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ABSTRACT

The recent industrial context pushed manufacturers to invest heavily in digitization for a more efficient use of
their equipment and scarce resources. The digitization of industrial environments allows the establishment
of digital decision-support tools such as digital twins, to exploit the shop-floor data for making more
accurate decisions considering the real system state. Existing literature focuses on the development of
specific digital twin components as well as methods that are typically developed and tested without an
integration within a digital twin architecture. This paper proposes a complete digital twin framework with
the purpose of aiding production planning and control operations. The focus is on the design of a production
control service that manages the material flow in the real system using simulation-based predictions of
the remaining cycle time. Preliminary experiments are done by applying the digital twin architecture on a
lab-scale model, demonstrating the applicability of the proposed approach.

1 INTRODUCTION

Recently, production facilities across the globe have been investing consistently in the digitization of
their equipment. New technologies such as the internet-of-things, cyber-physical systems, and artificial
intelligence are being applied to optimize the performance of manufacturing systems (Zhang et al. ). Among
the tools and methods for decision support, the digital twin (DT) stood out as one of the most promising.
Within the context of production planning and control, a DT can be defined as “a virtual representation
of a production system that is able to run on different simulation disciplines that is characterized by the
synchronization between the virtual and the real system [...]” (Negri et al. 2017). For discrete manufacturing
systems and within the scope of production planning and control, the digital model can be represented by
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discrete event simulation. The capability of a digital twin of being continuously aligned with its physical
counterpart has been frequently highlighted as essential for its correct functioning (Sakr et al. 2021).
The utility of the real-time alignment is evident when the DT is used to make predictions based on the
current system state and provide useful feedback in the form of improvement actions (Hyre et al. 2022).
These processes are useful services that the DT provides to its physical counterpart, while the internal
operations such as synchronization and model validation are essential for the appropriate functioning of
a valid DT (Lugaresi et al. 2022). In the literature, the importance of production control services that
provide a dynamic scheduling capabilities in a production system has been frequently underlined (Xu
and Xie 2021). Several methods have been proposed, for instance using machine learning for scheduling
policies (Leng et al. 2022). However, the contributions that study the integration of simulation-based
services in a fully integrated DT framework are scarce. This paper presents the development of a complete
DT capable of making production control decisions exploiting the results of real-time predictions on the
system performance. The work consists in designing a digital twin architecture with proper services to
guarantee a production control service, in which real-time streams of data from the shop floor feed simulation
experiments, and the results are exploited online to provide feedback to the shop floor. This work also
tests the architecture on a lab-scale physical system that reproduces the main dynamics of real production
systems. The remainder of this paper is organized as follows. Section 2 contains a short state of the
art on the key elements included in a DT for production planning and control. Section 3 introduces the
digital twin framework taken as reference in this work. Section 4 describes the methodology used for the
development of the production control service. Section 5 details the experiments that have been done to
test the developed architecture. Section 6 concludes the paper with final remarks.

2 STATE OF THE ART

In recent years, there has been an increasing interest in DT frameworks, proven by the significant number
of publications on this topic. However, no common agreement has been achieved until now about a generic
architecture. For example, Hyre et al. (2022) recommended an agnostic framework that starts with the
virtual representation of the system, then replicating it into digital objects and testing the sub-components
individually. Similarly, Leng et al. (2022) emphasize that the flexibility of digital twins depends on the
reconfigurability and dynamic scheduling performance. According to Papacharalampopoulos et al. (2021),
the framework of a DT should have modeling, diagnostic, and prognostic functions so that the DT can be
adaptive with real-time optimization. Sakr et al. (2021) states that a digital twin includes a digital shadow
that acquires real-time data from the physical system to feed a digital replica, which is used for operating
the rest of the DT functions.

Physical-to-digital alignment is one of the most cited research challenges and regards the importance
to keep the model updated in real-time according to changes that occur in the physical system (Lugaresi
et al. 2021). Sakr et al. (2021) mentions that usage of static models in evolving systems would require
manual re-configurations. Traoré (2021) discusses two types of synchronization: (1) event based, which
synchronizes the model at the occurrence of each event, and (2) time based, which applies synchronizations
according to a fixed frequency. Tan and Matta (2022) introduce the problem of synchronization as a trade
off between computation effort and improvement in simulation model accuracy. Both state-dependent and
state-independent policies are defined to decide the temporal allocation of synchronization actions. In order
to maintain a digital twin aligned with his physical counterpart, synchronization is not enough, it is also
necessary to validate the model. Lugaresi et al. (2022) developed an online validation procedure for digital
twins based on Dynamic Time Warping to quantify the difference between the digital and physical systems
based on sequences of events.

Once the proper functioning of a digital twin is guaranteed by its alignment with the physical system, it
is possible to exploit it to provide useful services for the production. Zhang et al. () suggests that the main
DT functions are to analyze production performance indicators, optimize production processes dynamically
and give feedback in real-time. The ISO 23247 (Shao 2021) defines the scheduling and routing as one of
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the most important application of the DT. This is true when taking into consideration the positive aspects
of a dynamic decision making in real-time, such as the optimization of cycle time and asset utilization
(Sivakumar 1999). According to Li and Yu (2017), an optimized scheduling also implies achieving a better
performance, throughput and movement of work pieces.

One way to accomplish the DT benefits is to design an automated decision-making flow based on
predictions of the Remaining Cycle Time (RCT) of a part in production. According to van Dongen et al.
(2008), the RCT can be defined as ”the amount of time left to finish a cycle operation for an entity from
a given stage of the system”. Estimating the RCT is not trivial and depends on the changing dynamic of
the system. For example, imagine a customer waiting in queue at a counter. If a new counter is opened in
parallel, the customer will likely experience a lower waiting time (i.e., lower RCT). On the other hand, if
the server at the counter takes a break and stops serving customers momentarily, the waiting time increases
(i.e., higher RCT). This unpredictable and complex dynamics of a system requires a dedicated system to
continuously update the predictions (van Dongen et al. 2008). In the available literature, several methods
were implemented to improve the RCT predictions. In the recent years, applications using machine learning
models have gained relevance. For instance, Tirkel (2011) implemented a machine learning model for the
prediction of average cycle time for a production lot. The paper applies methods based both on decision
trees and neural networks, considering that the latter consistently show higher accuracy than the former.
One way of estimating the RCT of a entity is by looking at its average cycle time and deducting the
time that the entity has already spent in production (van Dongen et al. 2008). However, this approach
does not include an update of the actual RCT in real-time. Hence, the authors proposed different types of
non-parametric regression based on multiple estimators extracted from a real log. Similarly, Yang et al.
(2022) implemented a DT framework capable of calculating the RCT using different ML models. Choueiri
et al. (2020) employed a combination of a transition system and linear regression to develop a hybrid
model aimed at predicting RCT in the manufacturing process. Friederich et al. (2023) applied a discipline
of process mining called predictive process monitoring which relies on regression methods based on event
data to predict the RCT.

Despite effective in their own domains of application, the aforementioned approaches have been mostly
applied as standalone methods and within controlled conditions. To the best of the authors’ knowledge,
no approaches have included the RCT within a data-driven DT framework. This work aims to exploit the
simulation-based RCT predictions as basis to complete a DT framework as production control service.

3 DIGITAL TWIN FRAMEWORK

The framework developed in this work is based on the one suggested by Lugaresi et al. (2022), which allows
for the integration of the essential components of a DT such as synchronization and validation. Figure 1
outlines the components and the data flows of the DT that supports real-time data acquisition and control
of the physical system. Data is continuously collected through sensor devices in the manufacturing system.
The manufacturing execution system allows for the data collection and stores both raw and aggregated
data in a database. In the Data Layer, specific services guarantee the physical-to-digital alignment of the
DT by verifying the characteristics of a digital model. The database is a central element of this layer,
and stores data both from the real system and from its virtual model. The synchronization component
uses data to gather the current system state, namely the allocation of work-pieces along the system (e.g.,
buffer levels) and updates the system configuration in the digital model. The synchronization component
implements an adapted version of the methods proposed by Passarin, Edoardo and Verucchi, Francesco
(2022). Validation uses data to verify if the digital model correctly represents (1) the topological features
of the manufacturing system (e.g., physical layout, the material flow connections), and (2) the stochastic
behaviour of the system (i.e., processing time distributions). The validation component implements the
procedures presented by Lugaresi et al. (2022). If the digital model is not valid, the validation component
updates it with the most recent parameters. Each time the digital model is updated, it is also saved in a
model store repository, which allows to keep track of all the models that are used within the DT. Finally, the
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Figure 1: Digital twin framework used as reference in this work.

Service Layer includes components that use the most updated digital model to generate useful services for
the production system. Multiple services can reside independently in the DT architecture (e.g., monitoring,
performance evaluation). The services provide feedback to the manufacturing execution system, which can
convert them into actions on the physical system. In general, each service works at a specified frequency
that depends on the physical system and the production planning and control problem under study. The
synchronization, validation and control frequencies are denoted as fs, fv and fc, respectively. Section 4
describes the development of the production control service.

4 PRODUCTION CONTROL SERVICE

This section illustrates the methodology used in the production control service within the DT architecture.

4.1 Remaining Cycle Time Definition

Let us consider a generic production system that has to produce |J| parts. The RCT of a part j ∈ J at time t
is defined as the expected amount of time required to terminate its production. We denote with Tj the time
at which the part j exits the system. Under ideal conditions, Tj is known and the RCT becomes a linear
function of time. In real conditions, Tj depends on specific conditions of the system and its environment
(e.g., variable processing times, chosen production paths). The physical system conditions at time t can be
represented compactly by a vector x(t) and the exit time can be expressed as a function Tj(x(t)). The RCT
of the j-th part at time t can be expressed as a function of of the expected exit time, as in Equation (1).

RCTj(x(t)) = E [Tj(x(t))]− t. (1)

4.2 Production Control Service

The proposed production control service exploits the prediction of the RCT to manage a dispatching policy
of parts in a manufacturing systems. Without loss of generality, let us refer to a manufacturing system with
|M| machines, connected one another by conveyors. A subset of the machines are identical and alternative
in a production recipe, hence constituting parallel routes. The subset MB ⊆M collects all the machines
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Figure 2: Example of feasible paths for a part at a branching point at t = 0.

that are followed by a parallel route. At each moment in time t, a subset of the parts JB(t) represents the
parts that are located at a branching point machine m ∈MB. Moreover, each part in the system can follow
a path φ jt . The path indicates the sequence of machines that must be visited in the remaining portion of
the production of part j, namely in the time window [t,Tj]. For instance, Figure 2 illustrates a system
with 3 branching point machines (i.e., MB = {1,4,5}), and the first part j = 1 at time t = 0 has to follow
the path φ10 = (1,2,4,6,10). The production paths can be updated along the production. The aim of the
proposed DT-based approach is to find the fastest path possible for each part at anytime. This corresponds
to verifying that the remaining production path of each part is still optimal whenever there is the possibility
to change it, which corresponds to the moment a part is waiting at a branching point machine. The DT
runs simulation experiments to predict the RCT for each possible path. In each experiment, the simulation
model is initialized in order to take into account the last known real system state. Based on the set of
RCT predictions, the path with the smallest expected remaining time is chosen for the specific part in
consideration. This decision is then implemented in the physical system through a feedback action.

The production control procedure is shown in the Figure 3. The following steps are deployed:

• Gather real system state. The DT obtains the real system state, and observes which parts are
queuing at branching point machines m∈MB and updates the set JB(t). Figure 2 shows an application
example of possible paths. At t = 0, there are two parts at branching points (JB = {1,2}).

• Scenario generation. Each part j ∈ JB(t) is assigned a combination of feasible paths φ ∈ P jt . The
paths are generated as a combination without repetition of the possible sequences of machines that a
part can visit in the remaining portion of the system. In this work, the method to generate the paths has
been adapted from the Depth First Search method (Santhosh and Sastry 2023). For example, in the
situation depicted in Figure 2, the paths are P10 = {(2,4,6,10);(2,4,7,10);(3,5,8,10);(3,5,9,10)}
and P20 = {(8,10);(9,10)}.

• Simulation. For each possible path φ ∈ P jt , a simulation experiment is executed. The simulation
predicts the RCT for each path, which in the remainder is indicated as RCT (φ jt). Considering Figure
2, |P10| = 4, hence four simulation experiments will be performed for part j = 1, and |P20| = 2
experiments are executed for j = 2.

• Solution check. An analysis is executed within the results of the previous step to check if it is
worthy to direct the j-th part in any of the analysed paths. This is done by comparing the predicted
RCT with a default value ( ˜RCT j), which is calculated considering a round robin policy, i.e., an
alternating policy without an intelligent allocation. For each path φ ∈ P jt , the gain is calculated
using Equation 2 and compared with a defined threshold ∆. Specifically, if δ (φ jt)≥ ∆, the path is
chosen to be implemented.

δ (φ jt) = 1−
RCT (φ jt)

˜RCT (φ jt)
. (2)
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Figure 3: Information flow of the production control service based on RCT predictions (C1: at least one
part queuing at any branching point machine; C2: the solution advantage is proven).

(a) Physical system (b) Logical layout

Figure 4: Five-machine lab-scale model used for testing the proposed digital twin architecture.

• Control action. The chosen path is implemented in the system through a feedback message. The
message sets the decision to be taken for each specific part to the right branch machine.

• Idle state. This is a state which is reached either after the completion of the service or in case
any of the following conditions is not satisfied: C1 is true in case of |JB(t)|> 0, i.e., in the system
there is at least one part queuing at any branching point machine m ∈MB; C2 is true if δ (φ jt)≥ ∆.
In this state, the control service waits for the next call based on the frequency fc.

5 DIGITAL TWIN PROTOTYPE TESTING

This section explains the experiments done to investigate the applicability of the developed DT architecture.

5.1 Manufacturing System and Digital Twin Setting

The physical system is a lab-scale closed-loop manufacturing system with five machines and two parallel
paths, as shown in Figure 4. The system is available at the Department of Mechanical Engineering of
Politecnico di Milano (Lugaresi et al. 2021). All the machines have their own queues and have stochastic
processing times. Specifically, the processing time of each machine follows a truncated normal distribution
with the following parameters, respectively: N(11,2), N(17,2), N(80,2), N(80,2), N(10,2). The branching
machine is m = 2. Hence, each part that at time t is located in front of machine 2 can follow two alternative
paths, P jt = {(2,3,5);(2,4,5)}. There are twelve pallets circulating in the system and all pallets start from
the queue in front of machine m = 1 at t = 0. The default routing policy for the parallel machines is a
round robin policy. The system allows for data collection and control via the Message Queuing Telemetry
Transport protocol. The DT architecture described in Section 3 has been developed in python. The codes
can be found in the github repository (Bacelar dos Santos and Chalissery Lona 2023a). The dashboard
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Figure 5: Dashboard developed on the Siemens MindSphere platform.

shown in Figure 5 has been developed in the Siemens MindSphere cloud service platform to allow for data
visualization and monitoring.

5.2 Problem Description

We represent a situation in which the two alternative machines MB = {3,4} present a slow behaviour which
results in a higher mean production time (e.g., due to aging). As counteraction, an improvement is applied
to the system with regards to only one of the two machines (e.g., installation of a new resource, targeted
maintenance). The intervention results in having a machine with lower processing time. The effect of this
change is reflected in the whole system dynamics, and the default round robin policy might not be optimal
in the new situation. The application of the DT architecture can result be advantageous to (1) monitor
and identify the system behaviour change, and to (2) readily adapt to the new situation by defining a new
routing policy for the parallel paths.

5.3 Experiments

In order to assess the advantage of the proposed digital twin architecture, we have performed two experimental
campaigns described in the following cases:

• Case 1: production on the system where neither a validation procedure nor a production control
service are available, only synchronization running with fs = 0.5Hz (i.e., monitoring).

• Case 2: production on the system equipped with also validation and the production control service
described in Section 4 for optimizing the routing policy at the branching point.

In both cases, at t = 900s the processing time distribution of machine m = 3 changes to N(25,2) (i.e., a
reduction in the mean). From preliminary experiments it has been determined that the noise due to the
stochastic behaviour of the physical system does not impact significantly the performance of the DT and
its service. Hence, only one iteration of each experiment has been done. In this prototype implementation,
each time the RCT of a part is estimated, the number of replications is not deterministic and depends on
the waiting time on the queue of the branching machine. Namely, all the waiting time is used to gather as
many replications as possible. Table 1 illustrates a portion of results obtained in the first case. The RCT
values are normalized in relation with the last replication of each part. The complete results can be found
in the public dataset (Bacelar dos Santos and Chalissery Lona 2023b).
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Part j Time t (UNIX) RCT (φ1) RCT (φ1) [avg] RCT (φ2) RCT (φ2) [avg]

41 1681219744 247 247 652 652
42 1681219767 237 – 635 –
42 1681219781 247 242 630 632.5
43 1681219787 179 – 699 –
43 1681219793 180 179.5 689 694
44 1681219805 235 – 686 –
44 1681219814 178 206.5 691 688.5
45 1681219820 170 – 718 –
45 1681219827 177 – 719 –
45 1681219833 178 177 713 718

Table 1: Case 1 - Extract of results data for parts j ∈ {41,42,43,44,45}: φ1 = (2,3,5), φ2 = (2,4,5). Time
values are in seconds.

5.3.1 Case 1: System without Digital Twin Control (Benchmark)

Figure 6a shows the comparison between the predicted and the actual RCT for each path φ ∈ P jt . The
reduction in the processing time of machine 3 increases the throughput of the respective path. Due to the
default policy of branching machine m = 2, the parts starts accumulating in the upstream queue of machine
m = 4. This results in lack of parts in the other queues of the system. At t = 1075s, machine 3 starts
to face starvation due to lack of parts in the queue 3. This behavior can clearly be seen in the drop of
machine 3 utilization in the Figure 7a. The RCT of parts visiting machine 4 becomes significantly higher
that the one of parts visiting machine 3, as visible in Figure 6a. The reduction in utilization of machine 3
also propagates across the whole system as it is a closed-loop system. The system has been observed for
2098s in which 58 parts have been produced, for an average throughput of 99.52 parts per hour.

5.3.2 Case 2: System with Digital Twin Control

In this case, the validation and the production control services of the digital twin are also enabled, with
fs = fc = 0.5Hz, fv = 0.011Hz and ∆ = 0.01. Figure 6b shows the comparison between the predicted and
the actual RCT values of each produced part. Figure 6b also shows the two warm-up periods that happened
in the system during the experiment: initial warm-up after the initialization of the physical system, second
warm-up after the manual change of system behavior as a part of the experiment. At t > 900s, the validation
component indicates that the model is not valid, and updates it to reflect the new conditions (Lugaresi
et al. 2022). After the update, the production control service may use the latest digital model to predict
the RCT. Hence, the accuracy of the RCT predictions is influenced by the validation frequency. This is
visible in the delay in Figure 6b. The policy decided by the control service effectively distributes the parts
across both paths in order to minimize their RCT. Indeed, in this scenario, more parts are sent to the faster
machine m = 3. The control service balances the work load of the alternative machines in the system, which
increases the system performance. Indeed, the difference between the RCT predicted for each possible
path tends to converge as illustrated in Figure 6b. The overall effect of this can be seen in the rise of
machine utilization across the system (Figure 7b): the utilization of both machine 3 and 4 converge to 90
%, differently from the diverging behaviour observed in Case 1. Finally, in this experiment the system was
observed for 2075s and 77 parts have been produced, which results in an average throughput of 133.59
parts per hour.
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(a) Case 1: DT without Production Control Service (b) Case 2: DT with Production Control Service

Figure 6: Comparison of Real RCT and Expected for both Case 1 and 2.

(a) Case 1: Machine utilization plot (b) Case 2: Machine utilization plot

Figure 7: Machines Utilization for both Case 1 and 2.

3292



Lugaresi, Bacelar Dos Santos, Chalissery Lona, Rossi, Zancul, and Matta

(a) Part j = 57 in Case 1 (b) Part j = 36 in Case 2

Figure 8: Comparison between actual and predicted RCT of a part.

5.4 Assessment of the Digital Twin Advantage

A comparison between the actual and the predicted RCT of a part in the system for both experimental
cases is shown in Figure 8. The comparison demonstrates the advantage of controlling a system based on
RCT prediction within a DT framework, which is proved by the fact that the predicted RCT values are
closer to the actual values. Figure 8 shows the predicted and actual RCT values for two different parts
selected from Case 1 and 2, respectively. The part used in the Figure 8 is selected appropriately to visualize
the effect of mis-alignment of DT from the physical system and the subsequent error in RCT prediction
because of it. The solid line of the Figure 8 is plotted after the end of the experiment, i.e., the exit time is
known. The dashed line shows a more random behavior because it represents values obtained online, with
an unknown exit time Tj. Figure 8a shows that in the first case the predicted RCT is significantly higher
than the actual, due to the misalignment between the physical system and the DT. The RCT prediction
becomes more accurate only toward the end of the production. On the other hand, Figure 8b shows how in
the second case the RCT predictions start with an error and tend to correct values once the DT is aligned.
It is also interesting to observe what happens to the positioning of parts in the system. For example, the
Figure 9 shows the plot comparing the order of entrance and order of exit. In a perfectly balanced system,
the order of entrance would tend to be equal to the exit one (in the plot, the diagonal line). The Figure 9a
shows the comparison between the ideal behavior with the real one observed in the experiment of Case 1.
after the becomes unbalanced, it never returns to a stable point. On the other hand, the Figure 9b show the
same comparison in Case 2. The production control service enhances the workload balance of the system.
Finally, we can state that the application of the production control services in the physical system allowed
optimization of routing policy of parts as per the behavior and dynamics of the system. The policies set
by the service significantly increased both the machine utilization and the system throughout. Indeed, in
the second case a throughput 34% higher than the first case has been observed along with an increase of
machine utilization in the system.

6 CONCLUSIONS

This work has developed and tested a complete digital twin architecture, with a focus on a production
control service based on the estimation of the remaining cycle time via discrete event simulation. The
test has demonstrated the applicability of the architecture in a controlled environment: the production
control service is capable of controlling the routing policy, improving the machine utilization, optimizing
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(a) Case 1: finished order do not follow the ideal behavior (b) Case 2: finished order tends to follow the ideal behavior

Figure 9: Comparison of order of finished parts between Case 1 and Case 2 (Ideal behaviour: fully balanced
system).

the distribution of parts along the system and reducing their average cycle time. This work is subject
to several limitations that inspire future research endeavours. Currently, the performance predictions are
dependent on the validation frequency, which imposes a delay between a change in the physical system
and the moment when the updated digital model can be used. In future research, the optimal values of the
frequency of each DT service should be investigated with proper methods and experiments. The proposed
digital twin has been applied in a relatively small system, with limited complexity and full control on the
information system. Realistic environments typically present a much higher complexity. Future research
should consider the inclusion of the developed prediction service in a simulation-optimization component,
in which proper methods should be used to manage the complexity and the computation effort.
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