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ABSTRACT

Simulation optimization is a widely utilized approach that allows decision-makers to test various decision
variable settings in simulators before implementing a final recommended action on the real systems. In
some real-world scenarios, the recommended action can be executed multiple times and the performance
is evaluated as the best one among these multiple attempts. In this paper, we introduce such simulation
optimization problems with multiple attempts and provide insights into the problem through comparison
to risk-averse decision-making problems. We propose a surrogate-assisted algorithm based on the Gaus-
sian process model and the upper confidence bound criterion for efficiently solving such problems. We
demonstrate the efficiency and effectiveness of the proposed approach with several numerical examples.

1 INTRODUCTION

Computer simulation is a powerful tool for the analysis of complex stochastic systems and simulation-based
optimization provides an effective decision-making approach for these systems. A stochastic simulation
optimization problem can be formulated as follows:

max
x∈D

Eη [Y (x,η(x))], (1)

where x denotes the decision variable within the design space D, Y (·) is the stochastic simulation output
and η(·) represents the randomness in Y . In problem (1), the noise is heteroscedastic, i.e., the noise in the
stochastic output can be different at different design points.

Simulation optimization is often used when the decision makers can try several different settings of
decision variables in simulators and then deploy a final recommended action on the real systems. In
this work, we consider a scenario where the action on the real system is conducted multiple times when
deployed. The performance of this action is evaluated as the best one among these multiple attempts.
Taking the best from multiple attempts is quite often in daily life, such as when students can take the same
exam multiple times and their final grade is based on the highest score achieved, or when athletes are given
multiple attempts in events like the high jump and long jump and their final achievement is determined by
their best performance. In the design of biological experiments, each setting is often experimented several
times for observations (Hurlbert 1984; Quinn and Keough 2002). If we use simulation optimization to
select the design/control parameter for a bomber aircraft to destroy assets of the enemy, typically an aircraft
will take multiple bombs, and a hit is scored if any bomb hits the target. In the aforementioned examples,
the decision is evaluated by the best performance among multiple attempts. In this work, we consider the
simulation optimization problem with multiple attempts and we assume that the number of attempts, m, is
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predefined. In this setting, the optimization problem can be formulated as:

max
x∈D

Eη [max{Y (x,η1(x)),Y (x,η2(x)), . . . ,Y (x,ηm(x))}], (2)

where Y (x,η1(x)), . . . ,Y (x,ηm(x)) are independent and identically distributed (i.i.d.) simulation outputs
under variable x. This measure represents the expectation of the maximum of m i.i.d outputs with the
same design x. To the best of our knowledge, problem (2) has not been studied in depth in simulation
optimization.

If we define Ψ(x) = (η1(x), . . . ,ηm(x)), which is the multivariate random term consisting of the m i.i.d.
η(x), and H(x,Ψ(x)) = max{Y (x,η1(x)),Y (x,η2(x)), . . . ,Y (x,ηm(x))}, problem (2) can be reformulated
as:

max
x∈D

EΨ(x)[H(x,Ψ(x))] (3)

Here, H(x) is a heteroscedastic stochastic response, and problem (2) is then reduced to a general stochastic
optimization problem similar to (1). Therefore, we can adopt approaches for stochastic simulation opti-
mization to solve (2). However, optimizing (2) directly will ignore the structural information of H(x) by
treating it as a pure black box. The function H(·), with the structural information, essentially is a grey-box
function (Astudillo and Frazier 2021). In this work, we will propose a more efficient approach to solve
(2). We also notice that problem (2) is related to the risk-averse decision-making. The decision makers
take the recommended actions multiple times to reduce the risk that one attempt might miss the target,
such as the case in the bomber aircraft example. However, through our analysis, we find that in problem
(2), the decision makers are in favor of actions with large uncertainty, which is quite different from that
in a traditional problem which optimizes a risk measure, although the decision makers in the two kinds of
problems are all risk-averse. A detailed discussion is presented in Section 3.

Compared with traditional stochastic simulation problem (1), problem (2) is more challenging as the
expectation of the maximum over multiple attempts is difficult to estimate, which will take more simulation
runs compared with estimating the expectation of a single simulation output. To tackle this challenge, we
develop a surrogate-based simulation optimization approach. A surrogate model summarizes the information
from the existing simulation results through a statistical model. It can be used to guide the future optimization
process more efficiently. In this work, we adopt the Gaussian process (GP) model as the surrogate, which
provides a built-in estimate of the uncertainty in the surrogate model. The GP model has been successfully
used in the well-recognized black-box optimization procedure, Bayesian optimization (BO), together with
several optimal points searching criteria. Popular searching criteria, also termed acquisition functions,
include expected improvement (EI) (Jones et al. 1998), upper confidence bound (UCB) (Srinivas et al.
2012) and knowledge gradient (KG) (Frazier et al. 2008). BO has seen extensive applications in the area
of operations research, simulation optimization, and computer science (see Shahriari et al. (2015) and
Frazier (2018) for reviews). To apply BO in stochastic simulation optimizations, a generalized GP model
for heteroscedastic noise cases, the stochastic kriging (SK) model, is proposed (Ankenman et al. 2010;
Yin et al. 2011). In this work, we utilize the SK model with UCB acquisition function in our algorithm.

The remainder of this paper is organized as follows: Section 2 briefly introduces the necessary
background on GP Model and GP-UCB algorithm. Section 3 reformulates the simulation optimization
problem with multiple attempts. Section 4 presents the UCB-based algorithm for solving such problems.
Section 5 details two numerical experiments. Finally, Section 6 concludes the paper and discusses future
research directions.

2 A REVIEW OF STOCHASTIC GP MODEL AND GP-UCB ALGORITHM

In this section, we first provide a brief review of GP model in Section 2.1, which is used as the surrogate
model in our proposed algorithm. In Section 2.2, we review the GP-UCB algorithm. The traditional
GP-UCB algorithm is primarily designed to tackle online problems, thereby guaranteeing a sub-linear
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cumulative regret rather than directly addressing simple regret. In this paper, we utilize the UCB principle
to solve the simulation optimization problems with multiple attempts.

2.1 GP Model Basics in the Stochastic Simulation

The response of the stochastic simulation can be represented by the following form in the standard stochastic
GP model:

Y (x,η(x)) = F(x)+ξ (x) = M(x)T
β +Z(x)+ξ (x), (4)

where F(x) = Eη [Y (x,η)] represents the randomness-free response which can be further decomposed into
the mean function, M(x), and a sample from a second-order stationary GP, Z(x). M(x) is a vector of known
functions representing our belief of the mean performance of F(x). A GP is a collection of dependent
random variables, every finite subset of which is multivariate Gaussian distributed in an overall consistent
way (Williams and Rasmussen 2006). A GP distribution Z(·)∼ G P(µZ(·),kZ(·, ·)) is characterized by its
mean function µZ(x) = E[Z(x)] and covariance function kZ(x,x′) = cov(Z(x),Z(x′)). A popular choice of
covariance function is kZ(x,x′) = exp

(
−
(
2l2

)−1 ∥x− x′∥2
)

with l as the length-scale parameter. Without
loss of generality, we assume little prior knowledge about M(x) and choose a zero mean of GP with
M(x) = 0, which is a common practice in GP-based optimization problems. In (4), ξ (x) is the randomness
brought by η . In the heteroscedastic noise case, it is assumed to be Gaussian distributed with mean zero
and variance τ2(x).

The major advantage of working with GPs is the existing analytical formula for the mean and covariance
function of the posterior distribution. Denote xi, i = 1, . . .st as the selected design variables up to iteration
t, with ni(t) number of observations. Denote ȳt = (ȳt (x1) , . . . , ȳt (xst ))

⊤ as the observations vector at the
design points where ȳt (xi) =

1
ni(t) ∑

n
j=1 y(xi,η j(xi)). Then, the posterior distribution of Z is again a GP

with mean function µt(·) and covariance function kt(·, ·):

µ
Z
t (x) = kZ

t (x)
⊤ (KZ

t +diag
{

τ
2 (x1)/n1(t), . . . ,τ2 (xst )/nst (t)

})−1 ȳt

kZ
t
(
x,x′

)
= kZ (x,x′

)
−kZ

t (x)
⊤ (KZ

t +diag
{

τ
2 (x1)/n1(t), . . . ,τ2 (xst )/nst (t)

})−1 kt
(
x′
)
,

(σZ
t (x))

2 = kZ
t (x,x)

(5)

where kZ
t (x) =

[
kZ (x1,x) , . . . ,kZ (xst ,x)

]⊤, KZ
t is the positive definite kernel matrix [k (xi,x j)]i, j=1,...,t .

In practical applications, the model inputs consist of the design set D = {x1, . . . ,xst}, the observation
vector ȳt and the noise variance matrix diag

{
τ2 (x1) , . . . ,τ

2 (xt)
}

. Typically, τ2(xi) is estimated using the
sample variance from the simulation outputs y(xi,η1(xi)), . . . ,y(xi,ηni(t)(xi)). The hyperparameter l can
then be obtained by maximizing the likelihood of ȳt .

2.2 GP-UCB Algorithm

The Upper-Confidence-Bound (UCB) algorithm is commonly used in reinforcement learning to tackle
the exploration-exploitation dilemma. Srinivas et al. (2012) introduced the UCB algorithm to GP-
based optimization problems with their proposed GP-UCB algorithm. It efficiently solves the problem
of sequentially optimizing an unknown reward function Z : D→ R, where Z(·) is a sample from some
GP, denoted as G P(0,kZ(·, ·)) or lies in some reproducing kernel Hilbert space (Wahba 1990). At each
iteration t = 1, . . . ,T , the decision maker selects a point xt ∈D and receives a realized reward disturbed by
a Gaussian white noise with known variance: yt = Z(x)+ εt , where εt ∼ N(0,τ2). The goal is to perform
as well as possible, effectively achieving x∗ = argmaxx∈D Z(x). In this context, the natural performance
metric is the cumulative regret, which measures the loss in reward due to not knowing x∗ beforehand:

RT =
T

∑
t=1

rt =
T

∑
t=1

(Z(x∗)−Z(xt)) , (6)
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where rt is the instantaneous regret incurred at iteration t.
Since the exact value of Z(xt) is not observed, the decision maker faces an exploration-exploitation

trade-off. They can choose the point with the maximum estimated Z(x) based on all available information up
to iteration t (exploitation), or select a point with large uncertainty in less explored regions for better solutions
than the current best (exploration). The UCB-based algorithms follow the principle of optimism in the face
of uncertainty, assuming that the decision xt will perform as well as possible within a reasonable range when
there is uncertainty about it. Suppose at iteration t, a confidence bound of Z(x) is obtained for any x ∈D,
denoted as [LCBt(xt),UCBt(x)]. The GP-UCB algorithm suggests selecting xt = argmaxx∈D UCBt(x).

If these confidence bounds hold jointly across all x ∈D and all t = 1, . . . ,T with probability no smaller
than 1−δ for some δ ∈ (0,1), i.e.,

P{Z(x) ∈ [LCBZ
t (x),UCBZ

t (x)],∀x ∈ D and ∀t = 1, . . . ,T} ≤ 1−δ . (7)

Then with the same probability confidence level, we can bound the cumulative regret by the summation
of the length of the confidence bounds:

RT =
T

∑
t=1

(Z(x∗)−Z(xt))≤
T

∑
t=1

(
UCBZ

t (x
∗)−Z(xt)

)
≤

T

∑
t=1

(
UCBZ

t (xt)−LCBZ
t (xt)

)
, (8)

where the second inequality follows from the UCB principle.
In the GP-UCB algorithm, the confidence bound takes the form:

LCBZ
t = µ

Z
t−1(x)−β

Z
t σ

Z
t−1(x,x)

UCBZ
t = µ

Z
t−1(x)+β

Z
t σ

Z
t−1(x,x),

(9)

for some parameter βt > 0, where µt−1(x) and σ2
t−1(x) = kt−1(x,x) is the mean and variance of the posterior

distribution of Z conditional on {y(x1), . . . ,y(xt−1)} according to Equation (5). By appropriately choosing
βt , one can bound the cumulative regret using the quantity maximal information gain, which depends on
the choice of k(·, ·). Notably, it is found that the cumulative regret exhibits sublinear growth for a broad
range of kernel functions.

3 PROBLEM REFORMULATION & MODEL INSIGHTS

In this section, we reformulate the problem and provide an in-depth analysis of the problem from the
reformulation.

We consider the proposed optimization problem (2) in Section 1 where m is a predetermined number of
attempts, and Y (x,η1(x)), . . . ,Y (x,ηm(x)) are independent and identically distributed Gaussian simulation
outputs for input x ∈D. We assume that D⊂ [0,1]d is a compact set for some constant d ∈N+. We further
define Z(x) = E[Y (x,η(x))] as the expected value of the simulation output and ξ (x) =Y (x,η(x))−Z(x) is
a normal noise, which possesses an expected value of zero and variance of τ2(x). As mentioned in Section
1, we denote H(x,Ψ(x)) = max{Y (x,η1),Y (x,η2), . . . ,Y (x,ηm)} and G(x) = EΨ(x) [H(x,Ψ(x))]. Define
x∗ = maxx∈D G(x). Thus, (2) is equivalent to maxx∈D G(x).

We introduce a constant
Em = E[max{W1,W2, . . . ,Wm}] (10)

where W1, . . . ,Wm are independent and identically distributed standard Gaussian random variables. Utilizing
this constant, we can express G(x) as follows:

G(x) = E [max{Y (x,η1),Y (x,η2), . . . ,Y (x,ηm)}] = Z(x)+ τ(x)Em. (11)

Here, G(x) can be partitioned into the expectation of Y (x) and the product of its standard deviation with
Em. Thus, the problem (2) can be reformulated into

max
x∈D

Z(x)+ τ(x)Em. (12)
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Forms analogous to (12) are frequently employed in risk management (Chiu and Choi 2016) when a
mean-variance risk measure is applied. As mentioned in Section 1, in risk management problems such as
portfolio selection (Simaan 1997) and supply chain inventory (Lau 1980), the risk-averse decision-maker
aims to maximize Z(x)− c · τ(x), where Z(x) represents the expected profit and τ(x) denotes the standard
deviation of response at x. In this context, c is a constant that measures the decision-maker’s risk tolerance,
with a positive value indicating a risk-averse attitude. Hence, decision-makers prefer decisions with smaller
uncertainty.

Considering the proposed multi-attempt problem (12), Em is a positive constant that is parallel to
the risk tolerance parameter c in traditional risk management problems. It seems that (2) is reduced to
a risk-seeking problem when searching for the optimal solution. However, the proposed problem has
the following two main differences from the risk-seeking problem. First, the decision makers here are
essentially risk-averse, so they try multiple times to reduce the risk that one attempt of the decision has
inferior performance, as illustrated by the bombing mission example in the introduction where several
bombs are dropped simultaneously to decrease the failure rate. Compared with the traditional risk-averse
problem, the problem we investigate addresses risk aversion from distinct perspectives. In the conventional
risk management problem, the decision-maker has a single attempt and, being risk-averse, they tend to select
decisions with a lower variance while ensuring a certain expected return Z(x). In contrast, the problem we
explore reduces the risk of a decision through multiple attempts with additional resources. It facilitates the
decision maker to explore decisions with large variability that can reach much better performance compared
with conservative decisions. The second difference is that the value of Em in our problem is determined
in a more systematic manner. Once the number of attempts is given under budget or resources constraint,
Em can be decided as in (10).

We further illustrate the difference between our problem and the traditional risk-neutral and risk-averse
problem with the example in Figure 1. Here, the Y-axis represents the profit function. For any x, the profit
Y (x) is random. The solid red curve illustrates the mean profit Y , i.e. Z(x), for each decision x, while the
upper and lower reddish outlines depict the mean plus and minus the standard deviation of Y at x multiplied
by the constant Em > 0. From a risk-neutral decision-maker’s perspective, x1 should be the optimal solution
with the maximum mean. Meanwhile, x2 is the optimal solution for a risk-averse decision-maker whose
risk tolerance parameter exactly equals Em. In our setting, since we have multiple attempts, x3 should be
considered optimal.

4 MULTI-ATTEMPT UCB ALGORITHM

Our aim is to solve (12) sequentially. For each iteration t = 1, . . . ,T , we select a point xt ∈D and perform
n simulations to acquire i.i.d. outputs y1(xt) := y(xt ,η1(xt)), . . . ,yn(xt) := y(xt ,ηn(xt)). Running several
simulation replications at each design point is a common practice for stochastic BO algorithms to estimate
the responses more accurately (See a review in Jalali et al. (2017)).

In this section, we present an Upper-Confidence-Bound (UCB) based algorithm called Multi-Attempt
UCB for the problem with multiple attempts. We can observe from Equation (12), the objective function
contains not only the expectation of simulation output but its standard deviation. To construct the BO
algorithm for solving (10), we thus need an additional GP model for the standard deviation τ(x). However,
we notice that τ(x) is always non-negative while the conventional GP model is for the response on the real
line. Hence, we first develop a proper surrogate model for τ(x) in Section 4.1 and propose the algorithm
in Section 4.2.

4.1 Surrogate Model for τ(x)

Since τ(x) is always positive, the conventional GP model is unsuitable for directly modeling τ(x). Especially
when τ(x) is small, the posterior distribution may provide a negative estimation for τ(x), which brings
difficulty in both the model interpretability and algorithm construction. Thus, to introduce the GP model
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Figure 1: Illustration of the difference among risk-neutral, risk-averse ,and the proposed multiple-attempt
decision-making.

to estimate τ(x), a transformation of τ(x) should be taken so that it covers the whole real line. Several
research efforts have attempted to place a GP on the transformation of τ(x). Ankenman et al. (2010)
place a GP distribution on the difference between variance and a constant; however, this approach has a
weakness as the variance estimation may still be negative. Ng and Yin (2012) place a GP distribution
on the logarithm of the variance and the obtained GP prediction can be transferred back for predicting
the variance, ensuring a positive estimation. However, in the inverse transformation of the logarithm, the
exponential function may magnify the uncertainty of the prediction, leading to an exponentially growing
confidence interval for the variance prediction. As shown in equation (8), the length of the confidence
interval is critical for bounding the regret and we find that modeling the logarithm of the variance is not
adequate for the algorithm to converge.

In this work, we propose a more proper way to model the standard deviation through the logit
transformation. Denote v(s) = log

( s
M−s

)
as the logit transformation for s ∈ (0,M) and π(s) = M

1+e−s to be
its inverse transformation where M is a positive constant. In this paper, assume the standard deviation is in
(0, M) and use logit transform to obtain l(x) := v(τ(x)), which is in (−∞,∞). This assumption essentially
requires the standard deviation of the simulation output to be bounded in the input domain. In practice,
if the exact upper bound is not known, a fairly large number can be used in the transformation. We next
build a GP model for l(x). Denote lS(x) = v(S(x)) for all x with observed sample variance S2(x). Thus,
lS(x) is a noisy observation of l(x) at the selected points xt . We use a simple nugget-effect GP model (Yin
et al. 2011) for l(x). Similarly, we can also update the posterior distribution over l(x), with posterior mean
µ l

t , covariance kl
t and variance σ l

t :

µ
l
t (x) = kl

t(x)
⊤
(

Kl
t +σ

2I
)−1

lt

kl
t
(
x,x′

)
= kl (x,x′

)
−kl

t(x)
⊤
(

Kl
t +σ

2I
)−1

kl
t
(
x′
)

(σ l
t )

2(x) = kl
t (x,x),

(13)
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where σ2 is the noise variance in the nugget-effect GP model, kl
t(x) =

[
kl (x1,x) . . .kl (xst ,x)

]⊤, Kl
t is the

positive definite kernel matrix
[
kl (xi,x j)

]
i, j=1,...,st

and lt = {l (x1) , . . . , l (xst )}
⊤. The parameters in this

model can be estimated through MLE (see Chapter 2 in Williams and Rasmussen (2006)).

4.2 Upper Confidence Bound for G(x)

The Upper-confidence-Bound principle suggests xt = argmaxx∈D UCBt(x), where UCBt(x) is some upper
confidence bound of G(x) at iteration t. Recall G(x) = Z(x)+τ(x) ·Em = Z(x)+π(l(x)) ·Em. If we derive the
confidence bound for Z(·) and l(·) respectively, denoted as [LCBZ

t (x),UCBZ
t (x)] and [LCBl

t(x),UCBl
t(x)],

at some level 1−α/2, using the union bound, we can construct the regret bound at level 1−α for G(x) as

LCBt(x) = LCBZ
t (x)+Emπ(LCBl

t(x))

UCBt(x) = UCBZ
t (x)+Emπ(UCBl

t(x)).
(14)

The confidence bound for Z(·) and l(·) can be constructed in the following way:

LCBZ
t (x) = µ

Z
t−1(x)−β

1/2
t σ

Z
t−1(x)

UCBZ
t (x) = µ

Z
t−1(x)+β

1/2
t σ

Z
t−1(x)

(15)

and
LCBl

t(x) = µ
l
t−1(x)−β

1/2
t σ

l
t−1(x)

UCBl
t(x) = µ

l
t−1(x)+β

1/2
t σ

l
t−1(x)

(16)

for some parameter βt > 0. Here, when D is finite, we recommend βt = 2log
(
|D|t2π2/3δ

)
to ensure a

sublinear regret with high probability no smaller than 1− δ . The value of βt can be set by referring to
Srinivas et al. (2012).

Pseudocode for the Multi-Attempt UCB algorithm is provided in Algorithm 1.

Algorithm 1 Multi-Attempt UCB Algorithm

1: Fit GP for Z(·) and l(·) respectively.
2: Input: Design space D, GP prior for Z(·): µZ

0 = 0,kZ(·, ·), GP prior for l(·): µ l
0 = 0,kl(·, ·)

3: for t← 1,2, . . . ,T do
4: Select

xt = argmax
x∈D

UCBZ
t (x)+π(UCBl

t(x)) ·Em. (17)

5: Obtain n evaluations yi(xt) = Z(xt)+ηi(xt), i = 1, . . . ,n.
6: Update the sample mean ȳt and the sample variance S2

t .
7: Perform Bayesian updates to obtain µZ

t , σZ
t and µ l

t , σ l
t .

8: end for

5 NUMERICAL EXPERIMENTS

In this section, we aim to demonstrate the efficiency of the Multi-Attempt UCB algorithm in addressing
the optimization problem defined in Equation (12) by employing a one-dimensional (1D) test function and
a two-dimensional (2D) test function.

Benchmark Method. We aim to introduce an intuitive benchmark method first. Recall that Equation (3)
presents an equivalent formulation of the optimization problem in Equation (12). Given that H(x,Ψ(x))
represents the maximum value of Y (x,η1(x)), . . . ,Y (x,ηm(x)), it is necessary to have m i.i.d. evaluations
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of Y (x,η(x)) to acquire a single evaluation of H(x,Ψ(x)). The benchmark approach entails placing a GP
distribution on G(x) = EΨ(x)[H(x,Ψ(x))] and implementing the GP-UCB algorithm to maximize G(x) over
the domain x ∈. This benchmark algorithm essentially treats G(x) as a black-box function and directly
applies the conventional GP-UCB algorithm. The framework for this benchmark approach is outlined as
follows:
Algorithm 2 Benchmark: GP-UCB algorithm

1: Fit GP for G.
2: Input: Design space D, GP prior for G(·): µG = 0, kG(·, ·).
3: for t← 1,2, . . . ,T do
4: Select

xt = argmax
x∈D

UCBG
t (x) = µ

G
t (x)+β

1/2
t σ

G
t (x). (18)

5: Obtain n evaluations of H(xt ,Ψ(x)), denoted as hi(xt), i = 1, . . . ,n. (To obtain one evaluation of H
at x, we need m evaluations of Y at x and take their maximum.)

6: Update the sample mean h̄t and the sample variance S2
H,t .

7: Perform Bayesian updates to obtain µG
t , σG

t .
8: end for

Test function. Initially, we illustrate the method’s performance on a 1D function with the design space from
[0,1]. Here, we define Z(x) = 2sin(6πx)−3x and τ(x) = 0.2+3x. We consider m = 5 and 8 respectively
to compare the performance of Multi-Attempt UCB and the benchmark in different settings. Figure 2
illustrates Z(x) and G(x) for m = 5,8. It is evident that the maximum values of Z(x) and G(x) occur in
distinct regions.

Then we use a commonly-used 2D test function, the Ackley function, to further illustrate the advances of
our proposed algorithm. Specifically, we employ a combination of two Ackley functions to construct a more

complex objective function. A 2D Ackley function is defined as ackley(x) =−aexp
(
−b

√
1
d ∑

2
i=1 x2

i

)
−

exp
(1

2 ∑
2
i=1 cos(cxi)

)
+ a+ exp(1). Since our objective is to solve a maximization problem, we use the

negation of the Ackley function. Specifically, we set Z(x) = −1
2 [ackley(x)+ ackley(x− (4,4))] with

a = 20,b = 0.2,c = 2π . We define τ(x) = 0.02(|x1−2|+ |x2−2|)+0.2(|x1|+ |x2|). The design space is
from [−10,10]2. Figure 3 displays Z(x) and G(x) for m = 5,8 respectively.

Experimental setup. During each iteration t, a design point xt is queried and n evaluations, denoted as
{yi (xt)}n

i=1 for Multi-Attempt UCB and {hi (xt)}n
i=1 for the benchmark method, are obtained. The cost of

acquiring n evaluations of H for the benchmark is equivalent to the cost of obtaining m ·n evaluations of Y .
For both examples, we set n= 15. To maintain the same evaluation cost for both algorithms, the total number
of iterations TMulti for Multi-Attempt UCB should be m times greater than the total number of iterations
Tbenchmark for the benchmark. Additionally, the number of initial design points for the Multi-Attempt UCB
algorithm should also be m times greater than that of the benchmark. We employ Latin Hypercube Design
to select the initial design points for both algorithms.

For the 1D test function, we set the total number of function evaluations of Y to be 1200, and for the 2D
test function, we set it to 3000. We utilize the Matérn covariance function with ν = 5

2 to fit GP models due
to its flexibility to cover different types of problems (See Chapter 4 in (Williams and Rasmussen 2006)).
We conduct 50 macro-replications for both example functions and both algorithms.
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Figure 2: The 1D test function.
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Figure 3: The 2D test function: the global optimal points are marked with black stars.

Performance. The performances for both algorithms over the two test functions are illustrated in Figure
4. The horizontal axis indicates the number of function evaluations for Y , and the vertical axis shows the
average value of G(x̂∗t ) over the 50 macro-replications with the shaded region representing the confidence
intervals. For each macro-replication, x̂∗t represents the selected point exhibiting the highest empirical value
of G(x) up to iteration t, i.e., the best point found by the algorithm so far. As G(x̂∗t ) is updated only at
the end of each iteration and multiple evaluations of Y are conducted in each iteration, the performance
of G(x̂∗t ) over the number of evaluations looks like a step function. Notice that each replication of Multi-
Attempt UCB costs n evaluations of Y while that of the benchmark algorithm costs mn evaluations of Y
(to obtain n observations of H). Hence, the step length of the benchmark is also m times greater than that
of Multi-Attempt UCB.

We see from Figure 4 that in all the test scenarios, the target function value identified by the Multi-
Attempt UCB algorithm surpasses that of the benchmark method. We also observe that the performance
curve of Multi-Attempt UCB exhibits a notably steeper ascent compared to the benchmark, particularly
when the number of function evaluations is limited. The shaded region demonstrates the enhanced stability
of the Multi-Attempt UCB algorithm compared to the benchmark. If we compare the results of 4(a) and
4(b) for the 1D function, we can see that as m increases, the differences between the two algorithms get
larger. When m is large, we need more replications of Y to obtain one observation of H, and thus treating
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H as a pure black box, as the benchmark algorithm does, becomes less efficient. Similar observations
can be obtained when comparing the two 2D cases. Consequently, in scenarios with high evaluation costs
and a relatively small number of function evaluations, the proposed Multi-Attempt UCB algorithm can
achieve better results than the vanilla GP-UCB algorithm. The efficiency of our algorithm is due to our
reformulation (12) of the original multi-attempt problem (2), which allows us to transform a black-box
problem (3) into a grey-box problem with the structure information to facilitate the optimization.
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Figure 4: The performance comparison between Multi-Attempt UCB and the benchmark algorithm.

6 DISCUSSION AND FUTURE EXTENSIONS

In this paper, we first propose the multi-attempt simulation optimization problem (2). We then reformulate
the problem under the assumption that the simulation outputs are normally distributed and decompose the
term inside the expectation from (2) into its expectation Z(x) and the randomness term ξ (x). Subsequently,
we develop a GP-based surrogate model to handle Z(·) and ξ (·) separately and propose the Multi-Attempt
UCB algorithm for efficiently solving such optimization problems.

Several future research directions can be considered. First, a theoretical analysis of the Multi-Attempt
UCB algorithm’s performance, including aspects such as cumulative regret, is worth exploring. Second, our
current setting focuses on the scenario when one recommended action is conducted multiple times on real
systems. A more challenging case is when m different actions can be selected. Investigating the performance
of simulations with multiple designs merits further exploration. Moreover, the current reformulation is for
Gaussian distributed stochastic outputs. Examining non-Gaussian distributed stochastic outputs would be
of interest. Finally, in this paper, we adopt expectation in (2) as the performance measure. We can also
consider replacing it with a risk measure for more risk-averse decision-makers.
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