Hessian.
Definition 3 (stochastic fully linear models) Given Xk ∈ Rd and ∆k > 0, a function Mk : B(Xk; ∆) → R
obtained following Definition 2 is the stochastic fully linear model of f if ▽f is Lipschitz continuous with
constant κL, and there exist constants κeg > 0, κef > 0 dependent on κL but independent of Xk and ∆k

such that P
{
∥▽f(x)− ▽M(x)∥ ≤ κeg∆, and |f(x)−M(x)| ≤ κef∆

2 ∀x ∈ B(Xk; ∆k)
}
= 1.

Definition 4 (filtration and stopping time). A filtration {Fk}k≥1 over a probability space (Ω,P,F) is
defined as an increasing family of σ-algebras of F , i.e., Fk ⊂ Fk+1 ⊂ F for all k. We interpret Fk as “all
the information available at time k.” A filtered space (Ω,P, {Fk}k≥1,F) is a probability space equipped
with a filtration. A map N : Ω → {0, 1, 2, . . . ,∞} is called a stopping time with respect to Fk if the event
{N = n} := {ω : N(ω) = n} ∈ Fk for all n ≤ ∞.

2.2 ASTRO-DF Refinements

Recent developments of the ASTRO-DF algorithm have succeeded in enhancing its efficiency (Ha and
Shashaani 2023) with two refinements: (1) the adoption of a quadratic model with a diagonal Hessian using
the coordinate basis (see Definition 2), and (2) the incorporation of the direct search when possible. The
first refinement yields a more accurate gradient estimate at Xk besides partial curvature information with
O(d) number of design points instead of O(d2) in the original version. This lower order of dependency
on the problem dimension is crucial for all derivative-free solvers. Furthermore, X cb is recognized as
optimally poised for design sets of any size ranging from d+ 2 to 2d+ 1 (Ragonneau and Zhang 2023).

The second refinement increases the likelihood of finding a better solution, which we refer to as
the probability of success, without requiring an increase in the allotted budget. In cases where X̃k+1

(recommended by the local model minimization) does not lead to a sufficient reduction in the estimated
function values, the original strategy would declare the iteration as unsuccessful and move on to contracting
the next trust region around the Xk, even if the other already visited design points that have helped with
the model construction may offer a good next incumbent. Considering a design point that was used for
approximation as the next incumbent point is what we refer to as direct search. In principle, direct search is
also an attempt to reuse information. Fewer unsuccessful iterations due to the direct search feature mean a
slower rate of decay in the trust-region radius ∆k, which is advantageous for allowing forthcoming moves
with larger steps in addition to keeping the required oracles calls from growing too quickly.

ASTRO-DF with these two refinements has the following logic. At each iteration k, the model is
constructed using function value estimates obtained from the incumbent solution Xk and 2d design points
chosen based on a coordinate basis in ∆k distance from Xk. The adaptive number of Monte Carlo oracle
calls at each point is a stopping time determined by striking a balance between the standard error and
the measure of optimality error, i.e., Nk := min{n ≥ λk : σ̂F (Xk, n)/

√
n ≤ ∆β

k/
√
λk} at the center

point, with a logarithmically growing deterministic lower bound λk in k. The power of the trust-region
on the right hand side, β ∈ [1, 2] can decrease with the assumption of continuous sample paths and use of
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common random numbers in evaluation. Once constructed, the model recommends a candidate for the next
incumbent X̃k+1 that minimizes the model within the trust-region, albeit in an inexact manner. The function
value estimate at X̃k+1 is also obtained using the same adaptive sampling scheme. Next, the best among
2d+2 points becomes another candidate X̂k+1 for iteration k+1. If X̂k+1 gives a sufficient reduction, i.e.,
F̄ (Xk, Nk)− F̄ (X̂k+1, N̂k+1) ≥ α∆2

k for a α > 0, then X̂k+1 is accepted and the trust-region expanded.
Otherwise, the algorithm accepts X̃k+1, the candidate obtained from the local model, as the next iterate
if the success ratio, which measures the accuracy of the model’s predictions of the objective function,
exceeds a certain threshold η. If both criteria fail, the algorithm is deemed unsuccessful. The listing of the
ASTRO-DF in Algorithm 1, i.e., history-informed ASTRO-DF, includes these refinements along with the
reuse strategy that we will describe in Section 4.

Algorithm 1 History-Informed ASTRO-DF

Require: Initial guess x0 ∈ Rd, initial and maximum trust-region radius ∆0,∆max > 0, model “fitness”
threshold 0 < η1 < η2 ≤ 1, sufficient reduction constant α > 0, expansion constant γ1 > 1 and
shrinkage constant γ2 ∈ (0, 1), sample size lower bound λk, adaptive sampling constants κ > 0, and
criticality threshold 0 < µ.

1: for k = 0, 1, 2, . . . do
2: Design Set Selection: Select Xk = {X(i)

k }2di=0 ⊂ B(Xk; ∆k) by calling Algorithm 2:

Xk=PickDesignSet(∆k,Xk,Fk).

3: Model Construction: Estimate F̄ (X
(i)
k , NX

(i)
k )), where

N(X
(i)
k ) = min

{
n ≥ λk :

σ̂(X
(i)
k , n)√
n

≤
κ∆2

k√
λk

}
, (4)

for i = 0, 1, . . . , 2d and construct the model Mk (Xk + s) via interpolation.

4: Subproblem Minimization: Approximate the k-th step by minimizing the model in the trust-region,
Sk = argmin∥s∥≤∆k

Mk(Xk + s), and set X̃k+1 = Xk + Sk.
5: Candidate Evaluation: Estimate the function at the candidate point using adaptive sampling to obtain

F̄ (X̃k+1, Ñk+1) following (4). Define the best design point X̂k+1 = argmin
x∈Xk∪{X̃k+1}

F̄ (x, N(x)),

its sample size N̂k+1 = N(X̂k+1), sample size of incumbent N̂k = N(Xk), direct-search reduction
R̂k = F̄ (Xk, N̂k) − F̄ (X̂k+1, N̂k+1), subproblem reduction R̃k = F̄ (Xk, N̂k) − F̄ (X̃k+1, Ñk+1),
and model reduction Rk = Mk(Xk)−Mk(X̃k+1).

6: Update: Set (Xk+1, Nk+1,∆k+1) =
(X̂k+1, N̂k+1,min{γ1∆k,∆max}) if R̂k > max{R̃k, α∆

2
k},

(X̃k+1, Ñk+1,min{γ1∆k,∆max}) else if R̃k ≥ η2Rk and µ∥▽Mk(Xk)∥ ≥ ∆k,

(X̃k+1, Ñk+1,∆k) else if R̃k ≥ η1Rk and µ∥▽Mk(Xk)∥ ≥ ∆k,

(Xk, N̂k, γ2∆k) otherwise,

and k = k + 1.
7: end for
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3 THE REUSE STRATEGY

Most stochastic trust-region methods, such as STORM (Chen et al. 2018), STRONG (Chang et al. 2013),
and ASTRO-DF, have the potential to significantly reduce the computational burden of each iteration k by
leveraging previously visited design points when constructing the local model. For instance, the iteration k
subsequent to an unsuccessful iteration k− 1 would require a new model Mk that is more focused within
a shrunk trust region for a better approximation of the objective function (Figure 1). Evidently, two design
points, namely, Xk−1 and X̃k (all one-dimensional design points and hence in regular font), are still present
within B(Xk,∆k) as it partially overlaps with B(Xk−1,∆k−1). These points and their replications can be
reused for constructing Mk, thereby reducing Wk from

∑p
i=0N

(i)
k to

∑p
i=0N

(i)
k −

∑
j∈RN

(j)
k−1, where R

is a reusable points set.

Figure 1: ASTRO-DF with the reuse strategy is exemplified in a one-dimensional problem. f(x) is the
true unknown function. After an unsuccessful iteration k − 1 and shrinkage of trust region, its candidate
point is reused as a design point for iteration k. This will lead to fewer simulations but still a good new
model Mk that leads towards the true optimal solution x∗.

3.1 Could Reusing Points be Harmful?

As illustrated, implementing a reuse strategy can effectively reduce computational expenses during each
iteration, consequently fostering improved work complexity. However, complexity improvement necessitates
an additional assumption: maintaining the iteration complexity consistent with the version with no reuse.
In this section, we provide evidence that the adoption of a reuse strategy may actually lead to an increase
in the required number of iterations, indicating a potential worsened work complexity.

Reuse strategy in model construction has significant implications for the quality of the resulting models,
as the current model’s performance becomes dependent on the previous model. In cases where the previous
model does not accurately represent the objective function leading to an unsuccessful iteration, the current
model will likely struggle to approximate the objective function, leading to another unsuccessful iteration.
To understand why the current iteration can also become unsuccessful, we delve deeper into the underlying
conditions for a successful iteration. Success in iteration k can be achieved by satisfying the requirements
stated in Lemma 5.2 by Shashaani et al. (2018):

|F̄ (X̃k+1, Ñk+1)−Mk(X̃k+1)| < c∆k∥Gk∥ and ∆k ≤ µ∥Gk∥,

where c and µ are positive constants, following the assumption on the subproblem minimizer being at least
at good a Cauchy point Xk + Sc, i.e.,

Mk(Xk)−Mk(Xk + Sc) ≥ 1

2
∥Gk∥min

{
∥Gk∥
∥Hk∥

,∆k

}
. (5)
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This condition can be transformed into the following equation:

|F̄ (X̃k+1, Ñk+1)− f(X̃k+1)|+ |f(X̃k+1)−mk(X̃k+1)|+ |mk(X̃k+1)−Mk(X̃k+1)| < cµ−1∆2
k. (6)

The first term of this equation is not affected by the reuse strategy since X̃k+1 is always a new design
point for any k ∈ N. However, the second and third terms are impacted by the reuse strategy. The
second term, |f(X̃k+1) − mk(X̃k+1)|, is bounded by κef∆

2
k for some positive constant κef according

to Definition 3. The value of κef depends on the location of the design set, and since the design set
following Definition 2 is the optimal design set (Ragonneau and Zhang 2023), the reuse strategy results
in a larger κef . Consequently, the probability of satisfying (6) decreases. For the third term, if iteration
k−1 is unsuccessful then there exists a c′ > 0 such that |mk−1(X̃k)−Mk−1(X̃k)| > c′∆2

k−1. As a result,
P{|mk(X̃k+1)−Mk(X̃k+1)| < c̃∆2

k} can be bounded by

P
{
|mk(X̃k+1)−Mk(X̃k+1)| < c(3µ)−1∆2

k

∣∣∣|mk(X̃k)−Mk(X̃k)| > c′∆2
k−1

}
. (7)

Reusing points introduces a positive correlation between the absolute differences of mk(·) and Mk(·) and
those of mk−1(·) and Mk−1(·). This means that the probability in (7) with the reuse strategy has a lower
value compared to the one without it. These observations imply that it may become less likely to have
successful iterations with the reuse strategy. This means that the decreased number of oracle calls per
iteration may not necessarily result in improved work complexity.

Two key factors cause a significant impact on the algorithm’s efficiency when the number of unsuccessful
iterations increases. The first factor is slow progress in improving the solution, as even in the subsequent
successful iterations, only a marginal reduction in the objective function is attainable. The second factor is
the rapid shrinkage of trust region size and an increased number of oracle calls at least quadratically faster.
The algorithm is unable to make a progress while wasting a significant portion of the budget. Besides
significantly hindering the overall performance and efficiency of the algorithm, reusing points can also
threaten the algorithm’s consistency if the algorithm is sensitive to model dependence. For example, the
almost sure convergence result of STORM (Chen et al. 2018) relies on the independence of the models
and function estimates. But reuse strategy forces the models to depend on each other, directly invalidating
the almost sure convergence result. In the refined ASTRO-DF, the inefficiency of reusing points is not
limited to the model step, as it also hinders the effectiveness of the direct search step. Unless the function
estimate at the reused points changes significantly, perhaps due to either a notable increase in the number
of oracle calls at those points or an underlying high inherent variance at those points, reusing points lowers
the likelihood of more exploration and escaping inferior solutions. In conclusion, care is required when
implementing the reuse strategy to enhance computational efficiency in practice.

3.2 Relationship between Reusing Points and ASTRO-DF

The refined ASTRO-DF uses a local model constructed via a predetermined design set on a stencil around
the incumbent solution (Definition 2). This approach entails selecting 2d new design points per iteration.
Since |X cb

k | = 2d + 1, the only reusable point is the center point. In other words, a refined ASTRO-DF
will not reuse X̃k+1 (suggested by the subproblem) following an unsuccessful iteration, provided that it
is contained in the contracted trust region, or the X̂k+1 point (suggested by the direct search) following a
successful iteration, provided that it is contained in the expanded trust region. Reusing more design points
without care, in this case, diminishes the coordinate basis leverage as detailed in Definition 2, and renders
the design set suboptimal (Ragonneau and Zhang 2023). In addition, blindly reusing already visited points
could be wasteful if they failed the direct search criteria during previous iterations, signaling their inferiority
and limiting the discovery of better solutions. In summary, when contemplating the utilization of reuse
strategy, it is essential to evaluate whether or not the following two advantages of the refined ASTRO-DF
are compromised: (a) evenly distributed Λ-poised design set with sufficiently small Λ, i.e., a well-poised
set, and (b) sufficiently high probability of success through direct search.
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4 HISTORY-INFORMED ASTRO-DF

In this section, we introduce a new heuristic for the refined version of ASTRO-DF to leverage the history,
i.e., the visited design points and their replications. As clarified earlier, the refined ASTRO-DF cannot
reuse any design points except the center point due to the predetermined design set and the dynamics of
the trust region. We suggest using the design set with a rotated coordinate basis instead of X cb

k in the
refined ASTRO-DF scheme. Unlike X cb

k , the design set with the rotated coordinate basis contains unit
vector Uk,1 and its related orthonormal basis. As a result, the first new design point except Xk for the
design set can be placed in the trust region flexibly with arbitrary Uk,1, leading to one reusable design
point as Xk + PkUk,1 for some Pk ≤ ∆k. In this case, the design set becomes

X rcb
k := {Xk,Xk + PkUk,1,Xk +∆kUk,2, . . . ,Xk +∆kUk,d,Xk −∆kUk,1, . . . ,Xk −∆kUk,d},

where Uk := {Uk,1,Uk,2, . . . ,Uk,d} is the orthonormal basis for Rd. Therefore, the history-informed
ASTRO-DF selects its design set Xk following Algorithm 2. Figure 2 illustrates using X rcb

k in the refined
ASTRO-DF scheme.
Algorithm 2 Xk=PickDesignSet(∆k,Xk,Fk)

Require: Parameters from ASTRO-DF: trust-region radius ∆k, iterate Xk, and history Fk.
1: Find the reusable points set Rk using Fk within the trust region.
2: if Xk is the only design point within the trust-region, i.e., Rk is empty then
3: Select the design set Xk = X cb

k following Definition 2.
4: else
5: Pick the farthest point from Xk = X

(0)
k as X

(1)
k , which implies obtaining Pk and Uk,1.

X
(1)
k = argmax

x∈Rk

∥Xk − x∥2 = Xk + PkUk,1.

6: Obtain Uk based on Uk,1 and select Xk = X rcb
k .

7: end if
8: Return Xk.

The suggested design set gives two advantages. Firstly, it can enjoy the more accurate directional
derivative estimate ▽Uk,i

Mk(Xk) for i ∈ {2, . . . , d} like the optimal design set, i.e., X cb, where
▽Uk,i

Mk(Xk) = GkUk,i. Since it reminisces the central finite difference with the new direction in-
stead of the standard basis, ▽Uk,i

Mk(Xk) for i ∈ {2, . . . , d} can achieve O(∆2
k) accuracy. Although,

for i = 1, the directional derivative estimate only achieves O(∆k) accuracy, it is still enough to obtain
consistency, i.e., the almost sure convergence to the first-order stationary point (Shashaani et al. 2018).
The accuracy of ▽Uk,1

Mk(Xk) depends on Pk, e.g., when Pk = ∆k, ▽Uk,1
Mk(Xk) achieves O(∆2

k)
accuracy. This is why the algorithm picks the farthest reusable design point from Xk. Secondly, reusing
two design points reduces the number of function evaluations for iteration k without threatening the ad-
vantage of the direct search method. Moreover, reusing only one more point in addition to the incumbent
design does not significantly impact the probability of success with the direct search and the number of
new design points, as elaborated in Section 3.2. Therefore this heuristic ensures negligible harm while
saving budget. Lastly, to aid in the understanding of the different versions of ASTRO-DF, we have pre-
pared a succinct summary highlighting the key distinctions among them. This overview is outlined in Table 1.

Vanilla ASTRO-DF: A random design set is selected within the trust-region as long as it forms a
poised set. This allows for the possibility of reusing some of the design points from previous iterations if
they lie within the new trust region. After the model construction, the candidate point is obtained implicitly
by minimizing the model within the trust region.
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Refined ASTRO-DF: The design set is selected in a deterministic manner by utilizing the coordinate
basis (see Figure 2a), choosing 2d new points per iteration. The only reused point is the center point from
the previous iteration. To update the incumbent, we minimize the model within the trust region to find a
candidate point. If the candidate point is not better than the design points, we replace it with the best point
found in that region.

𝑿𝑘−1
(0)

෩𝑿𝑘

𝑿𝑘−1
(1)

𝑿𝑘−1
(2)

𝑿𝑘−1
(3)

𝑿𝑘−1
(4)

(a) iteration k − 1

𝑿𝑘
(0)

𝑼𝑘,1

𝑼𝑘,2

𝑿𝑘
(1)

𝑿𝑘
(2)

𝑿𝑘
(3)

𝑿𝑘
(4)

(b) iteration k

Figure 2: Figure 2a shows the case of using the coordinate basis due to the absence of reusable design
points within the trust region. Figure 2b shows the case of using the rotated coordinate basis. In this
particular scenario (iteration k), the design point Xk−1, being the farthest from Xk among the reusable
design points, is reused as X

(1)
k .

Table 1: Differences between ASTRO-DFs.

Algorithm Vanilla ASTRO-DF Refined ASTRO-DF History-informed ASTRO-DF

Design set (Xk) selection Random Coordinate basis Rotated coordinate basis
|Xk| (d+ 1)(d+ 2)/2 2d+ 1 2d+ 1

Updating next incumbent Model Model + Direct Search Model + Direct Search
# of possible reusing points ≥ 0 1 2
Increasing rate of λk in (4) linearly logarithmically logarithmically

History-informed ASTRO-DF: The selection of the design set involves utilizing a rotated coordinate
basis (see Figure 2b). By employing this method, the center point and another design point can be reused.
Updating rule remains the same as the refined ASTRO-DF. The changes are notwithstanding the almost
sure convergence to a first-order critical point, as formally stated below.
Theorem 1 Let F (x, ξ) − f(x) exhibit a subexponential tail behavior with Var(F (x, ξ) − f(x)) ≤ σ2

for all x ∈ IRd. Suppose further that function f is twice continuously differentiable in an open domain
X ⊂ IRd containing B (x0; ∆max) and ▽f is Lipschitz continuous in X with constant κLg > 0. Then, if
model reduction Rk attains at least a fraction of the Cauchy decrease, as defined in (5), and the model
Hessian terms ∥Hk∥ ≤ κH for all k and some κH > 0 with probability 1, then the sequence {Xk} of
iterates generated by the history-informed ASTRO-DF satisfies lim

k→∞
∥▽f(Xk)∥ = 0 almost surely.
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5 NUMERICAL RESULTS

We now provide an account of the finite-time performance of solvers for a range of problems, including
Stochastic Activity Network (SAN), a 13-dimensional convex problem, and the (s, S) inventory problem,
a 2-dimensional nonconvex problem, sourced from the SimOpt library (Eckman et al. 2023). SimOpt is
a testbed and benchmarking platform with two distinct procedures. Initially, for each solver and problem,
we carry out m = 20 macro-replications. During each macro-replication, each solver is given the same
predetermined budget unique to that problem. Solvers estimate the objective function at each solution x with
a certain number of replications to decide the next move. In their computations, adaptive solvers employ
a variable replication size N(x). The second procedure involves conducting n = 200 post-replications
at each macro-replication’s intermediate (recommended) solutions to produce objective function estimates
free of any optimization bias. Common random numbers ensure a fair comparison and reduce variance for
both macro-replications and post-replications. Our assessment of solver performance involves analyzing
the confidence intervals associated with their generated solutions’ post-replicated function estimates for
insights into their behavior’s consistency.

Figure 3: Solvability Profile using 60 problems from the SimOpt library. Y -axis depicts the percentage
of test problems in which solvers reach the budget it takes to reach 90% optimality, .e.g., the refined
ASTRO-DF is observed to solve roughly 60% of the problems while using only 20% of the available
budget. The error bars represent 95% confidence region.

For both ASTRO-DF and STORM algorithms we use µ = 1000, η1 = 0.1, η2 = 0.5, γ1 = 0.75, and
γ2 = 1.5. We adjust the value of the scaling parameter in (4) at the initial iteration of each macro-replication
as κ = F̄ (X0, n0)/∆

2
0. To establish ∆max for each macro-replication, we generate random solutions using

an inherent solution generator in the problem (property of SimOpt) and compute the largest distance between
them. We then fine-tune the ∆0 through a pilot run using three candidates: 0.05∆max × {0.1, 1, 10} and
allocate 1% of the total budget to each candidate. This dynamic tuning method enables us to adapt the scaling
of ∆0,∆max, and κ according to the current macro-replication. We then compare the history-informed
ASTRO-DF with other solvers in the SimOpt library, including Nelder-Mead (NELDMD), ALOE (Jin et al.
2021), ADAM (Kingma and Ba 2017), and STORM (Chen et al. 2018).

5.1 Effect of the Reuse Strategy

Next, we investigate the impact of reusing points in comparing history-informed ASTRO-DF and ASTRO-
DF. We first test the two algorithms on SAN. Figure 4 displays the progress of the objective function value
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and the trust region radius. The history-informed ASTRO-DF can identify better solutions using fewer
function evaluations (Figure 4a). Notably, ∆k in the history-informed ASTRO-DF diminishes more rapidly
(Figure 4b), evidencing fewer successes yet with likely a more substantial decrease in the objective function
value at each successful iteration. This behavior can be attributed to the acceptance of reused points as new
iterates (via direct search) moving along the rotated coordinate bases, representing the direction that yielded
the most promising reduction in the previous iteration. This ultimately contributes to faster convergence
in finite time. Our second test is on a stochastic variant of Rosenbrock function suggested by Kim and
Zhang (2010) as

F (x, ξ) = 100
(
x2 − ξx21

)2
+ (ξx1 − 1)2,

where ξ ∼ N (1, 0.1). The result (Figure 5a) is commensurate with the previous case; the history-informed
ASTRO-DF demonstrates faster convergence and a higher success rate in the first 40 iterations (Figure 5b)
indicating that reuse strategy and the design set with the rotated coordinate basis lead to better solutions,
even when dealing with the nonconvex problem.

(a) Objective Function Value
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Figure 4: History-informed ASTRO-DF finite-time convergence improves in a Stochastic Activity Network.
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Figure 5: History-informed ASTRO-DF converges faster in a stochastic variant of the Rosenbrock function.
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5.2 Comparison Between Regression and Interpolation

The history-informed ASTRO-DF (Algorithm 1) utilizes interpolation for local models. However, regression
models might present a natural approach for reusing all previous information. In Figure 2b, for instance,
within the trust region, all design points, including X

(i)
k−1 for i ∈ {0, 1} and X

(j)
k for j ∈ {0, 1, 2, 3}, can

be used through regression. While utilizing regression models may not directly affect the direct search
method, it can still significantly impact the quality of the local model, which is crucial in guiding the
optimization process toward the optimal solution. Using regression in the optimization process naturally
raises the question of whether it can provide a better local approximation than interpolation. However,
in derivative-free optimization, theoretically establishing whether or not regression can provide a superior
gradient estimate compared to interpolation remains to be seen (Section 2.3 in (Conn et al. 2009)). In
practice, regression models have been found to be useful (Wild et al. 2008), thereby revealing a gap between
theory and practice. When dealing with a noisy environment, the situation tends to become considerably
more intricate. One of the primary reasons is that the function estimates obtained from previous iterations
may be inaccurate, resulting in even worse derivative estimations at the current iteration. As a result, the
optimization process for ASTRO-DF with regression might deteriorate, as illustrated in Figure 6 for SAN
and the stochastic Rosenbrock function.

(a) SAN (b) Rosenbrock function

Figure 6: Comparison between the ASTRO-DF with interpolation and regression suggests that more care
may be needed in utilizing regression for a derivative-free stochastic optimization routine such as ASTRO-
DF. Although regression retains more information, it does not necessarily lead to better performance.

6 CONCLUSION

It is proven that ASTRO-DF achieves global convergence to a first-order critical point with probability one.
The term “global convergence” indicates that the algorithm is guaranteed to converge to a critical point of
the objective function regardless of the initial solution, thus providing a robust and reliable optimization
technique. We suggest the enhanced version of ASTRO-DF with a method to reuse previous information
aptly, named the history-informed ASTRO-DF. Since ASTRO-DF boasts several features, including a
local model with diagonal Hessian and direct search method, which the reuse strategy may negatively
impact, we have opted to utilize a design set with a rotated coordinate basis for retaining the benefits of
the original ASTRO-DF. Implementing the reuse strategy offers an advantage in terms of computational
budget. Our empirical results show that the rotated coordinate basis ensures a superior next candidate
without compromising the algorithm’s consistency or complexity. As for the complexity analysis of the
history-informed ASTRO-DF, we leave it to future research to explore further.
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The suggested reuse strategy can be applied to other SDFO algorithms. For example, in SGFM (Lin
et al. 2022), the gradient is approximated using a central finite difference with a perturbation size δ and
a randomly sampled direction W . By employing the reuse strategy, Xk + δWk can be replaced with a
design point from previous iterations, making δ a random sequence {∆k}. However, the convergence and
complexity analysis of this modified algorithm remain unknown, suggesting a potential future research
direction.
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