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ABSTRACT

Epsilon Optimal Sampling (EOS) is a novel algorithm that seeks to reduce the computational complexity
of selecting the best design using stochastic simulation. EOS is an Optimal Computing Budget Allocation
(OCBA) type algorithm that reduces computational complexity by integrating machine learning (ML) models
into the simulation optimization algorithm. EOS avoids the pitfall of trading computational overhead in
simulation execution for computational overhead in ML model training by using a concept we call policy
stability. In this paper, we present the concept of policy stability, how it can be used to improve dynamic
sampling techniques, and how low-fidelity ML estimates can be integrated into the process. Numerical
results are presented to provide evidence as to the improvement in computational efficiency that can be
achieved when using EOS in conjunction with ML models over the standard OCBA algorithm.

1 INTRODUCTION

Stochastic simulations are desirable tools for use in modelling complex systems due to their ability
to accommodate practically any parametric representation of real world systems, as well as complex
interactions between systems and their environment, which otherwise would be impossible to express
in a closed form manner. Some examples of such use cases are production planning in semiconductor
manufacturing (Pickardy et al. 2010; Hsieh et al. 2007; Song et al. 2019; Zhang et al. 2020; Calverley
et al. 2021), operational planning of power systems (Thanos et al. 2015; Xu et al. 2020; Yavuz et al.
2020), resource allocation in healthcare and other service systems (Kasaie and Kelton 2013; Chen and
Wang 2016; Qiu and Song 2016), and transportation (Zhou et al. 2021). These simulations require a large
amount of computational workload to execute, to a point where this limitation sometimes precludes the use
of simulations for desired purposes, or severely limits the number of alternative systems or environmental
variables considered in the simulation experimental design. The goal of simulation optimization is to reduce
the computational overhead required to execute simulations to achieve a desired level of confidence in
the statistical output when using simulations to select the best alternative from a finite number of designs
or decisions. Epsilon Optimal Sampling (EOS) is a novel simulation optimization algorithm that seeks
to provide a means to improve on existing algorithms by integrating low-fidelity machine learning (ML)
estimates of the simulation output.

There are two traditional classes of simulation optimization algorithms, and a third unique class is
emerging in recent published literature. The first class of traditional algorithms are the fixed-confidence
approaches, often referred to as the frequentist approach to simulation optimization. These algorithms
compute the required number of replications to achieve a fixed confidence level in the results from the
output. Examples of such algorithms include Bechhofer (1954), the fully sequential Procedure KN (Kim
and Nelson 2001), KN++ (Kim and Nelson 2006), and the two-stage procedure NSGS Algorithm (Nelson
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et al. 2001). An example of a recent improvement to the fixed-confidence approach is seen in Chen
(2011). Where-as the frequentist approach often leverages a "fixed-confidence" method (e.g., we compute
the required replications to achieve a given level of confidence), Bayesian algorithms often leverage a
"fixed-budget" method. A fixed-budget method is where the computational time is fixed, and we attempt
to optimize an objective function about our uncertain decision. The expected value of information (EVI)
presented in Chick and Inoue (2001) is one example, while another well known algorithm is the knowledge
gradient (KG) policy from Frazier et al. (2008). Russo (2020) is a more recent publication which also
falls under this category. Another fixed budget approach to sampling that is considered different from
Bayesian approaches is the Optimal Computing Budget Allocation (OCBA) approach. Chen et al. (2000)
first introduced OCBA type algorithms. Glynn and Juneja (2004) later proved the asymptotic optimality
of such an approach to sampling in the context of optimizing the probability of correctly selecting the true
best alternative with a fixed sampling budget. EOS is an OCBA-type algorithm, but adapted to incorporate
low fidelity ML estimates to improve the rate at which this probability increases as the sampling budget
is increased.

A third class of algorithms that has recently emerged is referred to as offline-simulation online-application
(OSOA). This phrase was coined in Hong and Jiang (2019), and refers to the extensive use of simulations
prior to the time at which a decision must be made (e.g., "offline"). The results of these simulations are
used to to train machine learning models or heuristics to provide decision making recommendations at the
time which a decision is required (e.g., "online"). The requirement for a timely decision recommendation
for an "online" decision, vice using the simulation outcomes directly, is driven by the the existence of what
is referred to as covariates; the problem is such that the decision maker or system is faced with a series of
random covariates that change over time, and the decision maker or system must select the best decision at
each moment when the state of the covariates change. The vector describing the state of all the pertinent
covariates at some given time can also be referred to as the context of a decision. In these problems, a
new decision is desired as the context changes because the utility of a decision is a function not just of the
alternative selected, but also the state of the random covariates. Furthermore, the time between decisions
is too small relative to the computational overhead of the simulation to run an extensive simulation based
analysis of alternative decisions for each set of covariates. An example of this type of algorithm is given
by Shen et al. (2021). An alternative approach to solving this type of problem is given in Goodwin et al.
(2022). In this paper, SAMPLE is presented as an OCBA-type framework for integrating both simulation
output and off-line ML models to provide decision recommendations in a dynamic environment using
simulation optimization. Despite the significant improvements shown in the actual sampling process of the
decision space, SAMPLE uses computationally intensive linear algebra operations that are unavoidable to
fit a Gaussian mixture model to the ML estimates. This effectively prevents the practical implementation
of what is referred to as "online learning"; the iterative training of an online ML model as more simulation
data is gathered. EOS is an algorithm that was designed to overcome the hurdles presented in SAMPLE.
Instead of a complex Gaussian mixture model, EOS uses a very simple and straightforward concept called
policy stability to directly integrate offline ML estimates with simulation data, and updates how these
estimates are used with a dynamic learning parameter that is computed at each iteration of sampling.

For the research presented here, we consider the case where the simulation budget is limited such that
fixed-confidence methods are not permissible. Furthermore, we consider the case where low-fidelity ML
estimates are available for use and integration with simulation output. We also assume that sampling occurs
in a dynamic environment, where the total budget, ∆L, is incremented by one replication at each sampling
iteration. In the event that ∆L ̸= 1, the required computations to approximate our exploration parameter,
ε , become highly non-linear and intractable using the method presented here. Under these conditions, the
goal of this paper is to present EOS as an alternative sampling algorithm for simulation optimization, and
provide evidence that shows the potential computational gains that can be realized when using EOS either
with or without low-fidelity ML estimates, as compared to traditional OCBA approaches. The structure of
the paper is as follows; Section 2 discusses the logic of EOS and presents the algorithm itself. Section 3
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present numerical results of the performance of EOS under typical test scenarios against traditional OCBA.
We present our conclusions and a short discussion in Section 4.

2 EPSILON OPTIMAL SAMPLING

2.1 OCBA

Let Xi, i= 1,2, ...,n be a set of n design alternatives, and let f (Xi) be the simulation output of some stochastic
simulation. In the remainder of this paper, we will refer to f (Xi) as fi. Let i∗ = argmaxi=1,2,...,n(E( fi));
our goal is to select ĩ∗ such that ĩ∗ = i∗, where ĩ∗ is our estimate of the best alternative using the incomplete
information that we observe from the simulation. Since the simulation output is random, our objective
can only be achieved in probability. Assume that the simulation output is normally distributed; this is a
canonical assumption in many algorithms, which can be guaranteed in most cases by using uncorrelated
batch sampling. Furthermore, to obtain a closed-form implementation of the OCBA algorithm, we adopt a
canonical assumption in the OCBA literature and assume L∗

ĩ∗ ≫ L∗
i ∀ i ̸= ĩ∗. This is equivalent to assuming

that the difference E( fi∗)−E( fi) is small enough relative to σi,σi∗ for all i, i∗ such that to differentiate
i∗ based on the observed mean, a majority of the computing budget must be allocated to this alternative.
In practice, this presents a computationally efficient approximation to the true OCBA allocation ratio,
which requires solving a set of nonlinear equations. The OCBA literature has provided extensive numerical
evidence on the effectiveness of this approximation. Let f̄i, σ̂

2
i be the observed simulation output mean and

variance, respectively, and let υ denote the uncertainty resulting from the use of a random number stream
to generate the simulation results. For OCBA type algorithms, our goal is to maximize what is referred to
as the probability of correct selection, or PCS, which is defined as:

PCS = P(ĩ∗ = i∗ | f̄i, σ̂i, i = 1...n)

Traditional OCBA-type algorithms solve this problem by providing a static allocation policy derived
from a non-linear optimization model that optimizes an approximation of the PCS using the Bonferroni
inequality, after allowing the number of replications allocated to each alternative to be continuous. Let Li
be the number of replications allocated to alternative i, let L∗

i be the ratio of any given budget that should
be allocated to alternative i, let δi = fi∗ − fi, and let L be the total computing budget. The optimality
conditions derived in the OCBA literature are as follows:

L∗
i1

L∗
i2

=

(
σi1δi2

σi2δi1

)2

, i1 ̸= i2 ̸= i∗ (1)

L∗
i∗ = σi∗

√
Σi̸=i∗

(L∗
i )

2

σ2
i

L =
n

∑
i=1

Li

Li = L∗ L∗
i

Σn
i=1L∗

i
(2)

In implementation, since the true mean and variance are unknown, estimated values from observed
simulation statistics are used, and the ratios are quickly computed at each iteration of sampling, such that
L∗

i is approximated by L∗
i,k using the sampling statistics which have been observed up to iteration k, and (2)

is computed using Lk, where Lk = Lk−1 +∆L. This work considers the case where ∆L = 1. The resulting
static policy computed by OCBA often results in large gaps between what has been actually allocated up
to iteration k, which we denote as Lik, and what we infer should have been allocated, Li. To select the
actual alternative which will be sampled at a given iteration following the OCBA ratio computations, the
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most-starving heuristic is often used. Let i′ be the alternative which we will sample at a given iteration;
then, after computing the OCBA ratios, the most-starving heuristic is:

i′ = arg max
i=1...n

(Li −Lik)

The OCBA algorithm has been extended in many unique ways, such as in Wang et al. (2020), which
presents an implementation of OCBA when parallel computing can be effectively leveraged to observe a
large number of samples simultaneously. The SAMPLE algorithm described in the introduction, which
is based on the Multi-Fidelity Budget Allocation framework (Peng et al. 2018), presents an effective
but computationally expensive method of integrating off-line ML estimates into the computation of the
OCBA ratios to more effectively allocate replications. The algorithm we present here, EOS, is another
extension of OCBA that seeks to improve the convergence rate of OCBA by integrating low-fidelity ML
estimates into the budget allocation computations. It leverages the general framework presented by the
SAMPLE algorithm for integration of ML estimates with simulation output. The framework has four
major components; the simulation itself, the low-fidelity offline estimates, a simulation allocation engine
(driven by a simulation optimization algorithm), and a statistical, machine learning, or heuristic model that
integrates the offline estimates with the simulation data. EOS provides a computationally efficient method
to integrate the low-fidelity estimates that can be updated dynamically as more simulation observations are
gathered over time. We denote this as "online learning". In EOS, the online learning aspect is achieved
through the use a learning parameter that we compute based on the certainty at which our current observed
simulation data will yield accurate estimates of the simulation output mean and variance. To achieve this,
we present a concept we call "policy stability", which is used to compute a parameter we denote as ε ,
to facilitate the direct integration of ML estimates into the selection of alternatives to simulate at each
sampling iteration. Policy stability is an estimate of the probability that a certain sampling policy would
result in no change in the estimated optimal alternative. In EOS, with probability ε , we sample using
traditional OCBA; otherwise, we greedily sample the alternative which is associated with the lowest policy
stability. A heuristic argument is presented to suggest that our computation of ε is highly correlated with
the relative marginal impact that the OCBA sampling policy would have on PCS; eg, when OCBA sampling
would best increase PCS, ε will be large. We show how a value we call the adjusted policy stability can
be computed using any number of low-fidelity ML models, and how we can compute and apply a learning
parameter β that effectively weights our adjusted policy stability computations in a way that allows the
sampling algorithm to appropriately converge to traditional OCBA when we become "confident enough"
in the parametric estimates of our simulation output.

2.2 Policy Stability

As previously described, policy stability is a concept used to estimate the impact that a particular sampling
policy will have in challenging our current belief about ĩ∗. The concept of policy stability is similar to
the underlying concept that drives the KG algorithm, except that we treat this computation as a greedy,
sub-optimal alternative to what should be the true optimal sampling policy (OCBA). Conceptually, the idea
of policy stability and its use in our ε computations are that when many policies (from the set of all possible
policies) provide evidence suggesting that the decision we would make with our current statistics may be
sub-optimal, we should have a larger propensity to sample in a way that explores the decision space. In
this context, “explore" would mean to sample alternatives in a way that best improves the statistical error
of our parametric estimates of the simulation output. This is compared to "exploiting" current information,
which here means trusting our parametric estimates and sampling to maximize PCS using OCBA.

To apply the idea of policy stability, we first fix our estimates of fi,σ
2
i using the observed statistics

at a given iteration k. Given an assumption of normality, and denoting by Q the sampling policy which
will be used to select alternatives for simulation, we will determine the impact that li(Q) replications will
have on the probability that f̄i,k+1 > f̄ĩ∗,k, where li(Q) is the number of replications that will be allocated
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to alternative i under policy Q. Given f̄ik, σ̂
2
ik, subsequent observations li(Q) will be normally distributed

with mean f̄ik and standard deviation σ̂2
ik. Upon sampling, the expected value of f̄i,k+1 can be estimated

as follows:

E( f̄i,K+1(li(Q))) =
Lik f̄ik +Σ

li(Q)
l=1 fl(Xi)

Lik + li(Q)

Furthermore, we can also compute the variance of this estimate as:

Var( f̄i,k+1(Q)) =
li(Q)σ̂2

ik
(Lik + li(Q))2 .

We can express the probability that f̄i,k+1(li(Q))> f̄ĩ∗,k+1 given our current statistical observations by
using a Student’s t cumulative distribution having mean M = f̄ik − f̄ĩ∗,k, and variance

S2 =
li(Q)σ̂2

ik
(li(Q)+Lik)2 +1(lĩ∗(Q)> 0)

lĩ∗(Q)σ̂2
ĩ∗k

(lĩ∗(Q)+Lĩ∗k)
2

with lik −1 degrees of freedom. The indicator function is required to consider when Q allocates replications
to the current estimated optimal alternative, and in the environment considered in this paper where we
only sample 1 alternative at each sampling iteration, is not used. We will denote by Pi the probability that,
after sampling alternative i li(Q) times, the posterior mean f̄i will be larger than the estimated mean of
the current estimated optimal alternative. Then Pi = Φ(M/S), where Φ(·) is the cumulative distribution
function of a random variable with a Student’s t distribution. For i = ĩ∗, the probability is computed by
considering if sampling ĩ∗ would lead to f̄ĩ∗ < f̄ĩ∗2

, where ĩ∗2 is the current second best alternative, such that
Pĩ∗ is the probability that after sampling ĩ∗, ĩ∗2 becomes ĩ∗1. Under the assumption that ∆L = 1 (and therefore
only one alternative will be sampled at a time), this is the only event in the probability space that would
result from our beliefs about the true optimal alternative changing.

We denote policy stability as I(Q), and define it as follows:

I(Q) = ∏
i:li(Q)>0

(1−Pi). (3)

2.3 Epsilon Computations

Given this approach to computing policy stability, we next consider how to compute ε for EOS. Let L∗
i be

the OCBA ratio computed with perfect information (e.g., known mean and variance). Consider that if we
knew L∗

i with certainty for all i, then for a given total sampling budget Lk, we would be capable of optimally
allocating any additional budget with certainty. Knowing L∗

i with certainty therefore suffices to optimally
allocate a given budget. Under OCBA procedures, we assume that the observed statistics about output
distribution parameters are correct; therefore, we assume we know L∗

i with certainty, as OCBA computations
have been shown to approximate the theoretically optimal allocation (under the aforementioned output
assumptions) when variance about parameter estimates is minimized in the asymptotic case. However, for
small k and the corresponding Lk replications (where small is relative to the variance of the simulation
output and statistical precision required to discern i∗ correctly), our estimates for the simulation output
distribution parameters will be prone to large error. In the context of such large error, there would be a
variance of corresponding magnitude in L∗

ik, our estimate of L∗
i . Let Vk = [L∗

i,k( f̄ik, σ̂
2
ik), i = 1...n], where

L∗
i,k( f̄ik, σ̂

2
ik) is an estimate of L∗

i given the observed statistics f̄ik, σ̂2
ik at iteration k, and let V = [L∗

i , i = 1...n].
If ||[ f̄i, σ̂

2
i ]− [ fi,σ

2
i ]||> 0 ∀ i, then it immediately follows that ||Vk −V ||> 0, where || · || denotes any norm,.

Observe that these differences are random variables that depend on the random number stream used to
generate the simulation results. Also observe that some alternatives are more important to reduce ||Vk −V ||
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than others; eg, if we can reduce our variance about the estimates of distribution parameters for the true
best alternative to some level of confidence, we would have a larger reduction on ||Vk −V || than if we were
to reduce the variance about the distribution parameter estimates for the worst possible alternative (since
the majority of replications are allocated to the top performing alternatives).

The tension in optimal sampling when considering the variance of the estimates L∗
ik is that sampling to

best reduce ||Vk−V || can be different than sampling to best improve Pf̄i,σ̂2
i ,i=1...n(CS), since L∗

ĩ∗ ≫ L∗
i ∀ i ̸= ĩ∗

by assumption, and P(ĩ∗ = i∗) is almost always negligibly small following initialization when estimates are
prone to large error. Here, we denote by Pf̄i,σ̂2

i ,i=1...n(CS) the estimated probability that we have correctly
selected the true optimal alternative, which is a random variable subject to not just the magnitude of Lk and
how those replications were allocated, but also the variance about f̄ik, σ̂2

ik. To optimally reduce the variance
about our estimate for i∗ with imperfect information, it is therefore not enough to just estimate L∗

i at a given
iteration k, we must also consider how and when to sample to reduce the error in our estimates of L∗

i , and
balance this with the need to optimally sample with OCBA to best improve the Pf̄i,σ̂2

i ,i=1...n(CS). Since, in
the general case, ||Vk −V || is best reduced by sampling true promising alternatives, and our best guess for
which alternatives are promising will be based on the simulation data, it is reasonable to believe that, in
the general case, OCBA is a good choice for sampling to reduce parameter estimate error. However, if we
apply OCBA routinely, at some point we will have sampled estimated top performers with a large enough
frequency such that the reduction in parameter estimate variance is marginal, but the OCBA heuristic would
continue to sample these alternatives when L∗

ik is large for such promising i. In other words, if we only
used OCBA, we would sample "promising" alternatives enough times based on simulation data such that,
eventually, the possible reduction in parameter estimate error (and subsequent reduction in error for optimal
budget allocation error) will be greater for alternatives which are not currently believed to be "promising".

Denote by Q∗ the sampling policy which would theoretically dominate any other policy when maximizing
PCS. Let

C(Q) = EXi(li(Q))(
√

Σm
i=1(L

∗
ik( f̄i, σ̂2

i )−L∗
i )

2|υk−1),

which represents the expected value of the sum of the square differences between the true optimal sampling
policy and the estimated optimal sampling policy, taken with respect to the random observations that would
be generated under policy Q, conditioned on the previously observed simulation outputs. Let Q′ be the
policy that minimizes C(Q). Ideally, one would compute Q∗ directly, but this is intractable. Suppose
we assume that Q∗ is either QOCBA or Q′; eg, we assume that our parametric estimates are good enough
that QOCBA is truly optimal, or that sampling to best reduce parametric error would result in a greater
increase in PCS. If one could both compute the policy Q′ which minimizes C(Q), and the marginal increase
in P(CS) as a function of selecting either QOCBA or Q′ for sampling, our algorithm would provide the
means to compute such values, and use the output to select one of the two policies to sample with at each
iteration to maximize P(CS). However, the computation of these values in reasonably large problems is
computationally intensive. Instead, we consider the following. As previously described, QOCBA provides
a mechanism for sampling that does result in at least a "good" reduction in error with regards to C(Q)
until we have reached a high level of parameter estimation precision for "promising" alternatives relative to
the precision of seemingly "poor" alternative parameter estimates. As the precision by which "promising"
alternatives are understood increases, then not only does it become more desirable to sample using Q′ to
maximize P(CS), but it is also clear that the number of alternative sampling policies which would yield a
greater reduction in C(Q) would also increase. Therefore, one may conclude that when many alternative
sampling policies yield a better opportunity to improve parameter estimates over currently optimal sampling,
then we should have a greater propensity to minimize prediction error, as the probability that Q′ will result
in a larger P(CS) is increasing. Furthermore, observe that for policies which yield some C(Q) that is large
relative to some given point, then either the true expected value of that alternative is near-optimal, or the
precision by which the expected performance value is known is low, or some combination of the two.
By (3), that policy must necessarily have a corresponding small I(Q) relative to other alternatives which
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yield a smaller C(Q). Our algorithm proposes to use policy stability to compare the relative magnitude of
C(Q) for any given set of policies based off of this argument. Without the ability to compute either C(Q)
or argmaxQOCBA,Q′(P(CS)) in a computationally efficient way, we argue that one can effectively estimate
the likelihood that PQOCBA(CS) ≥ PQ′(CS) by estimating C(Q) using I(Q), and determining the ratio of
alternatives for which the statement I(QOCBA) > IQ is true. Mathematically, this approximation can be
expressed as follows:

Q∗ = arg max
QOCBA,Q′

(P(CS))⇒ (4)

P(Q∗ = QOCBA)≈
ΣB∈B1[PQOCBA(CS)> PQ(CS)]

|B|
≈

Σn
i=11(I(Qi)≥ I(QOCBA))

n
= ε (5)

Here, Qi is the policy that allocates all replications to alternative i, and we can express (5) as given
under our assumption that ∆L = 1. In other words, we compare the stability of OCBA with the stability of
other alternative sampling policies. When the stability is about the same, or less, for OCBA, as compared
to other policies, we sample using QOCBA. When stability is less for a greater number of policies, we will
have a higher propensity for greedily sampling the alternative which we believe would uncover the most
information. Since the context of this sampling is that we strictly increment the sample budget by 1 at each
iteration, the computations given in (4) are straightforward and easy to carry out for all possible sampling
policies. Furthermore, if one has access to low-fidelity ML estimates, we can amend our policy stability
estimates to produce an adjusted policy stability estimate, given as follows:

I(Q) = ∏
i:li(Q)>0

(1−Pi)+β ∗
m

∑
j=1

(
∏

i:li(Q)>0
1−U(g j(Xi)> g j(Xĩ∗))

)
(6)

In the above equation, g j(·) is the estimate of the j-th ML model, and U(·) is the probability that the
performance estimate for alternative i is greater than the estimate for alternative ĩ∗ in the j-th ML model,
where a normal cumulative distribution is used to compute this probability using a variance estimate based
on the mean squared error (MSE) of the j-th ML model. To estimate MSE, we randomly generate a mean
for each i from the distribution given by N( f̄ik, σ̂

2
ik/Lik). The parameter β is given by:

βk = exp

(
−

f̄ĩ∗1
− f̄ĩ∗2

σ̂2
ĩ∗1
/Lĩ∗1,k

)
(7)

The parameter β weights our offline ML estimates less and less as more and more information is
gathered in our high fidelity simulations. For EOS, this discount/learning parameter is how online learning
is achieved. Given these computations, we can now present the EOS algorithm in its entirety in the following
algorithm.

3 NUMERICAL RESULTS

To provide evidence showing the potential computational efficiency improvement that can be achieved
by EOS, we present the results from four numerical experiments comparing the following sampling
algorithms: Equal Allocation (EQ), OCBA, SAMPLE, and EOS (both with and without off-line ML
estimates incorporated). A set of 250 values were generated at equally spaced positions along the interval
[20, 45]. A second set of 250 values were randomly generated from a continuous uniform distribution with
parameters [2,3]. These values were consistent across all 4 experimental design points, and represented
the true expected performance values and simulation output variances of alternatives i = 1,2, ...250. To get
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Algorithm 1 (EOS algorithm)
INPUT: A set of decision alternatives {X1,X2, ...Xn}, a total simulation budget L, a set number of initial
replications l0, and low-fidelity ML estimates gi, j, i = 1...n, j = 1...m
INITIALIZE:

Set li = l0, i = 1, . . . ,n; set iteration counter k = 1; set expended simulation budget Lk = nl0; set total
expended budget per alternative Lik = l0. Simulate Xi, i = 1, . . . ,n li times, compute sample variance σ̂2

i
and sample mean f̄i. Set β = 1
LOOP: WHILE Lk < L DO

1: Compute the MSE of each ML model for all alternatives given current sampling statistics.
2: Compute the OCBA sampling policy according to (1).
3: Compute Pj ∀ j according to (3).
4: Compute the adjusted policy stability according to (6).
5: Compute ε according to (4).
6: With probability ε , sample using the computed OCBA policy; else, sample the alternative with the

smallest policy stability; update statistics.
7: Update β according to (7).
8: Set k = k+1.
END OF LOOP
Decision: Return the decision with the highest f̄i.

the four design points, two parameters were varied; the number of initial replications allocated, l0 and the
output distribution (Gamma or Normal). To use the Gamma distribution for simulation output, the method
of moments were used to fit the distribution parameters. For each of the four experiments, the same set
of low-fidelity ML estimates were used. These estimates were generated by randomly perturbing the true
performances by a random number observed on a continuous uniform distribution with parameters [−.2, .2].
The selection of these parameters to synthetically derive a set of ML estimates was based on the distribution
of the simulation expected values and variances use for the experiments and the research objective to show
the potential that could be achieved through the integration of ML models. The simulation parameters of
the experiments are given in Table 1.

Table 1: Experimental design for comparing ROS efficiency; simulation parameters in vector are [Initial
replications l0, Simulation output distribution (G=Gamma, N=Normal)].

Experiment ID Simulation Parameters
1 [3,N]
2 [3,G]
2 [10,N]
3 [10,G]

The results of these experiments are given in Figure 1. From these results, we can make several
observations. EOS, when applied with or without ML models, performs better than OCBA in all experiments,
and performs at a level of efficiency that is the equivalent to SAMPLE. Because EOS largely exploits
the normality assumption to the compute the β and ε parameters, it does see a more significant drop in
performance when a Gamma distribution is used for the output, as compared to SAMPLE. Furthermore,
we can also observe that EOS exhibits preferable behavior when a smaller number of initial replications are
used, as opposed to a large number of initial replications. This is a reflection of how the learning parameter
β is computed; with a large initialization set, the model will not effectively integrate the information from
the ML estimates, and will perform similarly to EOS. A final data point to note which is not depicted
in the graphs is the computational difference between the SAMPLE algorithm and the EOS algorithms.
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Figure 1: Results from numerical experiments.

The SAMPLE algorithm, even without online updating, requires a substantial amount of computational
overhead to initialize, and requires and order of magnitude larger run-time at each iteration to compute
the posterior probabilities. EOS and EOS with ML, on the other hand, run on at the same pace as OCBA;
therefore, even in the cases where SAMPLE appears to perform the same as EOS with ML or better than
EOS, the computational efficiency of both of the EOS algorithms is far less to achieve approximately the
same results in terms of PCS.

4 CONCLUSION

In this paper, we presented EOS, a novel algorithm that integrates low-fidelity ML estimates into an OCBA-
type simulation optimization algorithm. The concept of policy stability was presented, and the heuristic
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logic for the computation of an ε and β parameter are given. Since the use of policy-stability to integrate
ML estimates and the computation of ε and β were simple, a limited version of online learning could
be achieved. Numerical results were presented that showed this algorithm performs better than OCBA,
with or without off-line ML models, and could generally perform as well as the SAMPLE algorithm when
ML estimates are integrated into the adjusted policy stability computations. One important distinction
that makes EOS preferable to SAMPLE given these results is the lack of computational overhead in EOS
that SAMPLE requires to execute the EM algorithm and compute the posterior distributions after each
iteration. Future research into this framework for simulation optimization should focus on developing a
more robust mathematical framework for the heuristic argument presented for the derivation of ε , which
would naturally lead to a more effective definition of the parameter. More research should also be done into
the derivation and use of the β parameter, to include possible integration of dynamic and computationally
efficient ML methods for its derivation and use for online learning. This research might include substantial
concepts from the ML technique of boosting using decisions trees. Additionally, the context of this research,
simulation optimization as an application of the digital twin concept, presents ample opportunity to address
many of the assumptions required to derive EOS. In this research, we do not investigate how one could
dynamically update the low-fidelity models used in EOS in a computationally efficient manner either while
sampling on-line or between observed contexts. Our assumption that ∆L = 1 is required to derive some
of the parameters used in EOS; when ∆L ̸= 1, the computations used here become intractable. If this
assumption is removed, additional work could be performed to solve the non-linear computations required
to derive the associated parameters, and parallel computing could be leveraged to execute more than 1
replication per sampling iteration. Finally, this research does not address or directly consider the impact of
low-fidelity ML model accuracy on performance. The fact that EOS performs well without any ML model
addition would suggest that the algorithm could rebound quickly from even a disastrously inaccurate ML
model, but adjustments in how the learning parameter β is computed might be possible in future work to
accommodate for observed error rates in the low-fidelity models. All these lines of effort would serve as
substantial research for future work.
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