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ABSTRACT

Post-stratification is a variance reduction technique that groups samples in respective strata only after
collecting the samples randomly. We incorporate this technique within an adaptive sampling procedure
in simulation optimization. We use concomitant variables to increase the accuracy of our proposed post-
stratified adaptive sampling. Concomitant variables are auxiliary variables in simulation that approximate
the boundaries of the optimal strata at each visited solution during the optimization procedure. A linear
relationship between the concomitant variable and the output is desirable but not necessary for the effective-
ness of the proposed methodology. In numerical experiments, we observe that performing post-stratified
adaptive sampling with dynamically updated strata boundaries robustifies the algorithm in the sense that
it reduces the algorithm’s sensitivity to the initial solution and solver input parameters.

1 INTRODUCTION

Simulation optimization is a problem of determining the values for decision variables of a simulation model
that optimize one or more of its performance measures. Simulation-optimization methods often rely on
optimizing estimates of performance measures. Hence, their success depends on the estimated values’
accuracy. A crude Monte-Carlo estimation via sample-average-approximation (SAA) (Kim et al. 2015)
renders the estimator’s variance inversely proportional to the square root of the sample size. Thus running
many simulation replications can increase accuracy at a slow rate of O(n−1/2), which is limiting for many
computationally costly simulations. Variance reduction techniques such as control variates (Lavenberg
et al. 1982), importance sampling (Glynn and Iglehart 1989), and stratified sampling aim for gain in
accuracy through careful consideration for the distribution of simulation inputs or outputs. Among them,
stratified sampling with concomitant variables (Wilson and Pritsker 1984) utilizes other random variables
produced during simulation to stratify the simulation outputs that will estimate the performance measure
being optimized. It is best used within a post-stratification routine where the random simulation runs are
still independent and identically distributed (iid) but grouped and weighted based on the stratification rule.
The advantage of using concomitant variables has been explored for estimation of a single target value.
But in an optimization task, the performance measure is estimated at many points raising the question of
whether changing the stratification structure repeatedly would enhance the convergence behavior of the
solver. In this work, our investigation of this question is within a class of stochastic optimization solvers
that utilize adaptive sampling. With adaptive sampling, the sample size is not fixed and adapts to how
much accuracy would be needed at a point. We explore the post-stratification in the adaptive setting while
allowing the stratification itself to vary based on the trajectory of the search.
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Post-stratification has been widely used as a variance reduction technique in simulations of queuing
networks (Wilson and Pritsker 1984; Sabuncuoglu et al. 2008), focusing on a fixed stratification structure.
In an optimization, however, depending on the variable used to stratify the outputs, the best way of splitting
the data could depend on the solution at which the objective function is being evaluated. Intuitively, if the
stratification variable has a high dependence on the output, it is likely that the distribution of the output
conditional on that variable will look different at different points. So our goal in this paper is to investigate
the effect of changing the stratification structure dynamically within the optimization framework. Dynamic
stratification has been explored for Monte Carlo simulations and simulation optimization. However, most
of these approaches stratify the outputs using greedy routines or heuristics like clustering or regression
trees (Ross and Lin 2001; Zhao and Zhang 2014; Pettersson and Krumscheid 2021; Liu et al. 2022; Jain
et al. 2021; Jain et al. 2022). The structure generated by these methods tends to depend on the data
used. A small sample can result in a skewed structure and poor estimates. Thus they often require a large
pilot sample size. This can be harmful from the perspective of optimization under a finite budget. A large
initial sample size leaves less budget for exploration, which is of the essence for finding an optimal region.
In this work, we use a closed-form approach for dynamic stratification, allowing us to use a relatively
small initial sample size without sacrificing the accuracy of the stratification structure. We integrate this
with adaptive post-stratified sampling to improve the performance of a derivative-free trust-region-based
method. This integration makes the total sample size and the stratification structure part of the solver’s
decision at each iteration during optimization. Given the exploratory nature of this study, we choose to
illustrate the proposed methods on an M/M/1 queue, where the relationships between variables under study
is well-understood. We leave the rigorous analysis of effect on convergence rates, and impact in real-world
settings to a future work.

Consider a simulation model generating outputs Y (θ) ∈ IR for some decision variable θ ∈ IRd.
The aim is to determine the decision value that minimizes Y (θ) in expectation. For the M/M/1 queue,
Y (θ) := S(θ) + c0θ

2 where θ is the exponential service rate, λ is the exponential interarrival rate, S(θ) is
the mean sojourn time, and c0 is the additional cost to penalize increase in service rate. The problem can
thus be formulated as

min
θ∈(λ,θmax]

f(θ) := E[Y (θ)], (1)

a box-constrained stochastic optimization problem with θmax as the upper bound of θ. We assume that the
function f(θ) is bounded from below and has L-Lipschitz continuous gradients in IR. We can estimate
the expectation in (1) via SAA using f̂(θ, n) = n−1

∑n
j=1 Yj(θ) where n is the number of simulation

replications at θ. Let X(θ) be a random variable that is generated besides Y (θ) in one simulation run at θ.
We will review stratified sampling as a variance reduction technique and the use of concomitant variables
for stratification in Section 2. Section 3 presents the trust-region optimization equipped with stratified
adaptive sampling where the strata randomly change in addition to the sample size. We explore different
approaches for choosing concomitant variables. Numerical results for the M/M/1 problem are presented
in Section 4 with conclusions in Section 5.

2 STRATIFIED SAMPLING

Stratified sampling involves dividing data into groups or strata so that data behaves more similar within each
group. Instead of using a single distribution, stratified sampling uses different distributions for each group,
which helps exploit data heterogeneity leading to variance reduction (Ross 2013). Sampling more points
from a stratum with a higher variance will increase efficiency. Efficient allocation of the computational
budget between strata can reduce the variance of the estimators and expedite the optimization.

For ease of exposition, let us fix θ and drop it from the rest of this section. Let D be the support (range)
of X and suppose we have m disjoint strata Dj , j = 1, 2, · · · ,m on this support, such that

⋃m
j=1Dj = D.

Define pX,j = Pr{X ∈ Dj}, the true probability of X falling inside Dj , Pj , its probability distribution
function in stratum j, and σ2

j = Var(Y
∣∣X ∼ Pj). With fj := E[Y

∣∣X ∼ Pj ], the mean in stratum j, one can
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then write f =
∑m

j=1 pX,jfj , and devise the unbiased estimator f̌(n1, n2, . . . , nm) =
∑m

j=1 pX,j f̂j(nj),
where f̂j(n) = n−1

∑n
i=1 Yj,i and Yj,i is the i-th i.i.d. simulation output with its input sampled from Pj

defined on the support Dj with sample size nj . Then

Var(f̌(n1, n2, . . . , nm) =

m∑
j=1

n−1
j p2

jσ
2
j . (2)

is the variance of the new estimator with stratified sampling, in comparison with that of the original
Monte-Carlo-based estimator, i.e., Var(f̂(n)) = n−1σ2, where σ2 = Var(Y ). The sample variance in (2)
is always smaller than the sample variance without stratification (Ross 2013) and its value depends on the
sample size of each stratum nj . If this sample size is selected appropriately, we can achieve the maximum
reduction in the sample variance.

2.1 Splitting and Budget Allocation

Using stratified sampling best involves two questions: how to split D into m strata and how to choose
nj? Answering the first question requires finding a splitting structure such that each stratum has similar
observable characteristics, like the variability of the objective function. Farias et al. (2020) propose
a splitting technique based on similarity functions for classification, which demands accurate modeling
of the available dataset’s true distribution. Mulvey (1983) present a computationally expensive optimal
cluster analysis. Tipton (2013) use k-means clustering and compare the algorithm with 1, 2, · · · , k strata
to determine the optimal k. Comparison is in terms of the ratio of the between-strata variance to the sum
of within-strata and between-strata variance, which tends to increase with more strata. Jain et al. (2022)
suggest more strata may hinder the optimization process rather than assist it.

The second question depends on the sampling strategy. Proportional allocation chooses the sample
size of a stratum based on pX,j . The proportional allocation of stratum j admits nj = pX,jn. Optimal
allocation (Neyman 1934) chooses the sample size also based on the variance σ2

j . The sample size of a
stratum j in optimal allocation is determined as nj = wjn, where wj := pX,jσj/(

∑m
i=1 pX,iσi) is the

weight of stratum j. Theoretically, optimal allocation maximizes the estimator’s variance; however, this
reduction depends on knowing pX,j and σj . When unknown, inaccurate estimates of these two can reduce
or reverse the effectiveness of the optimal allocation. Jain et al. (2021) illustrate two approaches to estimate
the weights: static and dynamic. Static weights are calculated at the start of optimization using inputs
whose distribution remains fixed as θ changes. Dynamic weights use the outputs and are updated at the
end of each iteration. Although dynamic weights capture the behavior of the objective function for a given
θ, they are prone to estimation errors as they will need many replications to have a good enough estimate
of σj , imposing more computational burden.

Other allocation strategies that minimize the variance within each stratum have widely been studied
(Etoré and Jourdain 2010; Kawai 2010). Chaddha et al. (1971) determine the optimal allocation based
on specific graphical procedures. Huddleston et al. (1970) use convex programming whereas Bretthauer
et al. (1999) choose the optimal sample size of each stratum via branch and bound methods. Glynn
and Zheng (2021) suggest using the delta method. Pettersson and Krumscheid (2021) leverage a hybrid
allocation scheme, a combination of proportional and optimal allocation greedily dividing the input domain
with hyperrectangles or simplices. Tipton et al. (2014) explore randomized experimental design with an
inference and an eligibility population, where the inference population stratifies the support with proportional
allocation, albeit not uniformly but based on the within-stratum distance function of the propensity score.

Although an optimization routine involves a sequence of θ’s, most procedures above leads to a
fixed sample size for all θ’s in the search trajectory. Zhao and Zhang (2014) analytically prove better
convergence properties in stochastic gradient algorithm using stratified sampling with fixed strata and fixed
sample size. However, adaptive sampling advocates efficiency gain by changing the sample size during
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the optimization (Shashaani et al. 2018; Bollapragada et al. 2018; Curtis and Scheinberg 2020). Espath
et al. (2021) and Liu et al. (2022) use adaptive sample size with stratification during the optimization.

2.2 Optimal Stratification and Concomitant Variables

Unlike traditional stratified sampling settings, in this work we assume the stratification structure is not
known a priori. Instead, stratification is part of the optimization algorithm that can change based on
progress to provide efficiency in the search. However, changing the stratification multiple times during the
optimization could cause additional variance and worsen the solver’s performance without care. Besides,
poor stratification can result in misleading estimates, slowing the optimization process, and even worse
solutions with fixed computation budget (Jain et al. 2022). Dalenius (1950) propose a closed-form expression
for the optimal stratification structure, which requires the distribution of Y , which is unknown. As a result,
many researchers suggest simplifying assumptions to approximate optimal strata boundaries (Dalenius and
Hodges Jr 1959; Ekman 1959).

Another approach is to determine the stratification structure with concomitant variables’ distribution.
In the context of the M/M/1 queue problem, the average waiting time, the normalized sum of service times,
or the fraction of customers in the system are some options that serve as concomitant variables whose
distribution is known or can be approximated. If the concomitant variables positively correlate with the
simulation output, splitting based on them can reduce the estimator’s variance. This is reminiscent of the
control variates, although the concomitant variables may still affect the estimator even without correlation
with the outputs.

Let x(0) and x(m) be the meaningful smallest and largest values ofX (−∞ and +∞ ifX is unbounded).
Then optimal stratification involves determining the stratification boundaries x(1), · · · , x(m − 1), for
Dj = [x(j− 1), x(j)], that minimize the variance of the estimator (2). Assuming a linear relation between
X and Y , i.e. Y = α+ βX + ε, then the boundaries that minimize the variance of optimal allocation, i.e.,

min
x(0)<x(1)<···<x(m)

1

n

m∑
j=1

p2
X,jVar

(
Y
∣∣X ∈ [x(j − 1), x(j)]

)
,

can be determined by solving the set of equations

β2[(x(j)− µX,j)2 + σ2
X,j ] + 2σ2

ε,j

βσX,j
√

1 + σ2
ε,j/(β

2σ2
X,j)

=
β2[(x(j + 1)− µX,j+1)2 + σ2

X,j+1] + 2σ2
ε,j+1

βσX,j+1

√
1 + σ2

ε,j+1/(β
2σ2
X,j+1)

, j = 1, 2, . . . ,m−1,

(3)
where µX,j := E[X

∣∣X ∈ Dj ] and σ2
X,j := Var(X

∣∣X ∈ Dj) are the mean and variance of X in stratum
j, with σ2

ε,j being the variance of the error term, ε, in stratum j (Cochran 1977; Singh and Sukhatme
1969). We admit this applies only to the case where the concomitant variable is one-dimensional, and
for a multi-dimensional space, such an optimization would be cumbersome. Finding the concomitant
variable’s mean and variance in every stratum can be difficult, but an approximate stratification structure
can be determined by substituting these exact quantities with their estimates. Solving (3) with the estimated
amounts with nonlinear equality constraint is trivial with deterministic optimizers and allows us to estimate
the approximate optimal boundaries consistently. Finding a variable X with an exact linear relationship
with Y can be difficult. Instead, one can use a function g(X) (e.g., X3 or eX ) that appears to linearly
depend on Y as the concomitant variable to determine the stratification structure. Even if the dependence
between X or g(X) and Y is not precisely linear, this approach will still be helpful as long as they are
correlated. As we will see later in the experiments, finding another output variable in the simulation that
increases or decreases with the increase or decrease of Y is often easier. In the M/M/1 queue, even without
any knowledge of the closed-form relationships, one could use the intuitive knowledge that the sojourn
time would likely be large if the waiting time was large.
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The earliest use of concomitant variables to determine optimal stratification structure was proposed
by Dalenius and Gurney (1951) and Taga (1967). Sethi (1963) and Cochran (1977) proposed iterative
numerical procedures to determine the optimal strata boundaries. Singh and Sukhatme (1969) provided
approximate optimal stratification boundaries based on (3). These approximate methods are easy to
implement but are based on restrictive assumptions of X following a well-known probability distribution.
Recent work on optimal stratification boundaries is focused on using optimization techniques (Brito et al.
2010; de Moura Brito et al. 2017) and dynamic programming (Khan et al. 2008) to solve (3). Though
these methods are more accurate, they are also computationally expensive.

If the concomitant variable is independent of the decision variable θ, e.g., interarrival time in the
M/M/1 queue, we can expect that this approach will not result in drastic changes in the boundaries during
optimization. Meanwhile, a θ-dependent concomitant variable, e.g., random service times, leads to an
infinite loop to find the optimal boundaries since estimating the unknown quantities in (3) depend on the
sample size nj which itself depends on the stratification structure. This motivates post-stratification, to
draw samples independently before forming the stratification structure and grouping the outputs.

2.3 Post-stratification

Post-stratification, typically used in survey sampling, accommodates cases with no known strata. Suppose
that we have n iid copies {(X1, Y1), (X2, Y2), · · · , (Xn, Yn)} are available. Post-stratified sampling then
allocates each Yi to a stratum j based on the value of Xi such that nj are the number of points that fall in
stratum j. The variance of the post-stratified estimator for proportional allocation is

Varpost(f̌(n1, n2, . . . , nm)) =
1

n

m∑
j=1

pX,jσ
2
j +

1

n2

m∑
j=1

(1− pX,j)σ2
j , (4)

where σ2
j is estimated with σ̂2

j =
∑

i:Xi∈Dj
(Yi − f̂j(nj))2/(nj − 1) letting the SAAs in each stratum be

f̂j(nj) =
∑

i:Xi∈Dj
Yi/nj . The pX,j is estimated with p̂X,j = #{Xi ∈ Dj}/n from the n replications.

Note, the square root of the variance in (4) is the standard error of the estimator f̌(n1, n2, . . . , nm), which
we will denote with se(n1, n2, . . . , nm).

If the estimates p̂X,j’s are accurate and the sample size of each stratum nj is large, then post-stratified
sampling is almost as accurate as stratified sampling with proportional allocation. Though the variance
reduction with post-stratification may not reach that of one where samples are directly drawn from the
known strata, it is more stable, removing another layer of randomness in the process. Compared to standard
simulations, Wilson and Pritsker (1984) have achieved efficiency using concomitant variable-based post-
stratification for queuing simulations. We apply the idea of concomitant variable-based post-stratification
to a derivative-free trust-region-based simulation-optimization framework.

3 ASTRO-DF WITH POST-STRATIFICATION

Adaptive Sampling Trust-Region Optimization for Derivative-Free stochastic oracles (ASTRO-DF) is an
almost sure convergent algorithm for stochastic non-convex problems (Shashaani et al. 2018; Ha and
Shashaani 2023). ASTRO-DF uses adaptive sampling within a trust-region framework to boost its efficiency.

Trust-region methods form a local model, an approximation of the true objective function, around the
current iterate and minimize this model to suggest an incumbent solution. Let θk be the current incumbent
at iteration k, then the trust region is Bk = {θ : ‖θ− θk‖2 ≤ ∆k}, a closed ball around θk, where ∆k is the
trust region radius. During iteration k, the local model Mk(θ) is generated within Bk using interpolation
on several adjacent points to θk, hence being a derivative-free solver. A candidate for the next incumbent,
denoted by θ̃k+1, reduces this model sufficiently while remaining within Bk. θ̃k+1 is accepted as θk+1, and
the trust region expands if the reduction in the function value is also sufficient. Otherwise, the candidate
solution is rejected, the trust-region radius shrinks, and a new model is formed in a smaller neighborhood
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around θk+1 = θk. Since ∆k → 0 as k →∞ almost surely, and the model gradient is in tandem with the
gradient of the objective function, the algorithm is guaranteed to converge with probability 1.

3.1 Post-stratified Adaptive Sampling

Adaptive sampling determines the optimal sample size for each iteration as one that maintains the estimation
error below a changing threshold, instead of using a fixed sample size. This makes the sample size
stochastic, signified by a capital letter throughout the rest of the paper. Regulating the sample size based
on the estimator’s variance and how far the solution under consideration may be from optimality helps the
efficiency of the optimization. In ASTRO-DF, the adaptive sample size at θk is determined by ensuring that
the estimation error is less than the square of the trust-region radius that approximates the optimality gap,
i.e., Nk = min

{
n ≥ λk : σ̂k√

n
≤ κ ∆2

k√
λk

}
with κ > 0 a constant, λk a deterministic increasing sequence,

and σ̂k the standard deviation estimate of the objective function value. The closer to the optimal solution,
the larger the sample size, improving the estimates’ accuracy.

At the beginning of iteration k, the total sample size at θk is unknown. This complicates the imple-
mentation of stratified sampling to ASTRO-DF as both stratification and budget allocation would need
the total sample size for efficient variance reduction. To implement post-stratification, we first change the
crude Monte Carlo variance and use (4) to obtain the standard error and use in

Nk = min


m∑
j=1

Nk,j ≥ λk : ŝek(Nk,1, Nk,2, . . . , Nk,m) ≤ κ
∆2
k√
λk

 . (5)

We first generate n0 iid replications, determine the boundaries of the strata (explained next) and then update
the standard error in (5). If the condition is not met, we add one more replication without changing the
stratification and repeat.

3.2 Adaptive Splitting

How are the strata chosen for each θk? If the concomitant variable’s distribution is known, we can use
numerical iterative methods (Sethi 1963; Cochran 1977) that we will now explain. For the M/M/1 problem,
suppose we want to form the stratification structure based on the mean service times of all the customers
served till time t. Consider an instance of simulation where θk is the current service rate and Zk,i is the
service time of ith person in the queue – an exponential random variable with mean 1/θk. Let Qk(t) be
the total number of customers served by time t. Then the mean service time is

∑Qk(t)
i=1 Zk,i. Since the total

number of customers served till time t is a random variable that depends on θk, the variance of mean service
cannot be bounded as t increases (Wilson 1979). We can consider the standardized mean service time
Xk = (Qk(t))

−1/2∑Qk(t)
i=1 θk(Zk,i−1/θk). This standardized mean service time asymptotically follows the

standard normal distribution (Wilson and Pritsker 1984; Chung 2001) with closed-form values for each of
the quantities in (3), leading to exact boundaries as listed in Table 1. Even though the stratification structure
for this case does not change throughout the optimization process, the concomitant variable’s dependence
on θk can be recovered by destandardizing, as the generated mean service times are standardized to group
the outputs. For example, for m = 4 strata, the value of 0.2 for the concomitant variable after running a
simulation places it on the third stratum, which updates its estimated mean and variance.

The above approach with Table 1 is not applicable when the concomitant variable distribution is
unknown or its conditional probabilities, means, and variances are inconvenient to compute and hence it
cannot be standardized, e.g., the mean waiting time. In this case, an approximate stratification structure,
{xk(0), xk(1), · · · , xk(m)}, can be determined by solving (4) such that xk(0) < xk(1) < · · · < xk(m)
and (3) is satisfied for all xk(1), xk(2), · · · , xk(m − 1). The p̂k,X,j probabilities can be estimated with
the approximate strata boundaries. To implement this approach, n0 iid simulations enable fitting a linear
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Table 1: When the concomitant variable follows a standard normal distribution, the strata boundary is the
optimal upper limit (independent of θk) and stratum probability is the weight of that stratum.

Number of strata (m) Strata boundaries (x(j)’s) Strata probabilities (pX,j’s)
1 2 3 4 1 2 3 4

2 0.000 ∞ 0.500 0.500
3 -0.612 0.612 ∞ 0.270 0.459 0.271
4 -0.982 0.000 0.982 ∞ 0.163 0.337 0.337 0.163

regression between Yk and Xk. As mentioned earlier, after n0 simulations, more may be need to fulfill the
adaptive sampling criteria but we do not update the strata boundaries with them as that could affect the
variability of the updated standard error.

Algorithm 1 summarizes the working of S-ASTRO-DF, (Stratified ASTRO-DF). See (Shashaani et al.
2018) for model construction details. The steps for post-stratified adaptive sampling are listed in Algorithm
2. If the stratification structure can be estimated beforehand (e.g. the standardized mean service time), the
post-stratified adaptive sampling skips the nonlinear optimization part and directly jumps to the allocation
step. The nonlinear program is solved only once for each θk, and the computational cost of solving it
is negligible compared to running the simulations. The worst case complexity of solving the nonlinear
program to determine optimal stratification structure is O((m− 1)3mn0), where m is the number of strata
and n0 is the pilot sample size. This also gives a way to determine the two parameters m and n0. A small
n0 may result in inaccurate estimates and a sub-optimal stratification structure, slowing down the progress.
This can result in a substandard final solution given a finite budget. A large n0 will leave less budget to
explore and increase the cost of solving the nonlinear problem. Thus, the pilot sample size must be selected
keeping in mind the trade-off between exploration and exploitation. On the other hand, as the total number
of strata m increases, the variance of the post-stratified sampling estimator reduces. However, increasing
m beyond a certain point may not significantly reduce the estimator’s variance. Extensive studies have
shown that for m > 7, the reduction in the estimator’s variance is negligible (Cochran 1977). Increasing
m also increases the computational cost of solving the nonlinear problem.

4 NUMERICAL RESULTS

We validate the proposed methods by running numerical experiments for the M/M/1 queue. Use of four
concomitant variables: (i) expected utilization, (ii) mean waiting time, (iii) standardized mean service time
and (iv) standardized mean interarrival time, will be compared with no stratification. Table 2 summarizes
the concomitant variables used for stratification. Amongst the four concomitant variables considered, only
the mean waiting time is known to have an exact linear relationship with mean sojourn time. For the other
cases, there is some correlation between the concomitant variable and the mean sojourn time. We use the
stratification boundaries for the standard normal distribution for the two inputs. The boundaries for two
outputs are estimated by fitting a linear regression model and solving the nonlinear program.

Table 2: Summary of the concomitant variables used for numerical experiments.

Concomitant Variable Type Known linear relationship with mean sojourn time

Expected Utilization Output No
Mean Waiting Time Output Yes

Standardized Mean Service Time Input No
Standardized Mean Interarrival Time Input No

3466



Jain and Shashaani

Algorithm 1 S-ASTRO-DF
1: Input: Initial solution θ0 and TR radius ∆0, maximum budget bmax, total minimum sample size n0,

number of strata m, and success threshold η1 > 0.
2: initialization: Set the total number of replications, Wk = 0 and iteration k = 0.
3: while Wk < bmax do
4: Generate Θk = {θ0

k, θ
1
k, . . . , θ

p
k}, a poised interpolation set within Bk, where θ0

k := θk.
5: Estimate f̌ ik(N

i
k,1, N

i
k,2, . . . , N

i
k,m) using Algorithm 2 for the i-th points in Θk.

6: Set Wk = Wk +
∑p

i=0

∑m
j=1N

i
k,j .

7: Generate a surrogate model Mk(·) by interpolation.
8: If the model gradient ∇Mk(θk) is small relative to ∆k, shrink the TR and go to step 4.
9: Minimize Mk(·) within Bk to obtain a candidate solution θ̃k+1.

10: Estimate f̌sk(Ñk+1,1, Ñk+1,2, . . . , Ñk+1,m), the function value at θ̃k+1, using Algorithm 2.
11: Set Wk = Wk +

∑m
j=1 Ñk+1,j .

12: Compute the success ratio ρ̂k =
f̌0k (N i

k,1,N
i
k,2,...N

i
k,m)−f̌sk(Ñk+1,1,Ñk+1,2,...,Ñk+1,m)

Mk(θ0k)−Mk(θ̃k+1)
.

13: if ρ̂k > η1 then
14: Set θk+1 = θ̃k+1 and ∆k+1 > ∆k.
15: else
16: Set θk+1 = θk and ∆k+1 < ∆k.
17: end if
18: Set k = k + 1 and go to step 4.
19: end while
20: output: Final calibrated wake parameter θk and its estimated loss f̌k(Nk,1, Nk,2, . . . , Nk,m).

Algorithm 2 Post-Stratified Adaptive Sample Size Selection

1: input: TR radius ∆k, deflation factor λk, solution of interest θik, strata boundaries
xik(0), xik(1), · · · , xik(m) if available, and strata probabilities p̂ik,X,1, p̂

i
k,X,2, · · · , p̂ik,X,m if available.

2: Run n0 iid simulations.
3: if strata boundaries are not known then
4: Fit a linear regression model Y i

k = αik + βikX
i
k + εik for (Y i

k,l, X
i
k,l) for all l = 1, 2, · · · , n0.

5: Set xik(0) = 0 and xik(m) =∞.
6: Determine the strata boundaries by minimizing (4) such that (3) is satisfied for all xik(j).
7: end if
8: Allocate the n0 points to strata based on the strata boundaries and determineN i

k,j for all j = 1, 2, · · · ,m.
9: if strata probabilities are not known then

10: Set p̂ik,X,j = N i
k,j/N

i
k.

11: end if
12: Calculate the sample mean f̌ ik(N

i
k,1, N

i
k,2, . . . , N

i
k,m) and sample variance ŝeik(N

i
k,1, N

i
k,2, . . . , N

i
k,m).

13: while ŝeik(N
i
k,1, N

i
k,2, . . . , N

i
k,m) > κ√

λk
∆2
k do

14: Run a single iid simulation.
15: Allocate this point to a stratum j and increase N i

k,j by 1.
16: Update ŝeik(N

i
k,1, N

i
k,2, . . . , N

i
k,m).

17: end while
18: output: Estimated loss f̌ ik(N

i
k,1, N

i
k,2, . . . , N

i
k,m) and sample sizes N i

k,j , j = 1, 2, · · · ,m.
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Figure 1: Change in stratification structure with θ during one macroreplication of the optimization routine
at the beginning (bottom row), with 50% budget is complete (middle row) and at completion (top row).
The gray-scale indicate the probability mass in each stratum, darker for more probability.

The standardized mean service and interarrival times are input to the simulation with a known distribution.
We can thus use the stratification boundaries from Table 1. We determine the approximate stratification
boundaries for the first two cases by solving the nonlinear problem. Figure 1 shows how the stratification
structure changes with θk during a single simulation for each of the four different concomitant variables.
As expected, the boundaries only slightly change with θk for interarrival times as X . They only shift and
scale for the service time as X , given the fixed values in the table and standardization. But both waiting
time and utilization set boundaries that looks largely different across θ’s.

To see how each case would perform in terms of the quality of the terminal solution and its rate of
progress, we run 20 independent macroreplications with common random numbers. Each macroreplication
starts at the same initial point (θ0) and has a total budget of bmax = 10, 000 simulations. Each simulation
has a length of t = 200 with a warm-up period of 50 and the interarrival rate is 1. The constant, c0, that
penalizes high service rates in the objective function value is set to 0.1. The initial sample size n0 plays
an important role in determining the stratification structure; we have set it to 40. For the no stratification
case, we do not need a large n0 value and hence we have set it to 5. During optimization, we report the
intermediate solutions and evaluate the objective function value at these intermediate solutions by running
200 independent post-replications (Eckman et al. 2023). To compare the stratified algorithms, we compare
their performance for different number of strata.

Figure 2 plots various solver performance measures evaluated at intermediate budget points. The
plot on the left shows the trajectory of the mean squared error (MSE). MSE considers bias and variance
revealing the algorithm’s robustness (Jain et al. 2022). The middle and right plots depict the trajectory of
the mean and variance of the objective function value, respectively. Overall the concomitant variable-based
post-stratification improves the algorithm’s performance even when the concomitant variable is not highly
correlated with the output (e.g., standardized mean interarrival time). Amongst the various concomitant
variables explored, mean waiting time performs best as it is linearly correlated with the mean sojourn
time. Using outputs (expected utilization and mean waiting time) initially shows slow convergence but
achieves better solutions. Increasing the number of strata improves the performance of S-ASTRO-DF but
also increases the computational cost of getting the optimal strata boundaries.
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Figure 2: Comparison of the S-ASTRO-DF’s performance with different choices for concomitant variables
and number of strata. The x-axis represents the number of objective function evaluations.

(a) Terminal objective function value for the three cases. (b) Terminal service rate for the three cases.

Figure 3: Comparing terminal solutions’ distribution across configurations. The case with no stratification
appears sensitive to varying configurations. The red line indicates the optimal service rate θ.

Next we compare the sensitivity of S-ASTRO-DF to the initial point θ0. We consider three different
starting points, θ0 = {3, 5, 10} for m = 4. Figures 3(a) and 3(b), reveal that dynamic stratification
results in more consistent results. ASTRO-DF with no stratification is sensitive to varying configurations.
S-ASTRO-DF with the mean waiting time as X with approximate stratification structure shows same
consistency as using optimal stratification structure with the standardized mean service time. The range of
terminal values for S-ASTRO-DF with dynamic stratification is smaller.
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5 CONCLUDING REMARKS

Stratified sampling is a well-known variance reduction technique for estimation. In optimization, however,
rather than using fixed strata, changing the strata to best capture the objective function’s local variability at
each iteration can enhance robustness. We propose updating the stratification structure during optimization
before performing a post-stratification. For updating the strata, we leverage information about other
concomitant variables that are simulated, even if their distributions or properties are unknown. We integrate
this dynamic post-stratification throughout optimization with a formerly established adaptive sampling
strategy in a trust-region method for efficiency. Exploring the impact of different concomitant variables in
a simple queuing model suggests that the effectiveness crucially depends on choosing the most linearly
correlated variable with the output. In our experiments, we use a fixed number of strata during optimization.
Choosing the best number of strata and using multiple concomitant variables is left for future research.
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