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ABSTRACT

Ranking and selection (R&S) is the problem of identifying the optimal alternative from multiple alternatives
through sampling them. In the existing R&S literature, sampling distributions of the observations are
usually assumed to be from some known parametric distribution families, even in works that consider input
uncertainty. By contrast, this paper considers R&S under completely unknown sampling distributions. We
for the first time propose a data-driven nonparametric tuning-free sequential budget allocation strategy that
can asymptotically achieve the optimal allocation specified by large deviation analysis. Especially, we
propose a new point estimation approach for estimating the optimal large deviation rates directly, which
efficiently solves the challenge of estimating large deviation rate functions for lack of known sampling
distributions.

1 INTRODUCTION

R&S is a classic mathematical framework of selecting the optimal alternative from multiple alternatives
based on their performances, which are learned through sampling. The history of R&S dates back as
early as Bechhofer (1954); see Hong and Nelson (2009), Chau et al. (2014) and Hong et al. (2021) for
more details. R&S is widely applied in various backgrounds, including inventory management (Xu et al.
2010), agricultural plant breeding (Hunter and McClosky 2016), wind farm placement (Qu et al. 2015;
Zhang and Song 2015) and material reliability testing (Chen et al. 2022). This paper considers R&S
under unknown sampling distributions. Suppose there are M > 2 alternatives with unknown population
means (performances) µx, x = 1, ...,M. The optimal alternative x∗ = argmaxx µx is unique. For convenience,
suppose that µx 6= µy for any x 6= y. For any x, we can collect independent samples Wx ∼ Fx with E(Wx) = µx,
where Fx represents some unknown non-degenerate sampling distribution and is from the same distribution
family (also unknown) for all x. Suppose the alternatives are independent, i.e, the samples of y carry no
information about any x 6= y. At each stage n, let x∗,n denote the estimate for x∗, and we say that “correct
selection” occurs at time n if x∗,n = x∗. An allocation strategy refers to a sequence (xn)n∈N, where xn

denotes the alternative selected for sampling at time n. Consequently, a sample W n+1
xn ∼ Fxn is collected at

time n. The goal is to improve the quality of x∗,n by determining (xn)n∈N.
The uncertainty about Fx has been relatively overlooked and related research is just gathering momentum

recently. Most existing R&S literature designs allocation strategies by assuming a known parametric
distribution family (mostly, normal) for Fx, and thus does not consider the uncertainty about Fx at all; some
representative works include but not limited to, Jones et al. (1998), Kim and Nelson (2001), Bubeck et al.
(2009), Qin et al. (2017), Salemi et al. (2019) and Eckman et al. (2020). Existing attempts for addressing
the uncertainty about Fx can be summarized into two categories. One route is by designing allocation
strategies under different distribution families of Fx. For example, Gao and Gao (2016) consider exponential

979-8-3503-6966-3/23/$31.00 ©2023 IEEE 3376



Chen

sampling distributions. That said, by assuming a specific known Fx, these approaches only consider up
to the uncertainty about the parameters instead of Fx itself. The other route is by considering R&S under
input certainty, such as Corlu and Biller (2015), Song et al. (2015), Gao et al. (2017), Song and Nelson
(2019), Fan et al. (2020), Xiao et al. (2020) and Wu et al. (2022). However, these approaches can only
tackle the uncertainty about Fx to a limited extent, because they still rely on making certain assumptions
of Fx, such as assuming it is from a finite set of known parametric distributions. Therefore, none of the
above references can really handle R&S under completely unknown Fx.

To address the uncertainty about Fx, we propose a new methodology called Data-Driven Optimal
Allocation (DDOA). Our approach has several advantages. First, DDOA is a nonparametric sequential
allocation strategy that requires no knowledge of Fx at all. We also theoretically prove that DDOA can
asymptotically recover the (static) optimal allocation specified by large deviation analysis (Glynn and Juneja
2004). The optimal allocation is derived to maximize the convergence rate of the probability of correct
selection (PCS). However, it cannot be directly used to guide budget allocation because it depends on
the distribution family of Fx as well as its parameters, both of which are generally unknown. Therefore,
many recent works have been focusing on designing efficient sequential allocation strategies to recover the
optimal allocation asymptotically; for example, see Chen and Lee (2010), Pasupathy et al. (2014), Chen
et al. (2015), Hunter and Feldman (2015), Hunter and McClosky (2016), Zhang et al. (2016), Peng and Fu
(2017), Shin et al. (2018), Chen and Ryzhov (2019) and Avci et al. (2023). That said, all these approaches
cited above assume some known Fx (mostly, normal). Recently, Russo (2020) proposes a series of top-two
algorithms in a Bayesian framework, which with extra tuning can achieve certain optimality criteria under
some strict boundedness assumptions; Wang and Zhou (2022) proposes an allocation strategy that can
achieve the optimal allocation derived by large deviation analysis for R&S under a specific parametric
input certainty model; Chen and Ryzhov (2022) proposes a tuning-free allocation strategy that can recover
the optimal allocation for general Fx, but still requires the particular distribution family of Fx to be known
for deriving the large deviation rates in each specific case. By contrast, DDOA is completely data-driven
and can recover the optimal allocation under unknown Fx.

Second, DDOA is efficient and easy to implement. As noted in Chen and Ryzhov (2022), estimating
the large deviation rates is quite challenging yet necessary for recovering the optimal allocation under
unknown Fx, and there does not exist many related works. In fact, Glynn and Juneja (2004) is the only work
that considers the exact same problem setting as in this paper. However, its approach needs to estimate the
entire large deviation rate functions and find the optimal allocation by repeatedly solving concave programs
based on the rate function estimates with brute force, thus is not really computationally tractable. There
are also several recent works that consider the multi-armed bandits problem under nonparametric settings
(e.g., Agrawal et al. 2020; Jourdan et al. 2022; Barrier et al. 2023), but none of them can recover the
large-deviation-based optimal allocation in a tuning-free manner. Therefore, instead of estimating the entire
large deviation rate functions, we propose a new point estimation approach for estimating only the optimal
large deviation rates. These point estimates can be obtained quite efficiently by finding the zeroes of some
monotonic functions, and DDOA determines (xn)n∈N simply based on these point estimates. Additionally,
by adopting an auto-balancing approach (Chen and Ryzhov 2019), DDOA does not require any sort of tuning
to achieve the optimal allocation. To the best of our knowledge, DDOA is the very first computationally
tractable sequential allocation strategy with asymptotic optimality for R&S under unknown Fx.

The rest of the paper is organized as follows. Section 2 introduces some preliminary results about the
optimal allocation derived by the large deviation analysis and provides a new expression for the optimal
large deviation rates. Based on this new expression, Section 3 presents new point estimates for the optimal
large deviation rates and the DDOA algorithm, and theoretically demonstrates the asymptotic optimality of
DDOA. Finally, Section 4 conducts several numerical experiments to illustrate the empirical performance
of DDOA, with Section 5 concluding the paper.
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2 PRELIMINARIES

2.1 Optimal Allocation Based on Large Deviation Analysis

Depending on how (xn)n∈N is determined, an allocation strategy can be categorized into two types. Let
F n = B

(
x0,W 1

x0 ,x1,W 2
x1 , ...,xn−1,W n

xn−1

)
denote the Borel σ -algebra of all information collected by time

n. If all sampling decisions are made at stage 0, i.e., xn ∈F 0 for all n, then an allocation strategy is called
static. By contrast, if the sampling decisions are made adaptively based on the collected information, i.e.,
xn ∈F n for all n, then an allocation strategy is called sequential. Let Nn

x = ∑
n−1
m=0 1x

m be the number of
times that alternative x is chosen for sampling up to time n, where 1x

m is a binary indicator that is equal to
1 if xm = x and 0 otherwise. At each stage n, for any x, one can (sequentially) compute the mean of all its
available samples

θ
n
x =

1
Nn

x

n−1

∑
m=0

1x
mW m+1

x .

Then, one can estimate x∗ with x∗,n = argmaxx θ n
x , the alternative that has the largest sample mean at stage

n. We summarize the main result of Glynn and Juneja (2004) below to show how the optimal allocation
is derived by using the large deviation analysis to maximize the convergence rate of PCS. The interested
readers may refer to that paper for further details.

Consider a static allocation strategy that allocates αx proportion of the total samples to alternative x,
where αx > 0 for all x and ∑x αx = 1. Note that the large deviation analysis only covers distributions that have
moment generating functions, and so does our proposed framework. For any x, let Ψx(γ) = logE

(
eγWx

)
be

its log-moment generating function. The large deviation rate function Ix(u) is given by the Fenchel-Legendre
transform of Ψx(γ),

Ix(u) = sup
γ

γu−Ψx(γ).

The large deviation analysis of Glynn and Juneja (2004) is established based on the following assumption.
Assumption 1 For all x, Ψx(γ) exists. Furthermore, Ix(u)< ∞ for minz µz ≤ u≤maxz µz.

Between x∗ and any x 6= x∗, the probability of having θ n
x∗ ≤ θ n

x is known to have an exponential decay
rate as the number of total samples increases,

− lim
n→∞

1
n

logP(θ n
x∗ ≤ θ

n
x ) = Γx∗,x(αx∗ ,αx),

where Γx∗,x(αx∗ ,αx) = infu αx∗Ix∗ (u)+αxIx (u). Then, the convergence rate of PCS can be characterized by

− lim
n→∞

1
n

log(1−PCS) = min
x 6=x∗

Γx∗,x(αx∗ ,αx).

Therefore, optimizing the convergence rate of PCS is equivalent to maximizing minx 6=x∗ Γx∗,x(αx∗ ,αx).
Let ux∗,x be the solution to

αx∗
∂ Ix∗

∂u
(u)+αx

∂ Ix

∂u
(u) = 0. (1)

Then, Γx∗,x(αx∗ ,αx) can be expressed as

Γx∗,x(αx∗ ,αx) = αx∗Ix∗ (ux∗,x)+αxIx (ux∗,x) . (2)

It follows that the optimality conditions that αx satisfies to maximize minx 6=x∗ Γx∗,x(αx∗ ,αx) can be expressed
in two parts:
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• Total balance condition: ∑x 6=x∗
Ix∗ (ux∗ ,x)
Ix(ux∗,x)

= 1;
• Individual balance condition: Γx∗,x(αx∗ ,αx) = Γx∗,y(αx∗ ,αy), ∀ x,y 6= x∗.

These optimality conditions can be expressed in closed forms if Fx is known. For example, if
Fx ∼N

(
µx,σ

2
x
)

is from the normal distribution family, then the optimality conditions become

αx∗

σ2
x∗

= ∑
x 6=x∗

αx

σ2
x
,

(µx−µx∗)
2

σ2
x

αx
+

σ2
x∗

αx∗

=
(µy−µx∗)

2

σ2
y

αy
+

σ2
x∗

αx∗

, ∀ x,y 6= x∗.

One can see that the optimality conditions still depend on the unknown parameters of Fx even if Fx is known.
However, under unknown Fx, neither the large deviation rate functions nor the optimality conditions will
be available. Therefore, we give a new perspective below for expressing the optimal large deviation rates,
which inspires an efficient point estimation procedure for estimating them.

2.2 A New Expression for the Optimal Large Deviation Rates

For any u, let γ = gx(u) denote the solution to

∂

∂γ
(γu−Ψx(γ)) = u−Hx(γ) = 0, (3)

where ∂

∂γ
Ψx(γ) is denoted by Hx(γ) for convenience. In a word, gx is the inverse function of Hx, and its

existence is guaranteed by the monotonicity of Hx. One can also see that a closed-form expression for gx
may only exist if Fx is known. Nonetheless, we can rewrite the rate function Ix(u) as

Ix(u) = gx(u)u−Ψx(gx(u)). (4)

Consequently, we also have

∂ Ix

∂u
(u) = gx(u)+u

∂

∂u
gx(u)−

∂

∂gx
Ψx(gx(u))

∂

∂u
gx(u)

= gx(u)+u
∂

∂u
gx(u)−u

∂

∂u
gx(u) (5)

= gx(u), (6)

where (5) follows from (3). Then, since ux∗,x is the solution to (1), we have

0 = αx∗
∂ Ix∗

∂u
(ux∗,x)+αx

∂ Ix

∂u
(ux∗,x)

= αx∗gx∗(ux∗,x)+αxgx(ux∗,x), (7)

where (7) follows from (6). For convenience, denote γ∗x,x∗ = gx(ux∗,x) and γ∗x∗,x = gx∗(ux∗,x). Then, from (7),
we have

αx∗γ
∗
x∗,x +αxγ

∗
x,x∗ = 0. (8)

Note that from (3), we also have

Hx∗(γ
∗
x∗,x) = ux∗,x = Hx(γ

∗
x,x∗). (9)
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Combining (7) and (9), we have that

Hx∗(γ
∗
x∗,x)−Hx

(
−αx∗

αx
γ
∗
x∗,x

)
= 0. (10)

We call Ix∗ (ux∗,x), Ix (ux∗,x) and nΓx∗,x(αx∗ ,αx) the optimal large deviation rates, because together they
characterize the optimal allocation. Then, we can express them in terms of γ∗x∗,x and γ∗x,x∗ by

Ix∗ (ux∗,x) = γ
∗
x∗,xHx∗(γ

∗
x∗,x)−Ψx∗(γ

∗
x∗,x), (11)

Ix (ux∗,x) = γ
∗
x,x∗Hx∗(γ

∗
x∗,x)−Ψx(γ

∗
x,x∗), (12)

nΓx∗,x(αx∗ ,αx) = Nn
x∗Ix∗ (ux∗,x)+Nn

x Ix (ux∗,x)

= Nn
x∗
[
γ
∗
x∗,xHx∗(γ

∗
x∗,x)−Ψx∗(γ

∗
x∗,x)

]
+Nn

x
[
γ
∗
x,x∗Hx∗(γ

∗
x∗,x)−Ψx(γ

∗
x,x∗)

]
= −Nn

x∗Ψx∗(γ
∗
x∗,x)−Nn

x Ψx(γ
∗
x,x∗), (13)

where (11)-(12) hold due to (4) and (9), and (13) holds due to (8) and (9). Note that we proportionally scale
Γx∗,x(αx∗ ,αx) by n in (13), which allows us to work with Nn

x directly. From (11)-(13), one can see that the
optimal large deviation rates can be efficiently estimated if we can construct simple point estimates for γ∗x∗,x
and γ∗x,x∗ , and the complexity of such point estimation is tremendously reduced in contrast to estimating
the entire rate functions. We further note that similar analysis has been conducted in the existing literature,
such as Glynn and Juneja (2004) and Li et al. (2018). Nonetheless, none of them proposes to express the
optimal large deviation rates in the same way as this paper does.

3 MAIN RESULTS

3.1 Point Estimation of the Optimal Large Deviation Rates

We construct our point estimates for the optimal large deviation rates below. First, we estimate the log-
moment generating function Ψx(γ) and its derivative Hx(γ) by their sample average estimators Ψn

x(γ) and
Hn

x (γ), respectively, which are given by

Ψ
n
x(γ) = log

(
1

Nn
x

n−1

∑
m=0

1x
meγW m+1

x

)
, (14)

Hn
x (γ) =

∂

∂γ
Ψ

n
x(γ) =

∑
n−1
m=0 1x

mW m+1
x eγW m+1

x

∑
n−1
m=0 1x

meγW m+1
x

. (15)

Note that our estimate for x∗ is x∗,n at each stage n. Then, for any x 6= x∗,n, we estimate γ∗x∗,x by γn
x∗,n,x,

which is the solution to

Hn
x∗,n(γ)−Hn

x

(
−Nn

x∗,n

Nn
x

γ

)
= 0, (16)

and estimate γ∗x,x∗ by

γ
n
x,x∗,n =−

Nn
x∗

Nn
x

γ
n
x∗,n,x. (17)

Consequently, from (9), we estimate ux∗,x by

un
x∗,n,x = Hn

x∗,n
(
γ

n
x∗,n,x

)
= Hn

x
(
γ

n
x,x∗,n

)
. (18)
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Let In
x (γ), γHn

x (γ)−Ψn
x(γ). Then, from (11)-(13), we estimate Ix∗ (ux∗,x), Ix (ux∗,x) and nΓx∗,x(αx∗ ,αx),

respectively, by

In
x∗,n
(
γ

n
x∗,n,x

)
= γ

n
x∗,n,xHn

x∗,n
(
γ

n
x∗,n,x

)
−Ψ

n
x∗,n
(
γ

n
x∗,n,x

)
, (19)

In
x
(
γ

n
x,x∗,n

)
= γ

n
x,x∗,nHn

x
(
γ

n
x,x∗,n

)
−Ψ

n
x
(
γ

n
x,x∗,n

)
, (20)

Γ
n
x∗,n,x = Nn

x∗,nIn
x∗,n
(
γ

n
x∗,n,x

)
+Nn

x In
x
(
γ

n
x,x∗,n

)
= −Nn

x∗,nΨ
n
x∗,n
(
γ

n
x∗,n,x

)
−Nn

x Ψ
n
x
(
γ

n
x,x∗,n

)
. (21)

Two immediate observations follow. First, the point estimates given in (19)-(21) requires no knowledge of
the distribution family of Fx. Second, the key of this point estimation procedure is to solve (16) for γn

x∗,n,x,
which is inspired by (1) and (8). In other words, instead of estimating the entire rate functions, (19)-(21)
only focus on estimating the optimal large deviation rates, i.e., certain values of the rate functions that
characterize the optimal allocation. This point estimation approach significantly distinguishes from any
related work in the existing literature that considers R&S under unknown Fx. For example, Glynn and Juneja
(2004) estimates the entire rate functions first and then makes them satisfy certain optimizing conditions
by spending considerable computational effort on solving some complex programs, and Xiao et al. (2020)
briefly discusses a similar point estimation approach but for a purpose other than estimating the optimal
large deviation rates and does not conduct any related theoretical analysis or numerical experiments.

3.2 The DDOA Algorithm

In this section, we propose a fully sequential nonparametric tuning-free approach that can achieve the
optimality conditions asymptotically under unknown Fx. First of all, we update the definition of x∗,n to
clear any potential ambiguity. As before, let x∗,n = argmaxx θ n

x if argmaxx θ n
x is unique; if argmaxx θ n

x is
not unique, then let x∗,n be the alternative that has the smallest sample size Nn

y among y ∈ argmaxx θ n
x .

This new definition of x∗,n accounts for the situation where there may be more than one alternative having
the largest sample mean when Fx is not continuous.

We present the DDOA algorithm in Algorithm 1. Several key features of DDOA can be observed.
First, DDOA is initialized by inputting two constants, ρ and ν , as one’s prior belief of µx for all x, where
ρ < ν . For ease of notation, let xn = n mod M + 1 for n = 0,1, ...,2M− 1, then assign W n+1

xn = ρ for
n = 0, ...,M−1 and W n+1

xn = ν for n = M, ...,2M−1. The two unequal constants ρ and ν initialize Hn
x in

(15) for all x and guarantee that (16) in Step 2 is solvable and has a unique negative root.
Second, DDOA is computationally efficient. It only uses the point estimates of the optimal large

deviation rates that are proposed in Section 3.1 and does not require estimating the entire rate functions,
thus it is computationally tractable and practically applicable. In addition, DDOA also adopts an auto-
balancing approach to determine xn in Step 3 and 4 by reverse-engineering the total balance condition
and the individual balance condition, respectively. Such an auto-balancing approach has been adopted in
several recently-proposed sequential selection algorithms for R&S under known Fx (e.g., Chen and Ryzhov
2019), with the aim of recovering the optimal allocation while requiring no extra tuning such as solving
nonlinear equation systems or concave programs.

Finally, DDOA does not require any knowledge or make any assumptions of Fx, which is essentially
different from the vast majority of allocation strategies in the existing literature. Even compared with the
latest sequential selection approaches for R&S under known Fx (e.g., Chen and Ryzhov 2022), DDOA
only requires extra computational effort in Step 2 for solving (16), which actually can be considered a very
minimal cost of not knowing Fx. Interestingly, the LHS of (16) actually can be proved to be monotonic,
thus (16) can be solved quite efficiently, for example, by the bisection method (Sikorski 1982). In summary,
DDOA is a completely ready-to-use tool that requires no essential effort other than running the algorithm
itself.

3381



Chen

Algorithm 1 DDOA Algorithm
Step 0: Initialize with n = 2M and Nn

x = 2 by inputting two constant estimates, ρ and ν , of µx for all
x, where ρ < ν .
Step 1: If argmaxx θ n

x is not unique, assign xn = x∗,n and proceed directly to Step 5.
Step 2: If argmaxx θ n

x is unique, find γn
x∗,n,x by solving (16) for all x 6= x∗,n, then compute In

x∗,n
(
γn

x∗,n,x
)
,

In
x
(
γn

x,x∗,n
)

and Γn
x∗,n,x for all x 6= x∗,n using (19)-(21).

Step 3: Check whether

∑
x 6=x∗,n

In
x∗,n
(
γn

x∗,n,x
)

In
x

(
γn

x,x∗,n

) > 1. (22)

Step 4: If (22) holds, assign xn = x∗,n. Otherwise, assign

xn = arg min
x 6=x∗,n

Γ
n
x∗,n,x. (23)

Step 5: Collect new sample W n+1
xn , update sample means. Increment n by 1 and return to Step 1.

3.3 Optimality of DDOA

In this section, we theoretically prove that DDOA achieves the optimality conditions asymptotically. Since
DDOA is proposed for R&S under unknown Fx, our theoretical analysis is quite general and does not rely
on any specific features of Fx, such as whether it has parameters other than µx. The entire analysis is highly
technical and consists of multiple intermediate results. Therefore, we summarize the main results below
and only describe some key steps of the derivation. All our statements are supposed to hold almost surely.
Whence, a suitable set of measure 0 should be assumed discarded in the following context so that there is
no need to keep repeating the qualification “almost surely”.

The main technical difficulty to learn the asymptotics of DDOA comes from characterizing the behavior
of γn

x∗,n,x. Therefore, any convergence analysis relying on estimating the entire large deviation rate functions
cannot be applied here, such as Glynn and Juneja (2004). It is well known that Ψn

x and Hn
x converge

uniformly to Ψx and Hx respectively on well-defined finite closed intervals; for example, see Feuerverger
(1989). However, because the proposed point estimates of the optimal large deviation rates depend on
γn

x∗,n,x, one is not able to directly use the uniform convergence of Ψn
x and Hn

x to analyze the asymptotics of

DDOA. On the one hand, γn
x∗,n,x is the root of equation (16), and thus is affected by the ratio Nn

x∗,n
Nn

x
, which

is further determined by the allocation strategy. Consequently, it is unclear if all γn
x∗,n,x belong to a finite

closed interval. On the other hand, γn
x∗,n,x also affects the allocation strategy xn, as can be seen from Step

3-4 of Algorithm 1. To resolve this dilemma, it is necessary to learn how γn
x∗,n,x behaves. First, Theorem 1

shows that DDOA is consistent, i.e., Nn
x → ∞ for all x, which implies that the PCS will converge to 1 as

the total sample size n→ ∞.
Theorem 1 Under Assumption 1 and Algorithm 1, Nn

x → ∞ for all x.
By the law of large numbers, Theorem 1 implies that x∗,n = x∗ for all large enough n. As discussed

above, because Nn
x∗

Nn
x

affects the behavior of γn
x∗,x, we need to learn how Nn

x∗
Nn

x
behaves first. Whence, Theorem

2 proves that DDOA actually samples all alternatives at an equivalent rate, i.e., Nn
x = Θ(n) for all x.

Theorem 2 Under Assumption 1 and Algorithm 1, for any x 6= y, limsupn→∞

Nn
x

Nn
y
< ∞.

Theorem 2 implies Nn
x

Nn
y

is uniformly bounded for all x 6= y, thus γn
x∗,x is also uniformly bounded.

Consequently, we only need to consider Ψn
x and Hn

x on a finite closed interval U . Whence, we can use a
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positive decreasing sequence (β n) to uniformly bound the convergence rate of Ψn
x and Hn

x ., i.e., for all x
and all γ ∈U , |Ψn

x(γ)−Ψx(γ)|= O(β n) and |Hn
x (γ)−Hx(γ)|= O(β n). The rate (β n) varies for different

Fx and can be expressed in closed forms when Fx is known. In general, it is known that limn→∞ β n = 0
and limn→∞(

√
nβ n)−1 = 0. The interested readers may refer to Feller (1968) and Feuerverger (1989) for

further details. Based on these results, we can learn how fast DDOA samples each alternative. Essentially,
it is proved the number of samples that can be allocated to x∗ between two samples of any suboptimal
alternatives (not necessarily the same one) is O(nβ n) and vice versa. Consequently, Theorem 3 shows that
DDOA asymptotically achieves the total balance condition. The proof is established by noting that the
LHS of (22) can only cross 1 when DDOA switches from sampling x∗ to some x 6= x∗ and vice versa, and
the margin by which it can rise above or fall below 1 is O(β n).
Theorem 3 Under Assumption 1 and Algorithm 1,

lim
n→∞

∑
x 6=x∗

In
x∗
(
γn

x∗,x
)

In
x

(
γn

x,x∗

) = 1.

Now we can prove an even stronger result about DDOA’s sampling rates: between two samples of the
same suboptimal alternative, the number of samples that can be allocated to x∗ or any other suboptimal
alternative is O(nβ n). This implies that the margin by which the ratio

Γn
x∗ ,y

Γn
x∗ ,z

can rise above or fall below 1 is

also O(β n). Consequently, Theorem 4 proves that DDOA asymptotically achieves the individual balance
condition.
Theorem 4 Under Assumption 1 and Algorithm 1, for any y,z 6= x∗,

lim
n→∞

Γn
x∗,y

Γn
x∗,z

= 1.

4 NUMERICAL ILLUSTRATION

In this section, we conduct several numerical experiments to illustrate DDOA’s empirical performance.
These experiments cover both continuous and discrete Fx. To the best of our knowledge, the existing
R&S literature does not have any other computationally tractable approaches for completely unknown Fx.
Therefore, we use EA (Equal Allocation) and BOLD (Chen and Ryzhov 2022) as our benchmark. EA is
a naive approach to take when Fx is completely unknown, as it simply samples each alternative with an
equal proportion. At the same time, BOLD is a sequential allocation strategy that can achieve the optimal
allocation asymptotically under known general Fx. We don’t consider OCBA-type methods (Chen and Lee
2010) because, while requiring extra computational effort for solving nonlinear equation systems, they can
only approximate the large-deviation-based optimal allocation and are not self-adaptive for different Fx (Gao
and Gao 2016). The empirical performance of BOLD has been thoroughly studied in Chen and Ryzhov
(2022) and compared with other well-known sequential allocation strategies under known Fx. Therefore,
we choose BOLD as a representative for sequential allocation strategies under known Fx. In the following
experiments, there are M = 5 alternatives and we run 200 macro-replications with 5000 total samples as
our budget. To compare the performance of each method, we report the probability of incorrect collection
(1-PCS, i.e., the proportion of the 200 macro-replications in which the method does not make the correct
selection), as well as the allocation proportion (averaged over 200 macro-replications) achieved by each
method when all budget is exhausted.

In Figure 1, Fx ∼N
(
µx,σ

2
x
)

is from the normal distribution family, where µx and σx are set the same
as in Chen and Ryzhov (2017), i.e., (µ1,µ2,µ3,µ4,µ5) = (0.5,0.4,0.3,0.2,0.1) and (σ1,σ2,σ3,σ4,σ5) =
(1,0.6,0.6,1,1). In Figure 2, Fx ∼ Bernoulli(µx) is from the Bernoulli distribution family, where
(µ1,µ2,µ3,µ4,µ5) = (0.5,0.4,0.3,0.2,0.1). The bisection method is used to solve (16) in Step 2 of
DDOA in both experiments. For BOLD, Fx is given as known inputs (σx is replaced by the corresponding

3383



Chen

sample standard deviation estimate in Figure 1), thus the uncertainty is only about the unknown parameters.
Figure 1(a) and Figure 2(a) show the PCS of all three methods. We can see that the PCS of DDOA converges
almost as fast as the PCS of BOLD and is even slightly better in Figure 1(a). Considering the fact that
DDOA knows nothing of Fx and needs to spend extra effort on estimating the optimal large deviation rates,
its empirical performance is quite competitive. We can also see that both DDOA and BOLD significantly
outperform EA in terms of PCS. However, BOLD’s performance is based on the additional advantage of
a known Fx while DDOA’s is not. Figure 1(b) and 2(b) show the allocation proportions of each method to
all five alternatives. We can see that DDOA achieves approximately the same allocation as BOLD, which
demonstrates DDOA’s ability to recover the optimal allocation for both continuous and discrete Fx.
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Figure 1: Illustration with Normal Sampling Distributions.

The goal of these experiments is not to show that DDOA has the best finite-time performance in each
particular case, since learning the finite-time empirical performance of sequential allocations is not the focus
of this paper. That said, they still numerically demonstrate that DDOA can achieve the optimal allocation
asymptotically despite not knowing Fx at all, and that DDOA also has competitive finite-time performance,
even compared to approaches with known Fx as inputs. More importantly, as a data-driven nonparametric
tuning-free approach, DDOA can be directly applied in all situations with guaranteed empirical performance.
By contrast, existing approaches proposed for known Fx usually require nontrivial effort to apply, such as
deriving closed-form selection criteria or large deviation rate functions, let alone the risk of misspecifying
Fx in practice.

We further note that recovering the optimal allocation asymptotically does not mean that a sequential
allocation strategy can achieve the optimal convergence rate specified by large deviation analysis for a
static allocation, as discussed in Glynn and Juneja (2018) and Wu and Zhou (2018). Nonetheless, as
noted in Garivier and Kaufmann (2016) and Chen and Ryzhov (2022), achieving the optimal allocation
is substantial to the performance of sequential allocation strategies for R&S under known Fx. Therefore,
DDOA demonstrates that the optimal allocation can be achieved by a simple computationally-tractable
sequential allocation strategy under completely unknown Fx, and its logic of addressing the uncertainty of
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Fx can also be applied to design sequential allocation strategies for achieving new optimality conditions
that may be derived by future frameworks.
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Figure 2: Illustration with Bernoulli Sampling Distributions.

5 CONCLUSION

In this paper, we have proposed the DDOA algorithm, a simple nonparametric tuning-free sequential
approach for R&S under unknown sampling distributions. Furthermore, we have theoretically proved that
DDOA achieves the optimal allocation derived by large deviation analysis and numerically studied its
empirical performance. To the best of our knowledge, DDOA is the very first computationally tractable
sequential allocation strategy with rigorous theoretical analysis that completely addresses the uncertainty
about sampling distributions. Especially, we have proposed a new efficient point estimation procedure for
estimating the optimal large deviation rates, which significantly simplifies the difficulty of estimating large
deviation rate functions.

There are plenty of directions of future work. One potential direction is to further improve the
computational efficiency of DDOA. As noted earlier, DDOA relies on point estimates of the optimal large
deviation rates, which can be obtained quite efficiently by finding the zeros of some monotonic functions.
The computation of such point estimates can also be performed in parallel among the alternatives. However,
such computation still slows down gradually as the sample size builds up. Whence, one may look forward
to accelerating the computation by sequentially approximating the zeros of those monotonic functions, or
even by constructing more efficient estimation procedures that are fundamentally different. Another future
direction is to study the convergence rate of PCS under sequential allocation strategies, such as DDOA.
Particularly, one may wish to characterize the optimal convergence rate that can be achieved by sequential
allocation strategies and design efficient sequential allocation strategies that are able to achieve this optimal
convergence rate.
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