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ABSTRACT

We consider the problem of scheduling automated guided vehicles (AGVs) in a stochastic warehouse
management system. This problem was studied in the Case Study Competition of the 2022 Winter
Simulation Conference. We propose a simulation optimization method that simultaneously optimizes
dispatching and route planning for AGVs to enhance the system performance. Experimental results on
two warehouse system simulation scenarios demonstrate that the proposed method outperforms the default
method.

1 INTRODUCTION

In a stochastic warehouse management system, stock-keeping units (SKUs) are stored on storage racks, and
orders arrive randomly at the warehouse. To meet the surging logistics demand, automated guided vehicles
(AGVs) are commonly used in intelligent warehouses as the primary means of transportation, fulfilling the
horizontal movement of SKUs between racks and delivery locations. However, challenges arise in ensuring
the efficiency of AGVs due to the high volume of orders and limited space for AGV movement. AGVs
are also widely used in manufacturing plants and automated container terminals (Corréa et al. 2007; Zhen
et al. 2020; Hu et al. 2023). This study aims to develop dispatching and route planning algorithms for a
stochastic warehouse management system. These algorithms have tuning parameters that generate multiple
designs of the system, each with an unknown mean performance that can be estimated using Monte Carlo
simulation. A simulation optimization method is proposed to allocate a fixed simulation budget for finding
the optimal design.

The literature on AGV scheduling is extensive. See Vis (2006), Fazlollahtabar and Saidi-Mehrabad
(2015), and De Ryck et al. (2020) for thorough overviews. The scheduling of AGVs typically involves
dispatching and route planning, where the former assigns orders to AGVs under resource constraints, and
the latter determines the travel paths to fulfill the movement of SKUs specified by corresponding orders.
These two problems were initially studied separately, but recent works have simultaneously considered
them to improve the overall system efficiency (Corréa et al. 2007; Nishi et al. 2011). Beyond these
two problems, recent advances in AGV scheduling include determining AGV fleet size (Vis et al. 2001),
optimizing vehicle speed (Adamo et al. 2018), and managing vehicle battery (Kabir and Suzuki 2019).
However, in this work, our focuses are on dispatching and route planning problems.

The AGV dispatching problem typically assumes that both the number of orders and AGV fleet size
are known. Dispatching methods can be categorized into static and dynamic paradigms, where the latter
reassigns orders to better-suited AGVs if available. If the number of orders and AGV fleet size are relatively
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small, the dispatching problem formulated as a mixed-integer linear programming problem can be solved
exactly using a branch and bound algorithm or other tree-based algorithms (De Ryck et al. 2020). However,
for larger numbers of orders and AGV fleet size, the dispatching problem becomes a constrained NP-hard
optimization problem that can only be solved using heuristic methods such as neighborhood search and
genetic algorithms (Lee et al. 2010). The AGV routing problem is similar to the traditional vehicle routing
problem (VRP), but it often assumes that AGVs travel at a constant speed within a limited grid space and
try to avoid obstacles, vehicle collisions and deadlocks. Existing literature on collision-free routing can
be categorized into static, time-window based (Adamo et al. 2018), and dynamic paradigms. In the static
paradigm, an AGV occupies an entire path before passing through it, and sticking at a certain square unit
for an AGV increases the makespan of some orders. In the dynamic paradigm, any path can be adjusted
based on time-varying traffic conditions, e.g., finding the shortest path for each AGV and then adjusting it
to find an alternative path when a collision occurs. Other dynamic collision-free routing algorithms include
generating k-shortest paths (Lee et al. 1998), using a graph-representation method (Fransen et al. 2020), or
adopting a space-time routing framework (An et al. 2020). A recent advance in the AGV routing problem
includes reinforcement learning methods. For example, Hu et al. (2020) propose a real-time scheduling
method based on deep reinforcement learning, and Hu et al. (2023) use a multi-agent reinforcement learning
method to solve an integer programming model. In this work, our focus is on finding desirable paths for
all AGVs using a constrained tree-based search method that avoids collisions between AGVs.

The stochastic warehouse management system is modeled as a discrete event dynamic system (DEDS).
There are tuning parameters that can take on various values and affect system performance. We consider a
simulation budget allocation problem for optimizing parameters. Simulation budget allocation is actively
studied for optimizing complex DEDSs that are computationally intensive to simulate. The goal of a
classic simulation budget allocation problem is to select the best design of a stochastic model with the
largest (or smallest) mean from a finite number of designs with unknown means. The mean of a random
output of the model often does not have an analytical form but can be estimated by simulation. However,
simulation is typically expensive, so a limited simulation budget needs to be intelligently allocated to improve
sampling efficiency. Peng and Zhang (2022) conduct comprehensive numerical comparisons of fixed-budget
sampling policies, including optimal computing budget allocation (OCBA) (Chen et al. 2000), expected
improvement (EI) (Ryzhov 2016), knowledge gradient (KG) (Frazier et al. 2008), and asymptotically
optimal allocation procedure (AOAP) (Peng et al. 2018). However, as the number of parameters and
their alternative values increases, the total number of combinations increases rapidly, posing a significant
challenge to the traditional implementation of these policies. In this work, we use parallel computing to
increase computational efficiency.

In this work, we adopt a discrete event simulation model used in the Case Study Competition of the
2022 Winter Simulation Conference (2022 WSC). We propose a rule-based dynamic dispatching algorithm
and a route planning algorithm that uses breadth-first search (BFS) to generate collision-free paths in a
search space with constraints. To further optimize system performance, we study a simulation budget
allocation problem for finding the best tuning parameter combination in the dispatching and route planning
algorithms. Each combination represents a system design, and we use an efficient sampling policy called
AOAP to intelligently allocate the simulation budget. Our budget allocation scheme is implemented in a
parallel computing environment with a central processing unit (CPU) that contains multiple cores. The
designs are distributed among different processors to reduce execution time. We demonstrate the efficiency
of our proposed method through numerical experiments on two warehouse management system simulation
scenarios. The rest of the paper is organised as follows. Section 2 describes the discrete-event simulation
model. The dispatching and route planning algorithms are proposed in Section 3. Section 4 presents the
numerical results. The last section concludes the paper.
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2 PROBLEM DESCRIPTION

In this section, we outline the discrete-event simulation model adopted in our work. The AGV traffic
network is represented as a grid consisting of fixed-size traversable square units, where different warehouse
layouts can be created by blocking certain units. Figure 1 shows a configuration of the grid. Orders arrive at
the system following a Poisson process, and the picking rack and delivery location of an order are specified
upon arrival. The randomness in the simulation model arises from the random arrival of orders. AGVs
move along adjacent square units in the limited grid space to pick or deliver SKUs or park at berths if no
order is assigned to them.

Figure 1: Grid-based AGV traffic network.

An AGV parks at its berth before it is matched with an order. Then it travels to the picking rack and
picks the SKUs. After loading, it travels to the delivery location and delivers the SKUs. If the AGV is
assigned an order before unloading, it will travel to pick up the next order. If the AGV has no more order
assigned, it will travel back to its berth and wait for new orders. The speed of an AGV is 1 square unit per
second, and the loading and unloading durations are 3 seconds and 4 seconds, respectively. There are four
statuses for an AGV, including: (1) picking–when it is moving to the picking rack, (2) delivering–when
it has finished loading SKUs and is moving to the delivery location, (3) parking–when it has finished
unloading and has no order assigned, and (4) idle–when it is parking at its berth or has finished unloading
but still has new assigned orders. The following assumptions are introduced in the simulation model:

• Orders are independent of each other.
• Each square unit can hold only one AGV at a time. An AGV can reserve multiple square units for

route planning, but it can only be located in one unit at a time.
• Each order is assigned to one AGV, which can be assigned multiple orders. An AGV can transfer

SKUs specified by only one order at a time.
• All AGVs have the same function, and their maximum battery capacity ensures the energy con-

sumption of the assigned orders.
• The simulation model ignores the acceleration and deceleration of AGVs during movement.
• Each AGV has its own berth and must return to it when its status is ‘parking’.

The AGV dispatching module is invoked when the system receives an order or the status of an AGV
becomes ‘parking’. All available orders in the system, except those being transported by the AGVs, can
be assigned to any AGVs except those in the ‘parking’ status. That is, an order may be reassigned if the
AGV has not started moving to pick up the SKUs. After the assigned AGV reaches the picking rack, the
SKUs will start loading and subsequently be transported to the delivery location, where the SKUs will be
unloaded from the vehicle.

The AGV routing module is invoked after dispatching, loading, and unloading. First, the AGV obtains
its full path from its current location to the destination location, e.g., from the picking rack to the delivery
location. Next, the partial route request module is invoked to find the first partial route, which is a section
of the full path adjacent to the current location. If all the square units in the requested partial route are
unoccupied by other AGVs, the AGV starts to move; otherwise, it waits for the partial route to be released
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at its current location. If multiple AGVs are waiting to pass through the same partial route, the one with
the earliest request time has priority. After a random time, which follows a uniform distribution over the
duration of the first partial route, the partial route request module is again invoked to find the next partial
route. The current partial route is released after the AGV reaches its last square unit. The requesting process
repeats until the AGV reaches its final destination. Once the AGV completes its full path, it performs
loading, unloading, or parking, depending on the specific operation requirements.

A metric to evaluate the performance of the warehouse management system is the adjusted average
order cycle time (ACT), i.e., ACT =E[(T c̃

f (N f )+ c̃Nu)/N], where T c̃
f (N f ) is the total cycle time for finished

orders, N f is the number of finished orders, Nu is the number of unfinished orders, N = Nu +N f is the
total number of generated orders, and c̃ is a penalty parameter for unfinished orders due to deadlocks.
The simulation model runs for 1 hour, with the penalty time c̃ set at 1

5 of the time it takes for an AGV
to travel the entire grid. Our objective is to develop dispatching and route planning algorithms for the
corresponding modules of the simulation model to minimize the ACT in a given warehouse management
system simulation scenario.

3 A NEW SCHEDULING METHOD

In this section, we first propose dispatching and collision-free route planning algorithms for the warehouse
system. Then, we adopt a simulation budget allocation policy to further improve the system performance.
The structure of the simulation model and the input information for each module affect the design of these
algorithms.

3.1 Dispatching

The dispatching attempts to match all available orders in the system with an available AGV. All available
orders include those that have never been assigned and those that have been assigned but have not yet
started to pick up. The inputs of the dispatching algorithm are dynamic attributes of orders and AGVs,
including: the label and arrival time of each order; the label, berth, paths, request partial routes, request
time, time to travel through the partial routes, assigned orders, and status of each AGV. It outputs sequences
of orders assigned to each available AGV.

We propose a rule-based dispatching algorithm to allocate available orders to the nearest AGV within
an acceptable range of distance. At the `-th invocation of the algorithm, we have a set of available orders
I(`) and a set of all AGVs except those in the ‘parking’ status J(`). The algorithm begins by dividing the
I(`) into two subsets: I(`)1 and I(`)2 , based on the time interval between the current dispatching time and the
order arrival time. Orders in I(`) with an interval time greater than 300 seconds are classified as I(`)1 , while
other orders are classified as I(`)2 . For the orders in I(`)1 , the range that can be assigned is the entire grid
Ω, whereas for the orders in I(`)2 , the range that can be assigned is a fixed number of square units r, which
can be adjusted as a tuning parameter to optimize the system performance.

We then calculate the distance d(`)
i j between each order i ∈ I(`) and each AGV j ∈ J(`). We use the

Manhattan distance to calculate the distance between two square units (x1,y1) ,(x2,y2) ∈Ω, which is the
sum of the absolute differences of their coordinates, i.e., |x1− x2|+ |y1− y2|. The algorithm prioritizes
the assignment of orders in I(`)1 , followed by orders in I(`)2 . Specifically, orders that arrive earlier are
assigned first. For each i ∈ I(`), we select the AGV with the shortest distance as the assigned AGV,
i.e., j∗ = argmin jd

(`)
i j . If a closer AGV is found during the `-th invocation of the algorithm, orders that

were previously assigned to an AGV in the (`−1)-th invocation are reassigned. Algorithm 1 shows the
pseudocode for calculating d(`)

i j for each i ∈ I(`) in the dispatching algorithm. Here, c is the maximum
number of orders that a vehicle can be assigned at the same time, which can be adjusted as a tuning
parameter to optimize the system performance.
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Algorithm 1: Distance between an order and an AGV

Input: i ∈ I(`), J(`), r, c
Output: d(`)

i j

1 for j ∈ J(`) do
2 if j ∈ J(`) has no order in the (`−1)-th dispatching then
3 Calculate the distance between i’s picking rack and j’s current location;
4 else
5 if i had been assigned to j in the (`−1)-th dispatching then
6 if i is the first order to be picked up by j then
7 Calculate the distance between i’s picking rack and j’s current location;
8 else
9 Calculate the distance required for j to complete all previous orders of i assigned in

the (`−1)-th dispatching and reach i’s picking rack;
10 end
11 else
12 if the total number of orders in j in the (`−1)-th dispatching is less than c then
13 if j has new orders in the `-th dispatching then
14 if the total number of orders in j in the (`−1)-th and the `-th dispatching is

less than c then
15 Calculate the distance required for j to complete all assigned orders in the

(`−1)-th and `-th dispatching and reach i’s picking rack;
16 end
17 else
18 Calculate the distance required for j to complete all assigned orders in the

(`−1)-th dispatching and reach i’s picking rack;
19 end
20 else
21 d(`)

i j = ∞;
22 end
23 end
24 end
25 if i ∈ I(`)1 , or the calculated distance of i ∈ I(`)2 is smaller than r then
26 d(`)

i j = the calculated distance;
27 else
28 d(`)

i j = ∞;
29 end
30 end

3.2 Route Planning

The route planning algorithm calculates routes for AGVs from their starting point to their destination. The
algorithm takes three inputs: the entire grid Ω, the starting square unit, and the destination square unit. It
outputs a path composed of square units. The partial route request algorithm reserves a partial route to
avoid collisions for a moving AGV. This algorithm takes dynamic attributes of AGVs and grids as inputs,
which include the label and occupancy of each square unit. The partial route request algorithm outputs a
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partial route of the whole path. We propose a collision-free route planning algorithm that uses BFS (Lee
1961) to search in a constrained search space that maintains a safety zone between AGVs. BFS is a search
algorithm that explores a tree data structure in a breadth-first order, starting at the tree root and exploring
all nodes at the present depth before moving on to the next depth level. By constructing a tree from the
starting point and considering all possible moves, BFS can find the shortest path between two square units
in an unweighted grid.

We consider two collision situations: opposite collision and same square unit collision, as shown in
Figure 2. In opposite collision, AGV1 and AGV2 move head-to-head on two adjacent square units. In
same square unit collision, AGV3 and AGV4 move toward the same square unit, while in another instance
of same square unit collision, AGV6 moves to the square unit occupied by AGV5.

Figure 2: The collision situations of AGVs.

To develop a collision-free routing algorithm, we incorporate a constraint set into the search space of
BFS. Suppose that at time t j

r , the routing module is invoked to find a path for vehicle j, and let Ĩ(t j
r ) denote

all AGVs in motion at that time. In addition, suppose that vehicle i ∈ Ĩ(t j
r ) arrives at its destination at time

t̄ i
o. We collect the complete paths of all AGVs in Ĩ(t j

r ) to determine their locations on the grid at times
t j
r , t

j
r +1, · · · ,max

i∈Ĩ(t
j
r )

t̄ i
o. Based on their future locations, we develop a constraint set that ensures a safe

distance between vehicle j and other AGVs, thereby achieving collision avoidance. These constraints rely
on two tuning parameters, s1 and s2, which can be adjusted to optimize the system performance. Specifically,
suppose that vehicle i ∈ Ĩ(t j

r ) locates in a square unit at time t i
o ∈ [t j

r , t̄ i
o). Then one of the constraints is

set as vehicle j cannot move into that square unit in the time region R̃(t i
o) ∆
=
[
t i
o− s1, t i

o + s1 +1
]
. Since the

sojourn time of vehicle i at its destination at time t̄ i
o is unknown to the route planning module, another

constraint is set as vehicle j cannot move into the destination of i in the time region R̃(t̄ i
o) ∆
=
[
t̄ i
o, t̄

i
o +4+ s2

]
,

with 4 being the unloading duration mentioned in Section 2. The constraint set includes all constraints
R̃(t i

o) and R̃(t̄ i
o), t i

o ∈ [t j
r , t̄ i

o), ∀i ∈ Ĩ(t j
r ). For example, when s1 = 0, the constraint R̃(t i

o) =
[
t i
o, t

i
o +1

]
ensures

that vehicle j does not move into the same square unit as other AGVs at time t i
o, as shown in the situation

of AGV3 and AGV4 in Figure 2. It also ensures that vehicle j does not pass through other AGVs at time
t i
o+1, as shown in the situation of AGV1 and AGV2 in Figure 2. If the constraint set is too large, BFS may

fail to provide a solution, while if the constraint is too small, vehicle collisions may not be avoided entirely.
However, determining the optimal set of constraints is challenging due to the limited input information
available from simulation models. In the partial route request algorithm, the AGV requests 1 square unit
from its remaining route as its next partial route.

3.3 Simulation Budget Allocation

We consider a simulation budget allocation problem of finding the tuning parameter combination (r,c,s1,s2)
in the dispatching and route planning algorithms, which leads to the minimal ACT. Each combination
represents a system design. Suppose that there are k designs and their corresponding unknown ACTs are
denoted as µi, i = 1, · · · ,k, which can be estimated by independent simulation replications Xi`, ` ∈ Z+. In
simulation budget allocation problem, it is often assumed that Xi`, X j`, i 6= j, follow independent normal
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distributions with unknown means and known variances, i.e., Xh,`∼N
(
µh,σ

2
h

)
, h = 1, · · · ,k. The normal

assumption is justified by the central limit theorem in our work since the ACT, which is the average
system time of certain orders arrived within 1 hour, is calculated as an average of many random variables.
The central issue in simulation budget allocation is how to allocate simulation replications intelligently to
improve sampling efficiency. A popular metric to measure sampling efficiency is the probability of correct
selection (PCS), i.e., PCS = Pr{

⋂k
i=2 µ〈1〉T < µ〈i〉T }, where 〈i〉T are indices ranked in ascending order by

estimated performance after allocating a total of T simulation replications. There are numerous existing
sampling procedures in the research of simulation budget allocation, and we adopt the AOAP which is
derived under the Bayesian framework. A conjugate prior distribution N(µ

(0)
i ,(σ

(0)
i )2) is introduced to

quantify the uncertainty of µi, and its posterior distribution is given by N(µ
(t)
i ,(σ

(t)
i )2), where

(σ
(t)
i )2 =

(
1

(σ
(0)
i )2

+
ti

σ2
i

)−1

, µ
(t)
i = (σ

(t)
i )2

(
µ
(0)
i

(σ
(0)
i )2

+
tim

(t)
i

σ2
i

)
,

where t is the total number of allocated replications, ti is the number of allocated replications to design
i, m(t)

i = ∑
ti
`=1 Xi,`

/
ti is the sample mean. The dynamic decisions in simulation budget allocation problem

can be formulated as an allocation and selection policy, and the optimal allocation and selection policy
satisfies a Bellman equation. The AOAP is derived in an approximate dynamic programming paradigm,
which finds a suitable value function approximation for the Bellman equation. Let Et be the information
set obtained after allocating t simulation replications, which is completely determined by the posterior
hyper-parameters, and let At+1 (Et) be the allocation decision based on collected information. Then the
AOAP is given by

At+1 (Et) = arg max
i=1,··· ,k

V̂t (Et ; i) ,

where 〈1〉t = mini=1,··· ,k µ
(t)
i ,

V̂t (Et ;1) = min
j 6=1

(
µ
(t)
〈1〉t
−µ

(t)
〈 j〉t

)2

(
σ
(t+1)
〈1〉t

)2
+
(

σ
(t)
〈 j〉t

)2 ,

V̂t (Et ; j) = min


(

µ
(t)
〈1〉t
−µ

(t)
〈 j〉t

)2

(
σ
(t)
〈1〉t

)2
+
(

σ
(t+1)
〈 j〉t

)2 , min
6̀=1, j

(
µ
(t)
〈1〉t
−µ

(t)
〈`〉t

)2

(
σ
(t)
〈1〉t

)2
+
(

σ
(t)
〈`〉t

)2

 , j = 2, · · · ,k .

When the number of designs becomes large, the limited computational power of a single processor
can restrict one from solving the problem within a reasonable amount of time. With the rapid development
of computing technology, parallel computing becomes increasingly prevalent and accessible to ordinary
users. In this work, we do not develop parallel budget allocation procedures but instead implement the
AOAP in a parallel computing environment with m processors. We equally allocate the k designs and T
simulation budget to the m processors. In each processor, the AOAP sequentially allocates T/m simulation
replications, allocating one simulation replication at each step, to find the design with the best estimated
performance among k/m designs. Subsequently, the best design is selected from the m designs determined
by the m processors by comparing their estimated performances. By doing so, the promising top designs
have a greater chance of surviving until the end of the simulation, and the computational time required to
find the best design can be significantly reduced. In general, if a scheduling method of AGVs is designed for
multiple scenarios, then the problem of finding the optimal tuning parameter combination can be formulated
as a context-dependent simulation budget allocation problem, where the goal is to correctly select the best
design for each scenario. For a review on the context-dependent simulation budget allocation problem,
please refer to Keslin et al. (2022).
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4 NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to demonstrate the effectiveness of our proposed scheduling
method. We compare our method against a default approach provided in the WSC 2022. The default
dispatching algorithm is the same as that in Section 3.1 with r = 5 and c = 3, except for some differences
in how the distances between AGVs and orders are determined. Specifically, in Line 15 of Algorithm 1, the
default algorithm calculates the distance between i’s picking rack and the delivery location of the last order
in the `-th dispatching, and in Line 18, the default algorithm calculates the distance between i’s picking rack
and the delivery location of the last order in the (`−1)-th dispatching. The default route planning algorithm
uses the A∗ search algorithm (Hart, Nilsson, and Raphael 1968) to generate routes for each AGV, finding
the shortest path based on the cost of the path and an estimate of the cost required to extend the path all the
way to the destination. Moreover, the default partial route request algorithm requests 3 square units from
its remaining route as its next partial route. In case there are fewer than 3 square units left, the algorithm
requests the remaining number of square units as its next partial route. Figure 3 illustrates the layouts of
two warehouse management system simulation scenarios that are considered in the numerical experiments.
In Scenarios 1 and 2, AGVs move in an 18× 18 grid and a 20× 20 grid, respectively. The inputs of
the simulation model include the inter-arrival times of orders, which follow exponential distributions with
mean parameters of 70 and 120 orders per hour in Scenarios 1 and 2, respectively. Scenario 2 is more
challenging than Scenario 1 due to the larger quantity of orders, larger AGV fleet size, denser berths, and
more obstacles.

(a) Scenario 1 (b) Scenario 2

Figure 3: Layouts of two warehouse management system simulation scenarios: (a) Scenario 1; (b) Scenario
2. The blue square units represent berths, and the purple square units represent obstacles.

We report some performance metrics of the system in addition to the ACT in the numerical results,
including: the average ratio of finished orders R f = E

[
N f
/

N
]
; the average waiting time for orders to be

picked up by AGVs on picking racks Worder; the average waiting time caused by congestion for loaded
AGVs during delivery Wloaded ; and the average waiting time caused by congestion for empty AGVs during
movement Wempty. We conduct two numerical experiments under both simulation scenarios. In the first
experiment, we compare system performance with and without implementing simulation budget allocation
methods under the default algorithm. In the second experiment, we compare the performance of the
system designed under our proposed method and the default algorithm. The AOAP is implemented with
non-informative priors. Both experiments are conducted in a parallel computing environment with m = 24
processors. The total simulation budget is T = 4800, and each metric is estimated by 1000 independent
macro experiments. The code of the proposed scheduling method for the numerical experiments can be
found at https://github.com/xiaotianliu01/2nd-Solution-for-WSC-2022-Case-Competition.
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Experiment 1 (Effectiveness of Simulation Budget Allocation Method) We begin by conducting a
simple numerical experiment to demonstrate the effectiveness of simulation budget allocation method by
comparing the default algorithm with its adaptation using simulation budget allocation method. In the
adapted default algorithm, we consider r and c in the dispatching module, as well as the reservation length
`res in the partial request module of the default method, as tuning parameters. We aim to find the parameter
combination (r,c, `res) that leads to the minimal ACT for each scenario. Specifically, we set r = 1,4,7,10;
c = 1,10,19, · · · ,100, and `res = 1,2,3, · · · ,16, resulting in a total of 768 designs, which are assigned evenly
to 24 processors.

By using AOAP to intelligently allocate 200 simulation replications in each processor, we obtain
(r∗,c∗, `∗res) = (64,1,6) for Scenario 1 and (r∗,c∗, `∗res) = (73,4,7) for Scenario 2. The optimal parameter
combination for each scenario is different from that used in the default algorithm. We observe that the
values of the optimal parameter combination in Scenario 2 are larger than those in Scenario 1, which can
be attributed to the reason that Scenario 2 is more challenging than Scenario 1. Table 1 shows various
performance metrics of the system under the default algorithm and its adaptation for the two scenarios.

Table 1: System performance with and without implementing simulation budget allocation methods under
the default algorithm.

R f Worder Wloaded Wempty ACT

Scenario 1
Default

Adaptation
0.838
0.847

1388.9s
812.8s

25.2s
9.8s

5.8s
2.9s

240.9s
222.7s

Percentage change 1.1% -41.5% -61.1% -50.0% -7.6%

Scenario 2
Default

Adaptation
0.586
0.667

2055.4s
2791.8s

16.3s
23.6s

9.2s
16.7s

687.4s
565.8s

Percentage change 13.8% 35.8% 44.8% 81.5% -17.7%

In Table 1, we can observe that the adapted default algorithm results in an increased average ratio of
finished orders R f and a decreased ACT compared to the default algorithm. In Scenario 2, although the
adapted default algorithm increases the waiting times Worder, Wloaded and Wempty, which can be attributed
to its larger request for square units to avoid collisions, it lowers the ACT. Comparing Scenario 1 and
Scenario 2 shows that the advantage of implementing simulation budget allocation method appears to be
more pronounced as the scenario becomes more challenging.

Experiment 2 (Effectiveness of the Proposed Scheduling Method) We conduct numerical experiment to
demonstrate the effectiveness of the proposed scheduling method. We set r = 1,4,7,10; c= 1,10,19, · · · ,100;
s1 = 1,2,3,4, and s2 = 0,1,2,3, resulting in a total of 768 designs, which are assigned evenly to 24 processors.
We then use AOAP to find the optimal parameter combination (r,c,s1,s2) in the dispatching and route
planning algorithms that leads to the minimal ACT.

We obtain (r∗,c∗,s∗1,s
∗
2) = (91,7,2,3) for Scenario 1 and (r∗,c∗,s∗1,s

∗
2) = (100,7,2,3) for Scenario 2.

The proposed scheduling method makes the optimal parameter combination for each scenario different
from that used in the default algorithm and that used in the adapted default algorithm. Scenario 2 sets a
larger range that orders can be assigned than Scenario 1. However, values of c∗, s∗1, and s∗2 are the same
in the two scenarios.

Figure 4 shows heat maps of ACTs under different parameter combinations (r,c). The heat maps use
color to depict the ACT values, with yellow indicating the maximum and dark blue indicating the minimum.
We can see that for both scenarios, there is no obvious pattern for different parameter combinations (r,c) that
make the system perform better. Figure 5 shows the ACT values for different designs in ascending order.
We can see that different parameter combinations have significant impacts on the system performance,
which underscores the importance of using simulation budget allocation method to identify the best design
for a stochastic system. Figure 6 provides visual demonstrations of AGV movements in two simulation
scenarios under our proposed scheduling method.
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(a) Scenario 1 (b) Scenario 2

Figure 4: ACTs under different parameter combinations (r,c): (a) Scenario 1; (b) Scenario 2. The x-axis
represents c, and the y-axis represents r.

(a) Scenario 1 (b) Scenario 2

Figure 5: ACT values for different designs in ascending order: (a) Scenario 1; (b) Scenario 2.

Table 2 displays various performance metrics of the system under the default algorithm and our proposed
scheduling method. We can observe that our method significantly improves the average ratio of finished
orders R f and lowers the ACT compared to the default algorithm. Furthermore, compared to the numerical
results from Experiment 1, our scheduling method outperforms the adapted default method, which solely
uses simulation budget allocation method to improve the system performance. Although our proposed
scheduling method increases certain waiting times during AGV movements, which can be attributed to the
constraint set that avoids vehicle collisions in the route planning algorithm, it reduces the ACT. Comparing
Scenario 1 and Scenario 2 shows that the advantage of our proposed scheduling method appears to be more
pronounced when the scenario becomes more challenging.

5 CONCLUSION

This paper studies a scheduling problem for AGVs in a stochastic warehouse management system. We
develop efficient rule-based dispatching and collision-free route planning algorithms. The optimal parameter
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(a) Scenario 1 (b) Scenario 2

Figure 6: Visual demonstrations of AGV movements: (a) Scenario 1; (b) Scenario 2. The blue square
units represent berths, the purple square units represent obstacles, the red square units represent delivery
locations, the green square units represent paths, and the yellow square units represent requested ones.

Table 2: The performance of the system designed under the default algorithm and our proposed scheduling
method.

R f Worder Wloaded Wempty ACT

Scenario 1
Default

Proposed Method
0.838
0.961

1388.9s
801.7s

25.2s
69.5s

5.8s
6.7s

240.9s
86.3s

Percentage change 14.7% -42.3% 175.8% 15.5% -64.2%

Scenario 2
Default

Proposed Method
0.586
0.989

2055.4s
1468.6s

16.3s
33.0s

9.2s
5.4s

687.4s
48.9s

Percentage change 68.8% 28.5% 102.5% 41.3% -92.9%

combination for these algorithms is found using simulation budget allocation method implemented in a
parallel computing environment. Numerical experiments demonstrate that simulation budget allocation
method significantly enhances the system performance, and the proposed scheduling method outperforms
the default algorithm.

The deadlock avoidance in the scheduling method deserves future work. Parallel fixed-budget simulation
budget allocation policies are worthy of further study. Future research also includes developing multi-agent
reinforcement learning algorithms for the simultaneous dispatching and route planning of AGVs. How
to develop a warehouse system simulation model that can incorporate multi-agent reinforcement learning
algorithms could also be future work.
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