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ABSTRACT

We consider the problem of risk-sensitive ordinal optimization, which aims to identify the “least risky”
system among a finite number of stochastic systems. Each system’s riskiness is assumed to be measured by
the probability that the system’s loss exceeds a common threshold. Since the crude Monte Carlo estimator
is highly inefficient in estimating rare-event probabilities, conventional ordinal optimization approaches
coupled with that estimator show significant performance degradation in this problem, particularly for
sufficiently large loss thresholds. To detour this issue, assuming that the parametric form of the underlying
distribution is known, we propose to use the tail parameter, a function of distributional parameters, as a
surrogate for the loss probability in comparing and ranking systems, which is shown to work well for many
well-known distributions. Building upon this observation, we find the optimal computing budget allocation
scheme that maximizes the likelihood of identifying the least risky system.

1 INTRODUCTION

In some operational problems, decision makers may prioritize tail risk over expected performance when
identifying the best system in a given set of stochastic systems. For example, in the case of autonomous
vehicle testing, a risk-sensitive decision maker may wish to learn the likelihood of each version of a vehicle
experiencing a fatal accident via sequential testing and then choose the safest version. Also, when selecting
a queueing system design, one might first construct a fixed number of designs and then test each design
for a certain amount of time to figure out which one is least likely to result in significant delays. Note that
events of interest in the above examples (e.g., fatal accidents and large delays) are rare events. Motivated
by these potential applications, we study the problem of sequentially allocating a fixed sampling budget,
i.e., the number of simulation trials, to a finite number of stochastic systems in order to select the least
risky system when each system’s characteristics can only be learned via simulation. This problem can
be viewed as a risk-sensitive version of the traditional ordinal optimization problems (Glynn and Juneja
2004), and thus, we call it risk-sensitive ordinal optimization.

In this paper, we specifically consider the tail probability, i.e., the probability of system losses exceeding
a large threshold, as a risk measure of each system. This choice of performance criterion is fairly common
in the above-mentioned applications. An intelligent physical system such as a self-driving algorithm is
commonly assessed by the probability of fatal accidents represented as the tail probability (O’Kelly et al.
2018; Norden et al. 2019; Arief et al. 2022; Xu et al. 2022). Also, when evaluating queueing system designs,
a typical performance criterion is the probability of delays longer than a certain tolerance time (Juneja et al.
2007; Cahen et al. 2018). Since we focus on the case where the threshold for the tail probability is large, the
estimation of the probability suffers from the lack of sufficient samples belonging to the target region, and
thus, without any structural information about the underlying distribution, constructing a stable estimator
requires an extremely large number of simulation efforts. In this regard, distributional information, such
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as a parametric family, is typically assumed in the rare-event setting. Our paper also presumes that the
parametric structure of the underlying distribution is known, but the parameter values are unknown.

Under this assumption, we show that for many well-known distributions, the said rare-event issue
can be circumvented by replacing the tail probability with its surrogate, which we call tail parameter,
defined as a function of distributional parameters. In other words, we will reformulate our main problem
into the ordinal optimization of the tail parameters. To the best of our knowledge, this formulation is
the first attempt to consider tail probabilities in the ordinal optimization framework. Based on that, we
provide an inference method of the tail parameter and present the tractable dynamic sampling policy that
is asymptotically optimal as the sampling budget grows large.

In terms of allocating a fixed sampling budget to reduce the probability of falsely selecting suboptimal
systems (PFS), our work is closely related to the optimal computing budget allocation (OCBA) scheme (Chen
et al. 2000). The main challenge in this scheme arises in that the PFS does not have an analytical expression
in general, so it is routinely replaced with its proper approximation. Among several approximation methods
of the PFS, we take the large-deviations-based approach proposed by Glynn and Juneja (2004). This
approach provides a closed-form expression of the exponential decay rate of PFS that can be easily
optimized by solving a convex optimization problem, and thus, it has been leveraged to develop sampling
procedures using plug-in estimators inferred from the observed data. Due to its tractability, a number of
follow-up studies have appeared, focusing on constrained ranking and selection (Pasupathy et al. 2014),
near-optimality via two-moment approximation (Shin et al. 2018), contextual ranking and selection (Gao
et al. 2019), top-two sampling (Russo 2020), feature-based selection (Ahn and Shin 2020; Ahn et al.
2023), and selection of the most probable best under input uncertainty (Kim et al. 2022). Recently, Chen
and Ryzhov (2022) propose the balancing optimal large deviations (BOLD) algorithm and demonstrate
that the algorithm asymptotically achieves the optimality condition for a general sampling distribution.

Having said that, all the aforementioned studies focus on the mean-based performance measure, and
the tail-based measure has received relatively little attention in this literature despite its practical relevance.
Only a few papers investigate the problem of quantile-based ordinal optimization (Bekki et al. 2007; Batur
and Choobineh 2010; Pasupathy et al. 2010; Batur and Choobineh 2021; Peng et al. 2021; Shin et al.
2022). Although the methods in these papers perform well for moderate quantiles, they can hardly be used
in the rare-event-focused applications (i.e., extreme quantiles) due to the said issue of insufficient samples.
In contrast, by focusing on tail probabilities rather than quantiles, we develop a novel approach to address
this issue using tail probability asymptotics, which has not been fully explored in the literature.

The rest of the paper is organized as follows. Section 2 formulates our risk-sensitive ordinal optimization
problem using the theory of large deviations and rigorously discusses why conventional methods fail to
guarantee good performance in this problem. In Section 3, we find the tail parameter for various distributions
that are commonly assumed for system losses and use it to characterize asymptotically optimal allocation.
Numerical results are provided to validate our analysis in Section 4. Section 5 concludes this paper. All
proofs can be found in Appendix A.

2 PROBLEM FORMULATION

Assume that there exist k competing systems indexed by i = 1, . . . ,k. For each i ∈ {1, . . . ,k}, we denote
by Xi a continuous random variable representing system i’s loss whose distribution is a priori unknown.
We define the risk measure of system i as the probability of its loss exceeding a large threshold ν , i.e.,
pi(ν) := P(Xi > ν), where the threshold ν is commonly applied to all systems. One may understand the
threshold ν as a critical point triggering a catastrophic event or a maximum acceptable loss. Throughout
this paper, we implicitly assume that the parametric structure of X1, . . . ,Xk is known but the corresponding
parameter values are unknown in advance. We denote by bν the index of the optimal system bν such that
pbν

(ν) < mini ̸=bν
pi(ν), i.e., the system with the smallest risk among the k systems. Our main premise

is that pi(ν) can be learned from independent and identically distributed (i.i.d) observations drawn from
system i. Thus, we define a sampling policy π as a vector (π1, . . . ,πT ) whose t-th element πt ∈ {1,2, . . . ,k}

3365



Ahn and Kim

represents the index of the system sampled at time t for each t ∈ {1, . . . ,T}. For each i ∈ {1,2, . . . ,k}, we
denote by Xi(t) as an i.i.d simulation output from system i at time t. Let αi,t(π) := ∑

t
s=11{πs = i}/t be the

sampling ratio of system i up to time t, where 1{C} yields 1 if C is true and 0 otherwise. Based on this
setup, our goal is to construct a sampling policy that maximizes the likelihood of identifying the optimal
system bν by judiciously allocating a fixed sampling budget T to each system and sequentially learning
the tail behaviors of X1, . . . ,Xk.

2.1 Inefficiency of a Nonparametric Approach

Let us temporarily consider a situation where the parametric structure of the underlying distributions is
ignored. Then, one natural approach to our problem would be to rely on the sample-mean estimator
pi,T (ν ;π) for the tail probability pi(ν), where

pi,T (ν ;π) :=
∑

T
t=11{Xi(t)> ν}1{πt = i}

∑
T
t=11{πt = i}

.

In this case, the PFS, a commonly used objective for ordinal optimization, can be defined as

P
(

pbν ,T (ν ;π)> min
i ̸=bν

pi,T (ν ;π)

)
. (1)

Since 1{Xi > ν} is a Bernoulli random variable with success probability pi(ν), minimizing (1) corresponds
to solving a mean-based ordinal optimization problem with Bernoulli observations.

Due to the lack of the closed-form expression for the PFS, the large-deviations-based method of
Glynn and Juneja (2004) has been widely adopted to address such a mean-based problem in the literature.
They consider a static sampling policy π(α) satisfying limt→∞ αi,t(π(α)) = αi for all i ∈ {1, . . . ,k},
where α = (α1, . . . ,αk) ∈ ∆ denotes an allocation vector and ∆ := {α | ∑

k
i=1 αi = 1,αi ≥ 0 for all i} is a

probability simplex, and based on the large deviations principle for the sample-mean estimator, they find
the asymptotically optimal allocation vector that maximizes the convergence rate of the PFS as T grows
large. According to Example 2 of Glynn and Juneja (2004), the convergence rate of (1) with π = π(α)
can be characterized as follows:

lim
T→∞

1
T

logP
(

pbν ,T (ν ;π)> min
i̸=bν

pi,T (ν ;π)

)
=−ρ

NP(α;ν), (2)

where ρNP(α;ν) := mini̸=bν
ρNP

i (α;ν), and for each i ̸= bν , ρNP
i (α;ν) is given by

ρ
NP
i (α;ν) =−(αbν

+αi) log
(
(1− pbν

(ν))
αbν

αbν
+αi (1− pi(ν))

αi
αbν

+αi + pbν
(ν)

αbν
αbν

+αi pi(ν)
αi

αbν
+αi

)
. (3)

Thus, the (nonparametric) rate-optimal allocation αNP(ν) can be obtained by solving the following opti-
mization problem:

max
α∈∆

ρ
NP(α;ν), (4)

One may expect that the optimal convergence rate in (4) is decreasing in ν since it becomes more
difficult to find the optimal system as ν increases due to insufficient samples in the tail region [ν ,∞). This
intuition is formalized in the following theorem.
Theorem 1 Assume that pbν

(ν)/mini ̸=bν
pi(ν)→ 0 as ν → ∞. Then, limν→∞ maxα∈∆ ρNP(α;ν) = 0.

Theorem 1 justifies that in most cases, a large threshold value deteriorates the optimal convergence rate
of the PFS. The condition of the theorem is generally satisfied unless the tail probabilities of the best and
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Figure 1: PFS under static allocation rules based on αNP(ν) with ν = 6,7, . . . ,11, plotted as a function of
the sampling budget in a log-linear scale. For panel (a), X1 ∼ Exp(1/2) and Xi ∼ Exp(1/3) for all i ̸= 1.
For panel (b), X1 ∼ N(2,22) and Xi ∼ N(3,32) if i ̸= 1. In both cases, bν = 1 for all ν ≥ 6.

second-best systems decay at the exactly same rate. Thus, a dynamic sampling policy based on ρNP(α;ν)
is expected to perform poorly when ν is large.

To confirm this, we run simple numerical tests by implementing static sampling policies based on
αNP(ν), the optimal solution to (4). In Figure 1, we compare the PFS with respect to the threshold ν

and the sampling budget under two different distribution scenarios: when X1, . . . ,Xk follow exponential
distributions and when they are normally distributed. Note that, for each i, system i’s mean and variance
in the Gaussian case are set to match those in the exponential case. In both panels in the figure, one can
clearly see that the PFS decays at a slower rate as ν increases.

The Gaussian assumption has often been employed in the related literature because it facilitates the
construction of tractable and effective sampling policies for mean-based ranking and selection, supported
by the central limit theorem and the use of batching (Kim and Nelson 2006). However, as demonstrated
by the above results, this approach is not feasible in our setup (i.e., tail-based ranking and selection) due
to the light-tailed nature of the Gaussian distribution.

2.2 Problem Reformulation with the Parametric Information

As a response to the performance degradation of the nonparametric approach observed in Section 2.1, we
aim to enhance the efficiency of identifying the optimal system by leveraging the parametric information
of the underlying distributions in this paper. To that end, we impose a mild condition as follows.
Assumption 1 There exists ν0 > 0 such that b = bν holds for all ν ≥ ν0.

Assumption 1 states that the optimal system index remains unchanged for all sufficiently large ν , which
is often the case in practice. This implies that for a large threshold ν , we can characterize the optimal
system b by comparing a certain distributional parameter of each system that governs the tail behavior
of the underlying distribution. For each system i, we denote such a parameter by βi and call it the tail
parameter of system i. The construction of βi depends on the underlying parametric distribution, and the
explicit expression of βi for various parametric distributions will be discussed in the next section.

Accordingly, our main problem is to characterize and estimate the tail parameter βi for each system
and to construct a sequential sampling scheme that ultimately identifies the optimal system

b = argmin
1≤i≤k

βi (5)

based on that estimation. These issues will be investigated in the next two sections. While this paper focuses
on ordinal optimization for tail probabilities {pi(ν)}k

i=1, our main analysis based on (5) is not limited to
the comparison of these probabilities but can be applied to that of more general tail-based risk metrics,
which improves its practicality. However, the related discussion is omitted due to space constraints.
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Remark 1 Since pi(ν) is a rare-event probability, one could attempt to improve the performance of
the method in Section 2.1 by estimating pi(ν) via well-known variance reduction techniques, such as
importance sampling and control variate methods, based on the known parametric structure. However,
these techniques typically require tuning procedures (e.g., selecting the importance sampler and specifying
the control variate) that are highly problem-dependent and/or often impractical in our context. Thus, while
they may be worth exploring for some problem instances, we do not consider them in this paper.

3 ORDINAL OPTIMIZATION BASED ON TAIL PARAMETERS

In this section, based on tail parameters, we aim to find a new rate function of the PFS, different from (2),
for various parametric distributions commonly encountered in the literature. This will enable us to tackle
the challenge of insufficient samples in the tail region and to construct the desired sequential sampling
policy in Section 4. To accomplish this, we first provide an overview of the theory of large deviations for
a generic maximum likelihood estimator (MLE) and the PFS. We then make a significant observation that
ordinal optimization under many parametric distributions can be reduced to that under gamma distributions.
This allows us to focus on characterizing the tail parameter and the rate function for gamma distributions
and extend it to other distributions.

3.1 Large Deviations Preliminaries

Consider a continuous random variable X that has a density function f (·;ϑ) with a parameter ϑ . We
denote by ϑT the MLE of ϑ calibrated from T samples independently drawn from the distribution of X .
Joutard (2004) shows that under some mild regularity conditions, ϑT fulfills the large deviation principle
in the following form: for any measurable set G ⊆ R,

− inf
x∈G◦

Iϑ (x)≤ liminf
T→∞

1
T

logP(ϑT ∈ G)≤ limsup
T→∞

1
T

logP(ϑT ∈ G)≤− inf
x∈Ḡ

Iϑ (x), (6)

where G◦ and Ḡ denotes the interior and closure of G, respectively, and Iϑ (x) is defined as

Iϑ (x) =− inf
u∈R

logE
[

exp
(

u
∂

∂x
log f (X ;x)

)]
. (7)

Below we leverage the large deviation principle of a generic MLE in (6) and (7) to obtain the rate
function of the PFS. Consider the static sampling policy π(α) in Section 2.1 and denote by βi,T the MLE
of the tail parameter βi based on sample observations of system i up to time t under the static policy π(α).
Then, according to the reformulated problem (5) in Section 2.2, the PFS (1) can be rewritten as

P
(

βb,T > min
i ̸=b

βi,T

)
(8)

for all thresholds ν ≥ ν0. Since this new PFS satisfies

max
i ̸=b

P(βb,T > βi,T )≤ P
(

βb,T > min
i̸=b

βi,T

)
≤ (k−1)max

i ̸=b
P(βb,T > βi,T ),

following the analysis of Glynn and Juneja (2004), we obtain the rate function of (8) as follows:

lim
T→∞

1
T

logP
(

βb,T > min
i ̸=b

βi,T

)
=−ρ(α), (9)

where for each α ∈ ∆, ρ(α) := mini̸=b ρi(α) and

ρi(α) := inf
x≥x̃

{αbIβb(x)+αiIβi(x̃)}. (10)
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It is worth noting that this newly proposed rate function ρ(α) is independent of the threshold ν , and therefore,
it does not degenerate even if ν grows large. As we shall observe later, this property ensures that a sequential
sampling policy, which ultimately attains the (parametric) rate-optimal allocation α∗ ∈maxα∈∆ ρ(α), exhibits
a robust performance against changes in the threshold ν .

3.2 Tail Parameters and Rate Functions for Various Parametric distributions

Building upon the preliminary analysis presented in the previous subsection, the focus now shifts towards
characterizing the tail parameter βi and the corresponding rate function ρ(·) in (9) for a given parametric
distribution. Somewhat surprisingly, this subsection reveals that for the majority of well-known distributions,
the tail parameter and the rate function can be represented in either of two forms, both of which are derived
from gamma distributions. As such, we begin with the analysis with respect to gamma distributions below.

Gamma distributions. Suppose that for i = 1, . . . ,k, Xi follows a gamma distribution with shape
parameter κi and scale parameter θi, that is, Xi ∼ Gamma(κi,θi). Then, for each i, the density function
f (·;κi,θi) of Xi is given by f (y;κi,θi) = Γ(κi)

−1θ
−κi
i yκi−1 exp(−y/θi), where Γ(κ) :=

∫
∞

0 tκ−1 exp(−t)dt
is the gamma function, and the tail probability pi(ν) is written as

pi(ν) =
Γ(κi,ν/θi)

Γ(κi)
, (11)

where Γ(κ,x) :=
∫

∞

x tκ−1 exp(−t)dt is the upper incomplete gamma function. According to Chapter 2
of Chaudhry and Zubair (2001), we have the following asymptotic properties of Γ(κ,x):

lim
x→∞

Γ(κ,x)
xκ−1 exp(−x)

= 1 and lim
x→0

Γ(κ)−Γ(κ,x)
xκ

=
1
κ
. (12)

From (11) and the first equation in (12), we obtain that

lim
ν→∞

1
ν

log pi(ν) =− 1
θi
, i = 1, . . . ,k.

This result implies that for each i, the scale parameter θi governs the tail behavior of Xi, and hence, we set
the tail parameter for Xi as βi = θi. Further, we can easily see that Assumption 1 holds in this case. This
observation allows us to derive the closed form of the rate function (9) for gamma-distributed systems,
which is presented in Theorem 2.
Theorem 2 (Rate function with scale parameters) Suppose that Xi follows Gamma(κi,θi) for i = 1, . . . ,k.
Given κ1, . . . ,κk, let ρθ (α) denote the rate function (9) of the probability of false selection (8) when βi = θi
for each i. Then, the rate function ρθ (α) is given by

ρ
θ (α) = min

i ̸=b

{
αbIθ

βb

(
αbκb +αiκi

αbκb/βb +αiκi/βi
;κb

)
+αiIθ

βi

(
αbκb +αiκi

αbκb/βb +αiκi/βi
;κi

)}
, (13)

where Iθ

β
(x;κ) = κ(x/β − log(x/β )−1) for all x,κ,β > 0.

Since Gamma(1,θ) is the same with Exp(1/θ), identifying the gamma-distributed system with the
smallest tail parameter when κ1 = · · ·= κk = 1 is equivalent to determining the exponentially distributed
system with the smallest mean. Accordingly, our rate function (13) includes the rate function in Gao and
Gao (2016), which is designed for mean-based ordinal optimization with exponentially distributed systems,
as a special case.

Extensions to other distributions. The above analysis for gamma distributions is useful in characterizing
the tail parameter and the rate function for other distributions. Suppose, for instance, that there exists a
function g : R → R+ such that Yi = g(Xi) ∼ Gamma(κi,θi) for each i. If g(x) is increasing in x for all
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sufficiently large x and limx→∞ g(x) = ∞, then pi(ν) = P(Xi > ν) = P(g(Xi)> g(ν)) = P(Yi > g(ν)) for all
ν large enough. Thus, using the transformation g, one can set the tail parameter βi = θi for each i and
use the rate function for gamma-distributed systems, i.e., ρθ (·) in (13), to find the rate-optimal allocation.
The well-known parametric distributions corresponding to this case include Gaussian, lognormal, Laplace,
Pareto, Weibull, and inverse Gaussian distributions.

On the other hand, if g(x) is decreasing in x for all sufficiently large x and limx→∞ g(x) = 0, we have

pi(ν) = P(Yi < g(ν)) =
Γ(κi)−Γ(κi,g(ν)/θi)

Γ(κi)
.

In this case, however, limν→∞ g(ν) = 0, and thus, the decay rate of pi(ν) is determined by the asymptotic
behavior of gamma distributions near the origin. From the second equation in (12), we observe that

lim
ν→∞

1
g̃(ν)

log pi(ν) =−κi,

where g̃(ν) :=− logg(ν)→ ∞ as ν → ∞. This in turn suggests that using the transformation g, we can set
the tail parameter βi as βi = 1/κi for each i. Moreover, it can be seen that Assumption 1 is satisfied in this
setting. Inverse gamma, log gamma, and scaled inverse chi-squared distributions are some of the commonly
known distributions that fall under this second category. Motivated by this, the following theorem derives
the rate functions for gamma-distributed systems with βi = 1/κi, i = 1, . . . ,k.
Theorem 3 (Rate function with shape parameters) Suppose that Xi follows Gamma(κi,θi) for i = 1, . . . ,k.
Let ρκ(α) denote the rate function (9) of the probability of false selection (8) when βi = 1/κi for each i.
Then, the rate function ρκ(α) is given by

ρ
κ(α) = min

i̸=b

{
αbIκ

βb

(
αb +αi

αb/βb +αi/βi

)
+αiIκ

βi

(
αb +αi

αb/βb +αi/βi

)}
, (14)

where Iκ

β
(x) = log(Γ(1/β )− logΓ(1/x)+(1/x−1/β )ψ(1/x), and ψ(x) = (d/dx) logΓ(x) is the digamma

function.
Based on the above theorem, we can employ the rate function ρκ(α) in (14) to determine the rate-optimal

allocation for the distributions classified under the second category. Interestingly, ρκ(α) is independent of
the scale parameter θi, which differs from ρθ (α) that depends on both scale and shape parameters.

Table 1 presents a list of the distributions included in the aforementioned two classes, along with
the associated transformation g, the scale and shape parameters induced by g, and the corresponding rate
function (either ρθ (·) or ρκ(·)). It is important to note that the composition or monotone transformation
of the distributions listed in Table 1 may also belong to either of the two categories.

4 NUMERICAL EXPERIMENTS

4.1 Tail Parameter Estimation and Dynamic Sampling Policy

The rate functions developed in Section 3 involve unknown distributional parameters and tail parameters
that should be sequentially estimated via simulation. Alternatively, we use pseudo rate functions ρθ

t (·) and
ρκ

t (·) constructed by replacing the unknown parameters in (13) and (14), respectively, with their estimates
in each stage t. In particular, Table 1 shows that βi can be expressed as a function of the distributional
parameters, which allows us to find the MLE of βi using the MLEs of distributional parameters owing to the
MLE’s invariance property (Casella and Berger 2002). As an example, for inverse Gaussian systems, if we
have the stage-t MLEs µi,t and λi,t of the distributional parameters µi and λi respectively, we can directly
compute the stage-t MLE of βi as βi,t = 2µ2

i,t/λi,t , and hence, the corresponding pseudo rate function ρθ
t (·)

in stage t can be found by setting βi = βi,t , κi = 1/2, and b = argmini βi,t in (13) for each i. Similarly,
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Table 1: Tables of distributions that can be suitably transformed into gamma distributions.

Distribution Density function g(x) θi κi ρ(·)

Gamma 1
Γ(κ)θ κ yκ−1 exp

(
− y

θ

)
, x ∈ R x θ κ

Gaussian 1√
2πσ

exp
(
− (x−µ)2

2σ2

)
, x ∈ R (x−µ)2

2 σ2 1
2

Lognormal 1
x
√

2πσ
exp
(
− (logx−µ)2

2σ2

)
, x ∈ R (logx−µ)2

2 σ2 1
2

ρθ (·)

(βi = θi)
Laplace 1

2θ
exp
(
− |x−µ|

θ

)
, x ∈ R |x−µ| θ 1

Pareto γxγ
m

xγ+1 , x ≥ xm > 0 log
(

x
xm

)
γ−1 1

Weibull k
λ

( x
λ

)k−1 exp
(
−
( x

λ

)k
)
, x ≥ 0 xk λ k 1

Inverse Gaussian
(

λ

2πx3

)1/2
exp
(
−λ (x−µ)2

2µ2x

)
, x ≥ 0 (x−µ)2

x
2µ2

λ

1
2

Inverse gamma θ γ

Γ(γ)x
−γ−1 exp

(
−θ

x

)
, x > 0 1/x θ γ

ρκ(·)

(βi = 1/κi)
Log gamma 1

Γ(γ)θ γ exp
(
− exp(−x)

θ

)
exp(−γx), x ∈ R exp(−x) θ γ

Scaled inverse χ2 (τ2ν/2)ν/2

Γ(ν/2) x−
ν

2 −1 exp
(
−ντ2

2x

)
, x > 0 1/x ντ2/2 ν/2

Algorithm 1 Dynamic sampling policy πβ (n0,m)

1: Generate n0 i.i.d. replications and estimate distributional parameters for each system, and set t = kn0
2: while t < T do
3: if the underlying systems satisfy βi = θi for each i then
4: Compute βi,t = θi,t using the estimated distributional parameters for each i
5: Find α̂ = argmaxα∈∆ ρθ

t (α), where ρθ
t (α) is the stage-t version of ρθ (α)

6: else if the underlying systems satisfy βi = κ
−1
i for each i then

7: Compute βi,t = κ
−1
i,t using the estimated distributional parameter for each i

8: Find α̂ = argmaxα∈∆ ρκ
t (α), where ρκ

t (α) is the stage-t version of ρκ(α)
9: end if

10: Generate [mα̂i] replications for each system i, and set t = t +m
11: end while

for inverse gamma systems, the stage-t MLE is given by βi,t = γ
−1
i,t , where γi,t is the stage-t MLE of the

distributional parameter γi, and the associated pseudo rate function ρκ
t (·) can be obtained by plugging

βi = βi,t and b = argmini βi,t into (14) for each i.
Given these pseudo rate functions, one can construct sampling policies that sequentially allocate samples

based on the optimizers of the pseudo rate functions and thus eventually achieve rate optimality. For our
numerical experiments, we use a batch-based allocation rule among those asymptotically optimal policies,
which is described in Algorithm 1. While some fully sequential algorithms, such as Balancing Optimal
Large Deviations proposed by Chen and Ryzhov (2022), can also be used with some modifications based
on our rate functions, in this section, we restrict our focus on numerically validating the superiority of our
tail-parameter-based approach over the nonparametric method in the case of large thresholds, rather than
comparing the performance of different rate-optimal policies based on tail parameters.

4.2 Numerical Results

In this subsection, as alluded to earlier, our goal is to validate the numerical performance of Algorithm 1.
We use two alternative policies for comparison: The first method is a batch-based adaptive version of the
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(c) Pareto distribution
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(e) Log gamma distribution

5000 10000 15000 20000

10−0.3

10−0.8

10−1.3

10−1.8

Sampling budget

(f) Inverse gamma distribution

πNP(n0,m,ν1)

πNP(n0,m,ν2)

πEA(n0,m)

πβ (n0,m)

Figure 2: Probability of false selection is plotted as a function of the sampling budget in a log-linear scale
for all six testing examples.

nonparametric approach in Section 2.1 (denoted by πNP(n0,m,ν)) that is constructed in a similar manner
to Algorithm 1: we take n0 initial samples from each system and allocate the sampling budget using the
rate function (4) for each batch of size m. The second alternative policy is a batch-based equal allocation
rule (denoted by πEA(n0,m)) that takes n0 initial samples from each system and distributes the sampling
budget evenly for each batch of size m.

We fix k = 10 and consider six different distributions for {Xi}1≤i≤k: gamma, Gaussian, Pareto, inverse
Gaussian, log gamma, and inverse gamma. The first four distributions correspond to the case where βi = θi
and ρ(α) = ρθ (α), whereas the last two distributions are associated with βi = 1/κi and ρ(α) = ρκ(α).
For all sampling policies, we set n0 = 100 and m = 1,000. For the nonparametric policy πNP(n0,m,ν), we
consider two scenarios of ν : ν1 = 2 and ν2 = 2.5. We fix βi = 1/(3− 0.2i) for i = 1, . . . ,k and use the
distributional parameters satisfying pi(ν1) = 0.01+0.005i for i = 1, . . . ,k. We use the sample-mean-based
PFS in (1) as a performance criterion for the nonparametric policy πNP, and the tail-parameter-based PFS
in (8) for our policy πβ and the equal allocation rule πEA. We estimate both types of the PFS through
Monte Carlo simulation with 104 simulation trials.

Figure 2 visualizes the numerical evaluation of four dynamic sampling policies for the six distributional
cases. In the figure, it is obvious that our policy πβ outperforms the other policies in all cases. In addition,
by comparing πβ and πEA, we first find that the rate-optimal allocation is more effective than the equal
allocation in identifying the system with the smallest tail parameter. Second, when the threshold ν is
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large enough, the sample-mean-based PFS is not a good criterion for selecting the optimal system. This
is demonstrated by the observation that the performance of πNP is significantly weaker than πβ and often
comparable to that of πEA. However, if ν is not large, πNP may perform better than πβ since the performance
of πNP improves as ν decreases, while that of πβ remains independent of ν . Thus, it would be interesting
to characterize the critical points νc and ν̄c with νc < ν̄c such that πβ outperforms πNP if ν > ν̄c and the
opposite holds if ν < νc, which is left for further research. Third, the performance of πβ varies across
different distributions, which can be attributed to differences in the rate functions and estimation errors for
the MLEs of the distributional parameters.

5 CONCLUDING REMARKS

We formulate the problem of risk-sensitive ordinal optimization based on tail probabilities and investigate
the associated sequential sampling rule when the distribution of each system is known except its parameters.
Our analysis can be extended in several directions. For example, it would be interesting to explore situations
where the distribution is fully unknown or only partially known. Also, employing more general risk measures
than tail probabilities for risk-sensitive ordinal optimization could be done via a variant of our approach.
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A PROOFS OF THEORETICAL RESULTS

Lemma 1 If q1, . . . ,qk are positive constants satisfying q1 < mini̸=1 qi, then

max
α∈∆

min
i ̸=1

{α1q1 +αiqi}= max

q1,

(
∑
i ̸=1

1
qi

)−1
 . (15)

Proof of Lemma 1. Let q∗ := (∑i ̸=1 q−1
i )−1. We note that α̃ := (1,0, . . . ,0) and α̂ := (0,q−1

2 q∗, . . . ,q−1
k q∗)

are feasible solutions to the left-hand side of (15) since both vectors belong to the set ∆. Furthermore, it
is easy to see that mini ̸=1{α̃1q1 + α̃iqi}= q1 and mini̸=1{α̂1q1 + α̂iqi}= q∗. Therefore, we have

max
α∈∆

min
i ̸=1

{α1q1 +αiqi} ≥ max{q1,q∗} . (16)

On the other hand, the left-hand side in (15) is equal to max{z |α ∈ ∆, z ≤ α1q1 +αiqi ∀i = 2, . . . ,k} .
Since for all i ̸= 1, the condition z ≤ α1q1 +αiqi is equivalent to (z−α1q1)/qi ≤ αi, taking the summation
of both sides of this inequality over i ̸= 1 and rearranging the terms yield z ≤ q∗+(q1 −q∗)α1, we obtain

max
α∈∆

min
i ̸=1

{α1q1 +αiqi} ≤ max{z |α ∈ ∆, z ≤ q∗+(q1 −q∗)α1}= max
α∈∆

{q∗+(q1 −q∗)α1}= max{q1,q∗}.

Combining this result with (16) completes the proof.

Proof of Theorem 1. From (3), we observe that for each i ̸= bν ,

ρ
NP
i (α;ν)≤−(αbν

+αi) log
(
(1− pbν

(ν))
αbν

αbν
+αi (1− pi(ν))

αi
αbν

+αi

)
= αbν

qbν
(ν)+αiqi(ν),

where q j(ν) =− log(1− p j(ν)) for j = 1, . . . ,k. We note that for each j = 1, . . . ,k,

lim
ν→∞

q j(ν)

p j(ν)
= 1. (17)
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Since 0 < qbν
(ν) < mini ̸=bν

qi(ν), by Lemma 1, maxα∈∆ ρNP(α;ν) ≤ max{qbν
(ν),(∑i ̸=bν

qi(ν)
−1)−1}.

Furthermore, according to (17) and by assumption, qbν
(ν)/mini ̸=bν

qi(ν)→ 0 as ν → ∞. Consequently,
we have (mini̸=bν

qi(ν))
−1 ≤ ∑i ̸=bν

qi(ν)
−1 < qbν

(ν)−1 for all sufficiently large ν , and thus, we obtain that
maxα∈∆ ρNP(α;ν)≤ mini̸=bν

qi(ν). for all sufficiently large ν . Then, by (17), the desired result follows.

Proof of Theorem 2. Observe that (∂/∂x) log f (y;κi,x) = y/x2 −κi/x. Then, we have

logE
[

exp
(

u
∂

∂x
log f (Xi;κi,x)

)]
= logE

[
exp
(

uXi

x2 − uκi

x

)]
=−κiu

x
−κi log

(
1− βiu

x2

)
, (18)

where the second equality exploits that the moment generating function of Xi, E[exp(uXi)], is given by
(1−βiu)−κi . From the first-order condition, one can easily see that the infimum of (18) over u ∈ R is
attained at u = (x2 −βix)/βi and thus is equal to Iθ

βi
(x;κi) = κi(x/βi − log(x/βi)−1).

Next, since Iθ

βi
(x;κi) is increasing when x > βi and is decreasing when x < βi, one can confirm that for

Iβi(·) = Iθ

βi
(·), the optimal solution in (10) should satisfy x = x̃. Thus, (10) can be recast as

ρ
θ
i (α) = inf

x

{
αbIθ

βb
(x;κb)+αiIθ

βi
(x;κi)

}
. (19)

By the first-order condition for (19), the optimum is achieved at x= (α1κ1+αiκi)/(α1κ1/βb+αiκi/βi).

Proof of Theorem 3. Recall that βi = 1/κi. We first observe that the derivative of the log-likelihood
with respect to βi is given by (∂/∂x) log f (y;1/x,θi) =−(logy)/x2 +(logθi)/x2 + x−2ψ(1/x). Thus,

logE
[

exp
(

u
∂

∂x
log f (Xi;1/x,θ i)

)]
= logE

[
exp
(
−u

logXi

x2 +
u
x2 logθi +

u
x2 ψ

(
1
x

))]
=

{
logΓ

(
− u

x2 +
1
βi

)
− logΓ

(
1
βi

)
+ u

x2 ψ
(1

x

)
if u < x2/βi;

∞ otherwise,
(20)

where (20) holds since it is well known that E[Xη

i ] = θ
η

i Γ(η+1/βi)/Γ(1/βi) if η+1/βi > 0 and ∞ otherwise.
Clearly, the infimum of the minimization of (20) over u ∈R is attained at u =−x+x2/βi < x2/βi. Thus, a
straightforward calculation yields Iκ

βi
(x) = logΓ(1/βi)− logΓ(1/x)+(1/x−1/βi)ψ(1/x). Using the same

argument as in the proof of Theorem 2, we find that for Iβi(·) = Iκ

βi
(·), the infimum in (10) is achieved at

x = x̃ = (αb +αi)/(αb/β1 +αi/βi). Plugging this into αbIκ

βb
(x)+αiIκ

βi
(x̃) completes the proof.
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